• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 3
    Mar.  2020
    Turn off MathJax
    Article Contents
    Zuo Jingxun, Zhu Xuejian, Fang Huaibin, Chen Yonglin, 2020. Carbon Isotope Trend across the Base of Furongian Series of Cambrian, Northern Henan, North China. Earth Science, 45(3): 728-738. doi: 10.3799/dqkx.2019.017
    Citation: Zuo Jingxun, Zhu Xuejian, Fang Huaibin, Chen Yonglin, 2020. Carbon Isotope Trend across the Base of Furongian Series of Cambrian, Northern Henan, North China. Earth Science, 45(3): 728-738. doi: 10.3799/dqkx.2019.017

    Carbon Isotope Trend across the Base of Furongian Series of Cambrian, Northern Henan, North China

    doi: 10.3799/dqkx.2019.017
    • Received Date: 2018-12-20
    • Publish Date: 2020-03-15
    • In order to define the base of the Drumian Stage and the base of the Paibian Stage of Cambrian in North China, carbon isotope trend is studied on the Shatan section, northern Henan. Data of carbon isotope suggest that three positive excursions and two negative excursions have been examined within the measured stratigraphical interval. Positive carbon isotope excursions occur separately in the lower part and the middle part of the Changhia Formation and in the upper part of the Chaumitien Formation, maximum δ13C values of these positive excursions reach to 2.0‰, 1.0‰ and 3.0‰ respectively. Negative δ13C excursions occur in the basal and the lower-middle part of the Changhia Formation with the minimum values of -3.4‰ and -1.0‰ respectively. Especially, the remarkable positive excursion examined in the upper part of the Chaumitien Formation commences on the base of the trilobite Chuangia zone, which corresponds to the base of the Paibian Stage in South China and is equivalent to the SPICE excursion detected in the Paibian Stage in USA, Australia, and Kazakhstan. The negative excursion examined in the basal part of the Changhia Formation is equivalent to the DICE excursion. Both the two carbon isotope excursions are not only used as tools for the regional stratigraphical classification and correlation, but also used as key indicators in defining the Drumian Stage and the Paibian Stage in North China. In addition, carbon isotope excursions are interpreted to be associated with global scale sea-level fluctuations, paleoecological environmental changes. Seawater transgression together with enlargement of paleoecological environment played an important role in positive carbon isotope excursions during the Late Miaolingian to the Early Furongian.

       

    • loading
    • Açıkalın, S., Ocakoğlu, F., Yılmaz, İ. Ö., et al., 2016. Stable Isotopes and Geochemistry of a Campanian– Maastrichtian Pelagic Succession, Mudurnu–Göynük Basin, NW Turkey: Implications for Palaeoceanography, Palaeoclimate and Sea-Level Fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 453-466. https://doi.org/10.1016/j.palaeo.2015.10.005
      Babcock, L. E., Robison, R. A., Rees, M. N., et al., 2007. The Global Boundary Stratotype Section and Point (GSSP) of the Drumian Stage (Cambrian) in the Drum Mountains, Utah, USA. Episodes, 30(2): 85-95. https://doi.org/10.18814/epiiugs/2007/v30i2/003
      Bagnoli, G., Qi, Y. P., Zuo, J. X., et al., 2014. Integrated Biostratigraphy and Carbon Isotopes from the Cambrian Tangwangzhai Section, North China. Palaeoworld, 23(2): 112-124. https://doi.org/10.1016/j.palwor.2013.12.002
      Banner, J. L., Hanson, G. N., 1990. Calculation of Simultaneous Isotopic and Trace Element Variations during Water-Rock Interaction with Applications to Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 54(11): 3123-3137. https://doi.org/10.1016/0016-7037(90)90128-8
      Chavez, F. P., Messié, M., Pennington, J. T., 2011. Marine Primary Production in Relation to Climate Variability and Change. Annual Review of Marine Science, 3(1): 227-260. https://doi.org/10.1146/annurev.marine.010908.163917
