• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 7
    Jul.  2019
    Turn off MathJax
    Article Contents
    Gao Zhongwei, Xie Chaoming, Ren Yunsheng, Liu Jinheng, Li Linhan, Hao Yujie, 2019. Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Age of the Azhalang Intrusion in Sumdo, Southern Tibet. Earth Science, 44(7): 2353-2367. doi: 10.3799/dqkx.2018.945
    Citation: Gao Zhongwei, Xie Chaoming, Ren Yunsheng, Liu Jinheng, Li Linhan, Hao Yujie, 2019. Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Age of the Azhalang Intrusion in Sumdo, Southern Tibet. Earth Science, 44(7): 2353-2367. doi: 10.3799/dqkx.2018.945

    Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Age of the Azhalang Intrusion in Sumdo, Southern Tibet

    doi: 10.3799/dqkx.2018.945
    • Received Date: 2018-11-13
    • Publish Date: 2019-07-15
    • The Azhalang pluton is located in the Sumdo area in the east-central part of the Gangdise magmatic arc. Zircon U-Pb dating and geochemical analysis of the whole rock indicate that the Azhalang intrusion is quartz monzonite porphyry and the formation period is Miocene (17.9±0.2 Ma). Geochemical characteristics show high Sr (1 052×10-6-1 150×10-6), low Y (8.51×10-6-9.04×10-6) and Yb (0.85×10-6-0.94×10-6), high Sr/Y (118-128) and La/Yb (30.9-40.8) ratios, no obvious Eu anomalies, high K2O (3.17%-3.84%) content, low Cr (6.46×10-6-7.78×10-6) and Ni (5.41×10-6-7.45×10-6) content, high Mg# value (43.8-49.8), high Rb/Sr ratio, large ion lithophile element content, such as Rb, Rb, Rb. Ba, Th and U were significantly higher than LREE.These geochemical characteristics indicate that the petrogenesis of the rocks may be formed by partial melting of the thicker lower crust and formed in the post-collisional tectonic setting of the India-Eurasia collision orogeny, and some mantle-derived materials may be involved.This study provides important constraints for revealing the genesis and metallogenic geological setting of the Miocene adakite in the Gangdise metallogenic belt.

       

    • loading
    • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0
      Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8
      Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
      Chen, R., Liu, Y. L., Guo, L. S., et al., 2014. Geochronology and Geochemistry of the Tinggong Porphyry Copper Ore Deposit, Tibet. Acta Geologica Sinica (English Edition), 88(3): 780-800. https://doi.org/10.1111/1755-6724.12238
      Chung, S. L., Chu, M. F., Ji, J. Q., et al., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites. Tectonophysics, 477(1-2): 36-48. https://doi.org/10.1016/j.tecto.2009.08.008
      Drummond, M. S., Defant, M. J., 1990. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth Via Slab Melting: Archean to Modern Comparisons. Journal of Geophysical Research, 95(B13): 21503. https://doi.org/10.1029/jb095ib13p21503
      Drummond, M. S., Defant, M. J., Kepezhinskas, P. K., 1996. Petrogenesis of Slab-Derived Trondhjemite-Tonalite- Dacite/Adakite Magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1-2): 205-215. https://doi.org/10.1017/s0263593300006611
      Gao, Y. F., Yang, Z. S., Santosh, M., et al., 2010. Adakitic Rocks from Slab Melt-Modified Mantle Sources in the Continental Collision Zone of Southern Tibet. Lithos, 119(3-4): 651-663. https://doi.org/10.1016/j.lithos.2010.08.018
      Hou, Z. Q., Gao, Y. F., Meng, X. J., et al., 2004. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrologica Sinica, 20(2):239-248 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200402006
      Hou, Z. Q., Zhao, Z. D., Gao, Y. F., et al., 2006. Tearing and Dischronal Subduction of the Indian Continental Slab: Evidence from Cenozoic Gangdese Volcano-Magmatic Rocks in South Tibet. Acta Petrologica Sinica, 22(4):761-774 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=239e9e4351186a4fced2935b590008e6&encoded=0&v=paper_preview&mkt=zh-cn
      Hu, Y. B., 2015. Petrogenesis and Metallogenetic Implications of Aadakites in the Gangdese Porphyry Copper Belt (Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract).
