• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 8
    Aug.  2018
    Turn off MathJax
    Article Contents
    Zou Jieqiong, Yu Hongxia, Wang Baodi, Huang Feng, Zeng Yunchuan, Huang Wenlong, Wen Yaqian, Zhang Zhao, Fan Zichen, Tan Rongyu, 2018. Petrogenesis and Geological Implications of Early Jurassic Granodiorites in Renqinze Area, Central Part of Southern Lhasa Subterrane. Earth Science, 43(8): 2795-2810. doi: 10.3799/dqkx.2018.589
    Citation: Zou Jieqiong, Yu Hongxia, Wang Baodi, Huang Feng, Zeng Yunchuan, Huang Wenlong, Wen Yaqian, Zhang Zhao, Fan Zichen, Tan Rongyu, 2018. Petrogenesis and Geological Implications of Early Jurassic Granodiorites in Renqinze Area, Central Part of Southern Lhasa Subterrane. Earth Science, 43(8): 2795-2810. doi: 10.3799/dqkx.2018.589

    Petrogenesis and Geological Implications of Early Jurassic Granodiorites in Renqinze Area, Central Part of Southern Lhasa Subterrane

    doi: 10.3799/dqkx.2018.589
    • Received Date: 2018-04-09
    • Publish Date: 2018-08-15
    • The opening and subduction time of the Neo-Tethys ocean in the southern part of the Lhasa block on the Qinghai-Tibet Plateau ramains controversial.The widely developed Mesozoic granitoids in the southern Lhasa subterrane of Tibetan Plateau, are essential samples to explore the prolonged evolution of subduction process of the Neo-Tethys before collision between the Asia and India continents.Here, we present detailed zircon U-Pb dating, trace element and Hf isotope, whole-rock major and trace elements, and Sr-Nd isotope data for the granodiorites from the Renqinze area, central part of southern Lhasa subterrane.The granodiorites were crystallized at ca.180 Ma, which belongs to Early Jurassic.They are characterized by relatively high SiO2 (62.77%-64.18%) contents and low K2O/Na2O (0.29-0.60) and A/CNK values (0.90-0.98).These geochemical characteristics are similar to Ⅰ-type calc-alkaline rocks.Renqinze granodiorites are enriched in LILEs (e.g. Ba and U) and depleted in HFSEs (e.g. Nb and Ta), showing the geochemical affinity of arc-related magmatism.The granodiorites fall into the range of partial melts of meta-basaltic rocks due to their high CaO, low total alkaline and Al2O3 contents.The accordant results of Ti-in-zircon and whole-rock zircon saturation temperature suggest that the Renqinze granitoid rocks were derived from the lower continental crust.Moreover, the granodiorites show low (87Sr/86Sr)i(0.703 671-0.703 794), high εNd(t)(5.41-5.66) and zircon εHf(t)(12.6-14.8) values, indicating they were likely generated from partial melting of a juvenile mafic lower crust.The Renqinze granitodiorites represent the products of subduction of the Neo-Tethys ocean.The timing for the opening of the Neo-Tethys is at least before Late Triassic.