      Chen, J. T., Chough, S. K., Lee, J. H., et al., 2012. Sequence-Stratigraphic Comparison of the Upper Cambrian Series 3 to Furongian Succession between the Shandong Region, China and the Taebaek Area, Korea: High Variability of Bounding Surfaces in an Epeiric Platform. Geosciences Journal, 16(4): 357-379. https://doi.org/10.1007/s12303-012-0040-5
      Derry, L. A., Kaufman, A. J., Jacobsen, S. B., 1992. Sedimentary Cycling and Environmental Change in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes. Geochimica et Cosmochimica Acta, 56(3): 1317-1329. https://doi.org/10.1016/0016-7037(92)90064-p
      Dilliard, K. A., Pope, M. C., Coniglio, M., et al., 2007. Stable Isotope Geochemistry of the Lower Cambrian Sekwi Formation, Northwest Territories, Canada: Implications for Ocean Chemistry and Secular Curve Generation. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3-4): 174-194. https://doi.org/10.1016/j.palaeo.2007.02.031
      Du, S.X., Zhang, R.H., Zhang, G.L., et al., 2007.New Developement of Study on Lower Part of Cambrian in Cambrian Standard Profile in Zhangxia-Gushan Area in Shandong Province. Land and Resources in Shandong Province, 23(10):1-6, 14 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sddz200710001
      Elrick, M., Rieboldt, S., Saltzman, M., et al., 2011. Oxygen-Isotope Trends and Seawater Temperature Changes Across the Late Cambrian Steptoean Positive Carbon-Isotope Excursion (SPICE Event). Geology, 39(10): 987-990. https://doi.org/10.1130/g32109.1
      Feng, Z. Z., Peng, Y. M., Jin, Z. K., et al., 2002. Lithofacies Palaeogeography of the Late Cambrian in China. Journal of Palaeogeography, 4(3):1-10 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswz-dqkx200703002
      Gill, B. C., Lyons, T. W., Young, S. A., et al., 2011. Geochemical Evidence for Widespread Euxinia in the Later Cambrian Ocean. Nature, 469(7328): 80-83. https://doi.org/10.1038/nature09700
      Glumac, B., Mutti, L. E., 2007. Late Cambrian (Steptoean) Sedimentation and Responses to Sea-Level Change along the Northeastern Laurentian Margin: Insights from Carbon Isotope Stratigraphy. Geological Society of America Bulletin, 119(5-6): 623-636. https://doi.org/10.1130/b25897.1
      Howley, R. A., Jiang, G. Q., 2010. The Cambrian Drumian Carbon Isotope Excursion (DICE) in the Great Basin, Western United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(1-2): 138-150. https://doi.org/10.1016/j.palaeo.2010.07.001
      Jacobsen, S. B., Kaufman, A. J., 1999. The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 161(1-3): 37-57. https://doi.org/10.1016/s0009-2541(99)00080-7
      Kaufman, A. J., Jacobsen, S. B., Knoll, A. H., 1993. The Vendian Record of Sr and C Isotopic Variations in Seawater: Implications for Tectonics and Paleoclimate. Earth and Planetary Science Letters, 120(3-4): 409-430. https://doi.org/10.1016/0012-821x(93)90254-7
      Kim, M.C., Yang, J.H., Peng, P., et al., 2018.Carbon Isotope Excursions of Cambrian Hwangju and Bopdong Groups in Pyongnam Basin, Korean Peninsula. Earth Science, 43(11):4096-4108 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811024
      Maloof, A. C., Schrag, D. P., Crowley, J. L., et al., 2005. An Expanded Record of Early Cambrian Carbon Cycling from the Anti-Atlas Margin, Morocco. Canadian Journal of Earth Sciences, 42(12): 2195-2216. https://doi.org/10.1139/e05-062
      Mei, M.X., Guo, R.T., Hu, Y., et al., 2011.Sedimentary Fabrics for the Stromatolitic Bioherm of the Cambrian Gushan Formation at the Xiaweidian Section in the Western Suburb of Beijing.Acta Petrologica Sinica, 27(8):2473-2486 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201108023
      Mei, M. X., Zhang, R., Li, Y. Y., et al., 2017. Calcified Cyanobacterias within the Stromatolotic Bioherm for the Cambrian Furongian Series in the Northeastern Margin of the North-China Platform. Acta Petrologica Sinica, 33(4):1073-1093 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201704005
      Montañez, I. P., Osleger, D. A., Banner, J. L., et al., 2000. Evolution of the Sr and C Isotope Composition of Cambrian Oceans. GSA Today, 10(5):1–7.