      Huang, Y., Ding, J., Li, G. M., et al., 2015. U-Pb Dating, Hf Isotopic Characteristics of Zircons from Intrusions in the Zhuluo Porphyry Cu-Mo-Au Deposit and Its Mineralization Significance. Acta Geologica Sinica, 89(1):99-108 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201501008
      Jiang, S. H., Nie, F. J., Hu, P., et al., 2006.40Ar-39Ar Age and Geochemical Features of the Mayum Adakitic Porphyry in Tibet. Acta Petrologica Sinica, 22(3):603-611 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603009
      Kadioglu, Y. K., Dilek, Y., 2010. Structure and Geochemistry of the Adakitic Horoz Granitoid, Bolkar Mountains, South-Central Turkey, and Its Tectonomagmatic Evolution. International Geology Review, 52(4-6): 505-535. https://doi.org/10.1080/09507110902954847
      Leng, Q. F., Tang, J. X., Zheng, W. B., et al., 2016. Geochronology, Petrogeochemistry and Petrogenesis of Ore-Bearing Rock Massif in Dabu Mining Area, Tibet. Earth Science, 41(6): 999-1015 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.083
      Li, J. X., Qin, K. Z., Li, G. M., et al., 2011. Post-Collisional Ore-Bearing Adakitic Porphyries from Gangdese Porphyry Copper Belt, Southern Tibet: Melting of Thickened Juvenile Arc Lower Crust. Lithos, 126(3-4): 265-277. https://doi.org/10.1016/j.lithos.2011.07.018
      Li, S. J., Wei, Q. R., Ci, Q., et al., 2018. Geochronology, Petrogeochemistry and Petrogenesis of Ore-Bearing Rock Massif in Dabu Mining Area, Tibet. Earth Science, 43(9):3218-3233 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.231
      Lin, W., Liang, H. Y., Zhang, Y. Q., et al., 2004. Petrochemistry and SHRIMP U-Pb Zircon Age of the Chongjiang Ore-Bearing Porphyry in the Gangdese Porphyry Copper Belt. Geochimica, 33(6):585-592 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200406006
      Long, X. P., Wilde, S. A., Wang, Q., et al., 2015. Partial Melting of Thickened Continental Crust in Central Tibet: Evidence from Geochemistry and Geochronology of Eocene Adakitic Rhyolites in the Northern Qiangtang Terrane. Earth and Planetary Science Letters, 414: 30-44. https://doi.org/10.1016/j.epsl.2015.01.007
      Lu, Y. J., Hou, Z. Q., Yang, Z. M., et al., 2017. Porphyry Cu Fertility in the Lhasa Terrane, Southern Tibet: Insights from Terrane-Scale Whole-Rock Geochemistry and Zircon Trace Element and Hf-O Isotopes. SEG 2017: Ore Deposits of Asia: China and Beyond, Beijing.
      Ma, L., Wang, Q., Wyman, D. A., et al., 2013. Late Cretaceous (100-89 Ma) Magnesian Charnockites with Adakitic Affinities in the Milin Area, Eastern Gangdese: Partial Melting of Subducted Oceanic Crust and Implications for Crustal Growth in Southern Tibet. Lithos, 175-176: 315-332. https://doi.org/10.1016/j.lithos.2013.04.006
      Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/s0024-4937(98)00076-0
      Meng, Y. K., Ma, S. W., Xu, Z. Q., et al., 2018. Geochronology, Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt. Earth Science, 43(4):1142-1163 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.713
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      Qin, K. Z., Li, G. M., Zhao, J. X., 2008. Discovery of Sharang Large-Scale Porphyry Molybdenum Deposit, the First Single Mo Deposit in Tibet and Its Significance. Geology in China, 35(6):1101-1112 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200806007
      Qu, X. M., Hou, Z. Q., Huang, W., 2001. Is Gangdese Porphyry Copper Belt the Second "Yulong" Copper Belt?. Mineral Deposits, 20(4):355-366 (in Chinese with English abstract). https://www.researchgate.net/publication/284665935_Is_Gangdese_porphyry_copper_belt_the_second_Yulong_copper_belt
      Qu, X. M., Hou, Z. Q., Li, Y., 2004. Melt Components Derived from a Subducted Slab in Late Orogenic Ore-Bearing Porphyries in the Gangdese Copper Belt, Southern Tibetan Plateau. Lithos, 74(3-4): 131-148. https://doi.org/10.1016/s0024-4937(04)00027-1