       

    • loading
    • Altherr, R., Holl, A., Hegner, E., et al., 2000.High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides:Northern Vosges(France) and Northern Schwarzwald(Germany).Lithos, 50(1-3):51-73.https://doi.org/10.1016/s0024-4937(99)00052-3 doi: 10.1016/S0024-4937(99)00052-3
      Batchelor, R.A., Bowden, P., 1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters.Chemical Geology, 48(1-4):43-55. https://doi.org/10.1016/0009-2541(85)90034-8
      Claiborne, L.L., Miller, C.F., Wooden, J.L., 2010.Trace Element Composition of Igneous Zircon:A Thermal and Compositional Record of the Accumulation and Evolution of a Large Silicic Batholith, Spirit Mountain, Nevada.Contributions to Mineralogy and Petrology, 160(4):511-531. https://doi.org/10.1007/s00410-010-0491-5
      Clemens, J., 2003.S-Type Granitic Magmas-Petrogenetic Issues, Models and Evidence.Earth-Science Reviews, 61(1-2):1-18.https://doi.org/10.1016/s0012-8252(02)00107-1 doi: 10.1016/S0012-8252(02)00107-1
      Dong, X., Zhang, Z.M., Liu, F., et al., 2011.Zircon U-Pb Geochronology of the Nyainqentanglha Group from the Lhasa Terrane:New Constraints on the Triassic Orogeny of the South Tibet.Journal of Asian Earth Sciences, 42(4):732-739.https://doi.org/10.1016/j.jseaes.2011.01.014 http://cn.bing.com/academic/profile?id=5087d36831ede9dbae32e350953b4804&encoded=0&v=paper_preview&mkt=zh-cn
      Dong, X., Zhang, Z.M., 2013.Genesis and Tectonic Significance of the Early Jurassic Magmatic Rocks from the Southern Lhasa Terrane.Acta Petrologica Sinica, 29(6):1933-1948 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=bb69b9b9560eb263fab6da562802967f&encoded=0&v=paper_preview&mkt=zh-cn
      Dong, Y.H., Xu, J.F., Zeng, Q.G., et al., 2006.Is there a Neo-Tethys' Subduction Record Earlier than Arc Volcanic Rocks in the Sangri Group? Acta Petrologica Sinica, 22(3):661-668 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a02ee922be35628ea8b2d99f8d2ecb8a&encoded=0&v=paper_preview&mkt=zh-cn
      Guo, L.S., Liu, Y.L., Liu, S.W., et al., 2013.Petrogenesis of Early to Middle Jurassic Granitoid Rocks from the Gangdese Belt, Southern Tibet:Implications for Early History of the Neo-Tethys.Lithos, 179:320-333. https://doi.org/10.1016/j.lithos.2013.06.011
      Hinton, R.W., Upton, B.G.J., 1991.The Chemistry of Zircon:Variations within and between Large Crystals from Syenite and Alkali Basalt Xenoliths.Geochimica et Cosmochimica Acta, 55(11):3287-3302.https://doi.org/10.1016/0016-7037(91)90489-r doi: 10.1016/0016-7037(91)90489-R
      Hoskin, P.W.O., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027
      Huang, F., Chen, J.L., Xu, J.F., et al., 2015.Os-Nd-Sr Isotopes in Miocene Ultrapotassic Rocks of Southern Tibet:Partial Melting of a Pyroxenite-Bearing Lithospheric Mantle?Geochimica et Cosmochimica Acta, 163:279-298. https://doi.org/10.1016/j.gca.2015.04.053
      Huang, F., Xu, J.F., Chen, J.L., et al., 2015.Early Jurassic Volcanic Rocks from the Yeba Formation and Sangri Group:Products of Continental Marginal Arc and Intra-Oceanic Arc during the Subduction of Neo-Tethys Ocean? Acta Petrologica Sinica, 31(7):2089-2100 (in Chinese with English abstract).
      Huang, F., Xu, J.F., Chen, J.L., et al., 2016.Two Cenozoic Tectonic Events of N-S and E-W Extension in the Lhasa Terrane:Evidence from Geology and Geochronology.Lithos, 245:118-132. https://doi.org/10.1016/j.lithos.2015.08.014
      Huang, F., Xu, J.F., Zeng, Y.C., et al., 2017.Slab Breakoff of the Neo-Tethys Ocean in the Lhasa Terrane Inferred from Contemporaneous Melting of the Mantle and Crust.Geochemistry, Geophysics, Geosystems, 18(11):4074-4095.https://doi.org/10.1002/2017gc007039 doi: 10.1002/ggge.v18.11
      Kang, Z.Q., Xu, J.F., Dong, Y.H., et al., 2008.Cretaceous Volcanic Rocks of Zenong Group in North-Middle Lhasa Block:Products of Southward Subducting of the Slainajap Ocean? Acta Petrologica Sinica, 24(2):303-314 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=e3f635a2c474e03c5e2d74694eb8f601&encoded=0&v=paper_preview&mkt=zh-cn