      Ng, T. W., Yuan, J. L., Lin, J. P., 2014. The North China Steptoean Positive Carbon Isotope Excursion and Its Global Correlation with the Base of the Paibian Stage (Early Furongian Series), Cambrian. Lethaia, 47(2): 153-164. https://doi.org/10.1111/let.12027
      Ngia, N. R., Hu, M. Y., Gao, D., et al., 2019. Application of Stable Strontium Isotope Geochemistry and Fluid Inclusion Microthermometry to Studies of Dolomitization of the Deeply Buried Cambrian Carbonate Successions in West-Central Tarim Basin, NW China. Journal of Earth Science, 30(1): 176-193. https://doi.org/10.1007/s12583-017-0954-y
      Pei, F., 2000. Division and Correlation of the North China Type Cambrian Biostratigraphic Units of Henan Province. Henan Geology, 18(2):97-106 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200000721763
      Peng, S.C., Zhao, Y.L., 2018. The Proposed Global Standard Stratotype-Section and Point (GSSP) for the Conterminous Base of Miaolingian Series and Wuliuan Stage at Balang, Jianhe, Guizhou, China was Ratified by Iugs. Journal of Stratigraphy, 42(3):325-327 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201803008
      Peng, S. C., Zhu, X. J., Zuo, J. X., et al., 2011. Recently Ratified and Proposed Cambrian Global Standard Stratotype-Section and Points. Acta Geologica Sinica (English Edition), 85(2): 296-308. https://doi.org/10.1111/j.1755-6724.2011.00399.x
      Saltzman, M. R., Cowan, C. A., Runkel, A. C., et al., 2004. The Late Cambrian Spice (δ13C) Event and the Sauk Ⅱ-SAUK Ⅲ Regression: New Evidence from Laurentian Basins in Utah, Iowa, and Newfoundland. Journal of Sedimentary Research, 74(3): 366-377. https://doi.org/10.1306/120203740366
      Saltzman, M. R., Ripperdan, R. L., Brasier, M. D., et al., 2000. A Global Carbon Isotope Excursion (SPICE) during the Late Cambrian: Relation to Trilobite Extinctions, Organic-Matter Burial and Sea Level. Palaeogeography, Palaeoclimatology, Palaeoecology, 162(3-4): 211-223. https://doi.org/10.1016/s0031-0182(00)00128-0
      Saltzman, M. R., Runnegar, B., Lohmann, K. C., 1998. Carbon Isotope Stratigraphy of Upper Cambrian (Steptoean Stage) Sequences of the Eastern Great Basin: Record of a Global Oceanographic Event. Geological Society of America Bulletin, 110(3): 285-297. https://doi.org/10.1130/0016-7606(1998)110<0285:cisouc>2.3.co;2 doi: 10.1130/0016-7606(1998)110<0285:cisouc>2.3.co;2
      Shi, X.Y., Chen, J.Q., Mei, S.L., 1997.Cambrian Sequence Chronostratigraphic Frame Work of the North China Platform. Earth Science Frontiers, 4(3-4): 161-171 (in Chinese with English abstract).
      Song, H.Y., Tong, J.N., Du, Y., et al., 2018. Large Perturbed Marine Carbon-Nitrogen-Sulfur Isotopes during Early Triassic.Earth Science, 43(11):3922-3931 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811010
      Stephens, N. P., Sumner, D. Y., 2003. Late Devonian Carbon Isotope Stratigraphy and Sea Level Fluctuations, Canning Basin, Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 191(2): 203-219. https://doi.org/10.1016/s0031-0182(02)00714-9
      Surge, D. M., Savarese, M., Robert Dodd, J., et al., 1997. Carbon Isotopic Evidence for Photosynthesis in Early Cambrian Oceans. Geology, 25(6): 503-506. https://doi.org/10.1130/0091-7613(1997)025<0503:ciefpi>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0503:ciefpi>2.3.co;2
      Yuan, J. L., Li, Y., Mu, X.N., et al., 2000. Biostratigraphy of Trilobites from Changhia Stage (Late Middle Cambrian) in Shandong. Journal of Stratigraphy, 24(2): 136-143 (in Chinese with English abstract).