      Qu, X. M., Jiang, J. H., Xin, H. B., et al., 2010. A Study of Two Groups of Adakite almost Simulteneously Formed in Gangdese Collisional Orogen, Tibet: Why does One Group Contain Copper Mineralization and the Other not?. Mineral Deposits, 29(3):381-394 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b3572a8516e1edf7f1174a01d257964b&encoded=0&v=paper_preview&mkt=zh-cn
      Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/S0009-2541(99)00106-0
      Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
      Stern, C. R., Kilian, R., 1996. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263-281. https://doi.org/10.1007/s004100050155
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, G. J., Wang, Q., Wyman, D. A., et al., 2010. Ridge Subduction and Crustal Growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous Adakites and High-Mg Diorites in the Western Junggar Region, Northern Xinjiang (West China). Chemical Geology, 277(3-4): 281-300. https://doi.org/10.1016/j.chemgeo.2010.08.012
      Wang, B. D., Xu, J. F., Chen, J. L., et al., 2010. Petrogenesis and Geochronology of the Ore-Beating Porphyritic Rocks in Tangbula Porphyry Molybdenum-Copper Deposit in the Eastern Segment of the Gangdese Metalloganic Belt. Acta Petrologica Sinica, 26(6):1820-1832(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201006016
      Wang, L. L., Mo, X. X., Li, B., et al., 2006. Geochronology and Geochemistry of the Ore-Bearing Porphyry in Qulong Cu(Mo) Ore Deposit, Tibet. Acta Petrologica Sinica, 22(4):1001-1008 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200604023
      Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070
      Wei, Y. Q., Zhao, Z. D., Niu, Y. L., et al., 2017. Geochronology and Geochemistry of the Early Jurassic Yeba Formation Volcanic Rocks in Southern Tibet: Initiation of Back-Arc Rifting and Crustal Accretion in the Southern Lhasa Terrane. Lithos, 278-281: 477-490. https://doi.org/10.1016/j.lithos.2017.02.013
      Whalen, J. B., 1985. Geochemistry of an Island-Arc Plutonic Suite: The Uasilau-Yau Yau Intrusive Complex, New Britain, P.N.G. Journal of Petrology, 26(3): 603-632. https://doi.org/10.1093/petrology/26.3.603
      Wu, H., Li, C., Hu, P. Y., et al., 2015. Early Cretaceous (100-105 Ma) Adakitic Magmatism in the Dachagou Area, Northern Lhasa Terrane, Tibet: Implications for the Bangong–Nujiang Ocean Subduction and Slab Break-Off. International Geology Review, 57(9-10): 1172-1188. https://doi.org/10.1080/00206814.2014.886152
      Xia, B. B., Xia, B., Wang, B. D., et al., 2007. Ore-Bearing Adakitic Porphyry in the Middle of Gangdese: Thickened Lower Crustal Melting and the Genesis of Porphyry Cu-Mo Deposit. Geological Science and Technology Intelligence, 26(4):19-26 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=db9f87d1b8676bef7770caec0005334e&encoded=0&v=paper_preview&mkt=zh-cn
      Xu, J., Zheng, Y. Y., Sun, X., et al., 2016. Geochronology and Petrogenesis of Miocene Granitic Intrusions Related to the Zhibula Cu Skarn Deposit in the Gangdese Belt, Southern Tibet. Journal of Asian Earth Sciences, 120: 100-116. https://doi.org/10.1016/j.jseaes.2016.01.026
      Xu, W. C., Zhang, H. F., Guo, L., et al., 2010. Miocene High Sr/Y Magmatism, South Tibet: Product of Partial Melting of Subducted Indian Continental Crust and Its Tectonic Implication. Lithos, 114(3-4): 293-306. https://doi.org/10.1016/j.lithos.2009.09.005
      Yang, Z., Jiang, H., Yang, M. G., et al., 2017. Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance. Earth Science, 42(3): 339-356 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.026
      Yogodzinski, G. M., Volynets, O. N., Koloskov, A. V., et al., 1994. Magnesian Andesites and the Subduction Component in a Strongly Calc-Alkaline Series at Piip Volcano, far Western Aleutians. Journal of Petrology, 35(1): 163-204. https://doi.org/10.1093/petrology/35.1.163
      Yu, H., 2011. Mineral Geochemical Characteristics and Genetic Mechanism of Olivine Rocks in Shangnan, Shanxi (Dissertation). China University of Geosciences, Beijing, 22-25 (in Chinese with English abstract).