      Kang, Z.Q., Xu, J.F., Wilde, S.A., et al., 2014.Geochronology and Geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane:Implications for the Early Subduction History of the Neo-Tethys and Gangdese Magmatic Arc.Lithos, 200-201:157-168. https://doi.org/10.1016/j.lithos.2014.04.019
      Li, X.W., Mo, X.X., Scheltens, M., et al., 2016.Mineral Chemistry and Crystallization Conditions of the Late Cretaceous Mamba Pluton from the Eastern Gangdese, Southern Tibetan Plateau.Journal of Earth Science, 27(4):545-570. https://doi.org/10.1007/s12583-016-0713-5
      Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
      Ma, L., Wang, Q., Wyman, D.A., et al., 2015.Late Cretaceous Back-Arc Extension and Arc System Evolution in the Gangdese Area, Southern Tibet:Geochronological, Petrological, and Sr-Nd-Hf-O Isotopic Evidence from Dagze Diabases.Journal of Geophysical Research:Solid Earth, 120(9):6159-6181.https://doi.org/10.1002/2015jb011966 doi: 10.1002/2015JB011966
      Ma, X.X., Xu, Z.Q., Chen, X.J., et al., 2017.The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet.Journal of Earth Science, 28(2):265-282.https://doi: 10.1007/s12583-016-0925-8
      Murphy, M.A., Yin, A., Harrison, T.M., et al., 1997.Did the Indo-Asian Collision Alone Create the Tibetan Plateau?Geology, 25(8):719.https://doi.org/10.1130/0091-7613(1997)025<0719:dtiaca>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2
      Patiño Douce, A.E., 1999.What do Experiments Tell us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168(1):55-75.https://doi.org/10.1144/gsl.sp.1999.168.01.05 doi: 10.1144/GSL.SP.1999.168.01.05
      Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      Song, S.W., Liu, Z., Zhu, D.C., et al., 2014.Zircon U-Pb Chronology and Hf Isotope of the Late Triassic Andesitic Magmatism in Dajiacuo, Tibet.Acta Petrologica Sinica, 30(10):3100-3112 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410023
      van Hunen, J.V., Allen, M.B., 2011.Continental Collision and Slab Break-Off:A Comparison of 3-D Numerical Models with Observations.Earth and Planetary Science Letters, 302(1-2):27-37. https://doi.org/10.1016/j.epsl.2010.11.035
      Wang, B.D., Chen, J.L., Xu, J.F., et al., 2014.Geochemical and Sr-Nd-Pb-Os Isotopic Compositions of Miocene Ultrapotassic Rocks in Southern Tibet:Petrogenesis and Implications for the Regional Tectonic History.Lithos, 208-209:237-250. https://doi.org/10.1016/j.lithos.2014.09.008
      Wang, B.D., Wang, L.Q., Chung, S.L., et al., 2016a.Evolution of the Bangong-Nujiang Tethyan Ocean:Insights from the Geochronology and Geochemistry of Mafic Rocks within Ophiolites.Lithos, 245:18-33. https://doi.org/10.1016/j.lithos.2015.07.016
      Wang, C., Ding, L., Zhang, L.Y., et al., 2016b.Petrogenesis of Middle-Late Triassic Volcanic Rocks from the Gangdese Belt, Southern Lhasa Terrane:Implications for Early Subduction of Neo-Tethyan Oceanic Lithosphere.Lithos, 262:320-333. https://doi.org/10.1016/j.lithos.2016.07.021
      Wang, R.Q., Qiu, J.S., Yu, S.B., et al., 2017.Crust-mantle Interaction during Early Jurassic Subduction of Neo-Tethyan Oceanic Slab:Evidence from the Dongga Gabbro-granite Complex in the Southern Lhasa Subterrane, Tibet.Lithos, 292-293:262-277. https://doi.org/10.1016/j.lithos.2017.09.018
      Watson, E.B., 2005.Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth.Science, 308(5723):841-844. https://doi.org/10.1126/science.1110873
      Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304.https://doi.org/10.1016/0012-821x(83)90211-x doi: 10.1016/0012-821X(83)90211-X
      Xiong, Q.W., Chen, J.L., Xu J.F., et al., 2015.LA-ICP-MS Zircon U-Pb Geochronology, Geochemical Characteristics and Genetic Study of Yeba Formation Lavas in Demingding Area, Southern Tibet.Geological Bulletin of China, 34(9):1645-1655 (in Chinese with English abstract).