      Zhang, M. S., Peng, X. D., 1998. New Trilobites from the Upper Cambrian Changshan Formation of Shandong and Liaoning. Journal of Changchun University of Science and Technology, 28(3): 241-246 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800205262
      Zhu, Z. L., Xiang, L. W., Zhang, S. G., et al., 2005. New Advance in the Study of the Upper Cambrian Kushanian Stage of North China. Journal of Stratigraphy, 29 (Suppl.): 462-466 (in Chinese with English abstract).
      Zuo, J. X., Peng, S. C., Qi, Y. P., et al., 2018. Carbon-Isotope Excursions Recorded in the Cambrian System, South China: Implications for Mass Extinctions and Sea-Level Fluctuations. Journal of Earth Science, 29(3): 479-491. https://doi.org/10.1007/s12583-017-0963-x
      Zuo, J. X., Peng, S. C., Zhu, X. J., et al., 2008.Carbon Isotope Composition of Cambrian Carbonate Rocks in Yangtze Platform, South China and Its Geological Implications.Geochimica, 37(2):118-128 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200802003
      杜圣贤, 张瑞华, 张贵丽, 等, 2007.山东张夏-崮山地区华北寒武系标准剖面上寒武统研究新进展.山东国土资源, 23(10):1-6, 14. doi: 10.3969/j.issn.1672-6979.2007.10.001
      冯增昭, 彭勇民, 金振奎, 等, 2002.中国晚寒武世岩相古地理.古地理学报, 4(3):1-10. doi: 10.3969/j.issn.1671-1505.2002.03.001
      金明哲, 杨正赫, 彭澎, 等, 2018.朝鲜平南盆地寒武系黄州群和法洞群的碳同位素漂移事件.地球科学, 43(11):4096-4108. doi: 10.3799/dqkx.2018.107
      梅冥相, 郭荣涛, 胡媛, 等, 2011.北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构.岩石学报, 27(8):2473-2486. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201108023
      梅冥相, 张瑞, 李屹尧, 等, 2017.华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌.岩石学报, 33(4):1073-1093. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201704005
      裴放, 2000.河南省华北型寒武纪生物地层单位划分与对比.河南地质, 18(2):97-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200000721763
      彭善池, 赵元龙, 2018.全球寒武系第三统和第五阶"金钉子"正式落户我国.地层学杂志, 42(3):325-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201803008
      史晓颖, 陈建强, 梅仕龙, 1997.华北地台东部寒武系层序地层年代格架.地学前缘, 4(3-4): 161-171. http://www.cnki.com.cn/Article/CJFDTotal-DXQY7Z2.026.htm
      宋虎跃, 童金南, 杜勇, 等, 2018.早三叠世海洋异常的碳-氮-硫同位素记录.地球科学, 43(11):3922-3931. doi: 10.3799/dqkx.2018.334
      袁金良, 李越, 穆西南, 等, 2000.山东张夏期(中寒武世晚期)三叶虫生物地层.地层学杂志, 24(2):136-143. doi: 10.3969/j.issn.0253-4959.2000.02.011
      张梅生, 彭向东, 1998.山东及辽宁晚寒武世长山期新三叶虫.长春科技大学学报, 28(3):241-246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800205262
      朱兆玲, 项礼文, 章森柱, 等, 2005.华北上寒武统崮山阶研究新进展.地层学杂志, 29(增刊):462-466. http://d.old.wanfangdata.com.cn/Conference/7065166
      左景勋, 彭善池, 朱学剑, 等, 2008.扬子地台寒武系碳酸盐岩的碳同位素组成及地质意义.地球化学, 37(2):118-128. doi: 10.3321/j.issn:0379-1726.2008.02.003
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(1)

      Article views (3601) PDF downloads(97) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return