      Zhang, Z. M., Zhao, G. C., Santosh, M., et al., 2010. Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Tibet: Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction?. Gondwana Research, 17(4): 615-631. https://doi.org/10.1016/j.gr.2009.10.007
      Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79, B42-B57. https://doi.org/10.1016/j.jseaes.2013.03.029
      Zheng, Y. Y., Sun, X., Zheng, H. T., et al., 2012. Magma Evolution of Small Intrusion and Mineralization in Gangdese, Tibet. Northwestern Geology, 45(4):165-174 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201204015
      Zhu, D. C., Zhao, Z. D., Pan, G. T., et al., 2009. Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet: Products of Slab Melting and Subsequent Melt–peridotite Interaction?. Journal of Asian Earth Sciences, 34(3): 298-309. https://doi.org/10.1016/j.jseaes.2008.05.003
      侯增谦, 高永丰, 孟祥金, 等, 2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报, 20(2):239-248. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200402006
      侯增谦, 赵志丹, 高永丰, 等, 2006.印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山-岩浆作用证据.岩石学报, 22(4):761-774. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604001
      胡永斌, 2015.冈底斯斑岩铜矿带埃达克岩成因及成矿启示(博士学位论文).广州: 中国科学院广州地球化学研究所. http://cdmd.cnki.com.cn/Article/CDMD-80165-1015361478.htm
      黄勇, 丁俊, 李光明, 等, 2015.西藏朱诺斑岩铜-钼-金矿区侵入岩锆石U-Pb年龄、Hf同位素组成及其成矿意义.地质学报, 89(1):99-108. doi: 10.3969/j.issn.1006-0995.2015.01.022
      江思宏, 聂凤军, 胡朋, 等, 2006.西藏马莜木埃达克质斑岩的40Ar-39Ar年龄与地球化学特征.岩石学报, 22(3), 603-611. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603009
      冷秋锋, 唐菊兴, 郑文宝, 等, 2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学, 41(6):999-1015. http://earth-science.net/WebPage/Article.aspx?id=3312
      李世杰, 魏启荣, 次琼, 等, 2018.西藏达布矿区含矿岩体的时代、岩石地球化学特征及岩石成因.地球科学, 43(9):3218-3233. http://earth-science.net/WebPage/Article.aspx?id=3934
      林武, 梁华英, 张玉泉, 等, 2004.冈底斯铜矿带冲江含矿斑岩的岩石化学及锆石SHRIMP年龄特征.地球化学, 33(6):585-592. doi: 10.3321/j.issn:0379-1726.2004.06.006
      孟元库, 马士委, 许志琴, 等, 2018.冈底斯带甲玛矿区花岗斑岩类年代学、地球化学及岩石成因.地球科学, 43(4):1142-1163. http://earth-science.net/WebPage/Article.aspx?id=3787
      秦克章, 李光明, 赵俊兴, 等, 2008.西藏首例独立钼矿-冈底斯沙让大型斑岩钼矿的发现及其意义.中国地质, 35(6):1101-1112. doi: 10.3969/j.issn.1000-3657.2008.06.007
      曲晓明, 侯增谦, 黄卫, 2001.冈底斯斑岩铜矿(化)带:西藏第二条"玉龙"铜矿带?.矿床地质, 20(4):355-366. doi: 10.3969/j.issn.0258-7106.2001.04.009
      曲晓明, 江军华, 辛洪波, 等, 2010.西藏冈底斯造山带几乎同时形成的两套埃达克岩为什么一套含矿一套不含矿?.矿床地质, 29(3):381-394. doi: 10.3969/j.issn.0258-7106.2010.03.001
      王保弟, 许继峰, 陈建林, 等, 2010.冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究.岩石学报, 26(6):1820-1832. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006016
      王亮亮, 莫宣学, 李冰, 等, 2006.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学.岩石学报, 22(4):1001-1008. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604023
      夏抱本, 夏斌, 王保弟, 等, 2007.冈底斯中段达布埃达克质含矿斑岩:增厚下地壳熔融与斑岩铜钼矿成因.地质科技情报, 26(4):19-26. doi: 10.3969/j.issn.1000-7849.2007.04.005
      杨震, 姜华, 杨明国, 等, 2017.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地球科学, 42(3):339-356. http://earth-science.net/WebPage/Article.aspx?id=3545
      于红, 2011.陕西商南松树沟橄榄岩矿物地球化学特征及成因机理示踪(硕士学位论文).北京: 中国地质大学, 22-25. http://cdmd.cnki.com.cn/Article/CDMD-11415-1011078082.htm
      郑有业, 孙祥, 郑海涛, 等, 2012.西藏冈底斯小斑岩体演化与成矿.西北地质, 45(4):165-174. doi: 10.3969/j.issn.1009-6248.2012.04.015
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(4)

      Article views (6514) PDF downloads(62) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return