      Xu, B., Hou, Z.Q., Zheng, Y.C., et al., 2017.In Situ Elemental and Isotopic Study of Diorite Intrusions:Implication for Jurassic Arc Magmatism and Porphyry Cu-Au Mineralisation in Southern Tibet.Ore Geology Reviews, 90:1063-1077. https://doi.org/10.1016/j.oregeorev.2017.04.036
      Xu, J.F., Castillo, P.R., 2004.Geochemical and Nd-Pb Isotopic Characteristics of the Tethyan Asthenosphere:Implications for the Origin of the Indian Ocean Mantle Domain.Tectonophysics, 393(1-4):9-27. https://doi.org/10.1016/j.tecto.2004.07.028
      Yang, J.S., Xu, Z.Q., Geng, Q.R., et al., 2006.A Possible New HP/UHP(?) Metamorphic Belt in China:Discovery of Eclogite in the Lasha Terrane, Tibet.Acta Geologica Sinica, 80(12):1783-1792 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=601bdadaaa20c384bab5ad264b8db90b&encoded=0&v=paper_preview&mkt=zh-cn
      Yang, J.S., Xu, Z.Q., Li, Z.L., et al., 2009.Discovery of an Eclogite Belt in the Lhasa Block, Tibet:A New Border for Paleo-Tethys?Journal of Asian Earth Sciences, 34(1):76-89. https://doi.org/10.1016/j.jseaes.2008.04.001
      Yin, J.R., Grant-Mackie, J.A., 2005.Late Triassic-Jurassic Bivalves from Volcanic Sediments of the Lhasa Block, Tibet.New Zealand Journal of Geology and Geophysics, 48(3):555-577. https://doi.org/10.1080/00288306.2005.9515133
      Zeng, Y.C., Chen, J.L., Xu, J.F., et al., 2016.Sediment Melting during Subduction Initiation:Geochronological and Geochemical Evidence from the Darutso High-Mg Andesites within Ophiolite Melange, Central Tibet.Geochemistry, Geophysics, Geosystems, 17(12):4859-4877.https://doi.org/10.1002/2016gc006456 doi: 10.1002/2016GC006456
      Zeng, Y.C., Xu, J.F., Chen, J.L., et al., 2018.Geochronological and Geochemical Constraints on the Origin of the Yunzhug Ophiolite in the Shiquanhe-Yunzhug-Namu Tso Ophiolite Belt, Lhasa Terrane, Tibetan Plateau.Lithos, 300-301:250-260. https://doi.org/10.1016/j.lithos.2017.11.025
      Zhang, H.F., Xu, W.C., Guo, J.Q., et al., 2007.Zircon U-Pb and Hf Isotopic Composition of Deformed Granite in the Southern Margin of the Gangdise Belt, Tibet:Evidence for Early Jurassic Subduction of Neo-Tethyan Oceanic Slab.Acta Petrologica Sinica, 23(6):1347-1353 (in Chinese with English abstract).
      Zhang, Z., Song, J.L., Tang, J.X., et al., 2017.Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet:Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating.Earth Science, 42(6):862-880 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.523
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Sistories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      Zhu, D.C., Zhao, Z.D., Niu, Y., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      董昕, 张泽明, 2013.拉萨地体南部早侏罗世岩浆岩的成因和构造意义.岩石学报, 29(6):1933-1948. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306006
      董彦辉, 许继峰, 曾庆高, 等, 2006.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?岩石学报, 22(3):661-668. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603015
      黄丰, 许继峰, 陈建林, 等, 2015.早侏罗世叶巴组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧?岩石学报, 31(7):2089-2100. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507022
      康志强, 许继峰, 董彦辉, 等, 2008.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋南向俯冲的产物?岩石学报, 24(2):303-314. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200802010
      宋绍玮, 刘泽, 朱弟成, 等, 2014.西藏打加错晚三叠世安山质岩浆作用的锆石U-Pb年代学和Hf同位素.岩石学报, 30(10):3100-3112. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410023
      熊秋伟, 陈建林, 许继峰, 等, 2015.拉萨地块南部得明顶地区叶巴组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其成因.地质通报, 34(9):1645-1655. doi: 10.3969/j.issn.1671-2552.2015.09.006
      杨经绥, 许志琴, 耿全如, 等, 2006.中国境内可能存在一条新的高压/超高压(?)变质带——青藏高原拉萨地体中发现榴辉岩带.地质学报, 80(12):1783-1792. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DZXE200612000&dbname=CJFD&dbcode=CJFQ
      张宏飞, 徐旺春, 郭建秋, 等, 2007.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据.岩石学报, 23(6):1347-1353. doi: 10.3969/j.issn.1000-0569.2007.06.011
      张志, 宋俊龙, 唐菊兴, 等, 2017.西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年.地球科学, 42(6):862-880.https://doi.org/10.3799/dqkx.2017.523 http://earth-science.net/WebPage/Article.aspx?id=3584
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(5)

      Article views (9189) PDF downloads(50) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return