• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 7
    Jul.  2019
    Turn off MathJax
    Article Contents
    Xia Xiangbiao, Li Guangming, Cao Huawen, Liang Wei, Fu Jiangang, 2019. Petrogenic Age and Geochemical Characteristics of the Mother Rock of Skarn Type Ore Body in the Cuonadong Be-W-Sn Polymetallic Deposit, Southern Tibet. Earth Science, 44(7): 2207-2223. doi: 10.3799/dqkx.2019.038
    Citation: Xia Xiangbiao, Li Guangming, Cao Huawen, Liang Wei, Fu Jiangang, 2019. Petrogenic Age and Geochemical Characteristics of the Mother Rock of Skarn Type Ore Body in the Cuonadong Be-W-Sn Polymetallic Deposit, Southern Tibet. Earth Science, 44(7): 2207-2223. doi: 10.3799/dqkx.2019.038

    Petrogenic Age and Geochemical Characteristics of the Mother Rock of Skarn Type Ore Body in the Cuonadong Be-W-Sn Polymetallic Deposit, Southern Tibet

    doi: 10.3799/dqkx.2019.038
    • Received Date: 2018-12-31
    • Publish Date: 2019-07-15
    • The Cuonadong gneiss dome is a newly discovered dome in the North Himalaya gneiss domes (NHGD) belt. Mineralization of the Cuonadong super-large Be-W-Sn polymetallic deposit is developed in the Cuonadong dome. The Cuonadong Be-W-Sn polymetallic ore bodies exist in skarn, fractures and (giant) granite. The main genetic type of deposit is skarn type, and the mother rock of skarn type ore body is weakly oriented two-mica granite. In this paper, chronology and geochemical characteristics of metallogenic mother rock (weakly oriented two-mica granite) of skarn type ore body in the Cuonadong super-large Be-W-Sn polymetallic deposit are studied. Zircon U-Pb dating results show that the weakly oriented two-mica granite's formation time is 16.5±0.3 Ma, which belongs to magmatic activity of Miocene leucogranite. It shows that the Cuonadong super-large Be-W-Sn polymetallic deposit, which is the product of the extension stage of Himalayan collision orogenic process, was formed in Miocene. Geochemical data show that metallogenic mother rock (weakly oriented two-mica granite) is the calcium alkaline and strong peraluminous granite with high silica (73.36%-73.89%), low iron(0.96%-1.58%). Its total rare earth is relatively low, with enrichment of LREE, depletion of HREE and obvious negative Eu anomaly. The two-mica granite is characterized by an enrichment of some large iron lithophile elements (Rb, Th) and loss of high field strength elements (Zr, Ti).The geochemical characteristics of two-mica granite show that it is a set of highly fractionated leucogranite. The study shows that the weakly oriented two-mica granite may be the product of remelting of metaargillaceous rocks, which is closely related to the activities of the South Tibetan detachment system.

       

    • loading
    • Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems:Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3):323-333. https://doi.org/10.1007/s004100050159
      Chen, Y. X., Pei, X. Z., Li, Z. C., et al., 2015. Geochronology, Geochemical Features and Geological Significance of the Granitic Gneiss in Balong Area, East Section of East Kunlun. Acta Petrologica Sinica, 31(8):2230-2244 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201508008
      Chen, Z., Liu, Y., Hodges, K. V., et al., 1990. The Kangmar Dome:A Metamorphic Core Complex in Southern Xizang (Tibet). Science, 250(4987):1552-1556. https://doi.org/10.1126/science.250.4987.1552
      Cuney, M., Marignac, C., Weisbrod, A., 1992. The Beauvoir Topaz-Lepidolite Albite Granite (Massif Central, France); The Disseminated Magmatic Sn-Li-Ta-Nb-Be Mineralization. Economic Geology, 87(7):1766-1794. https://doi.org/10.2113/gsecongeo.87.7.1766
      Dong, H. W., Xu, Z. Q., Meng, Y. K., et al., 2017. Geochronology of Leucogranites in the Cuonadong Dome, Southern Tibet and Limitation of the Timing of the Southern Tibet Detachment System (STDS). Acta Petrologica Sinica, 33(12):3741-3752 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201712004
      Fu, J. G., Li, G. M., Wang, G. H., et al., 2017. First Field Identification of the Cuonadong Dome in Southern Tibet:Implications for EW Extension of the North Himalayan Gneiss Dome. International Journal of Earth Sciences, 106(5):1581-1596. https://doi.org/10.1007/s00531-016-1368-2
      Fu, J. G., Li, G. M., Wang, G. H., et al., 2018. Synchronous Granite Intrusion and E-W Extension in the Cuonadong Dome, Southern Tibet, China:Evidence from Field Observations and Thermochronologic Results. International Journal of Earth Sciences, 107(6):2023-2041. https://doi.org/10.1007/s00531-018-1585-y
      Gao, L. E., Gao, J. H., Zhao, L. H., et al., 2017. The Miocene Leucogranite in the Nariyongcuo Gneiss Dome, Southern Tibet:Products from Melting Metapelite and Fractional Crystallization. Acta Petrologica Sinica, 33(8):2395-2411 (in Chinese with English abstract).
      Gao, L. E., Zeng, L. S., 2014. Fluxed Melting of Metapelite and the Formation of Miocene High-CaO Two-Mica Granites in the Malashan Gneiss Dome, Southern Tibet. Geochimica et Cosmochimica Acta, 130:136-155. https://doi.org/10.1016/j.gca.2014.01.003
      Gao, L. E., Zeng, L. S., Asimow, P. D., 2017. Contrasting Geochemical Signatures of Fluid-Absent Versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources:The Himalayan Leucogranites. Geology, 45(1):39-42. https://doi.org/10.1130/g38336.1
      Gao, L. E., Zeng, L. S., Xie, K. J., 2011. Eocene high grade metamorphism and crustal anatexis in the North Himalaya Gneiss Domes, Southern Tibet. Chinese Science Bulletin, 56(36):3078-3090 (in Chinese).
      Gu, P. Y., He, S. P., Li, R. S., et al., 2013. Geochemical Features and Tectonic Significance of Granitic Gneiss of Laguigangri Metamorphic Core Complexes in Southern Tibet. Acta Petrologica Sinica, 29(3):756-768 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303002
      Harris, N. B. W., Inger, S., 1992. Trace Element Modelling of Pelite-Derived Granites. Contributions to Mineralogy and Petrology, 110(1):46-56. https://doi.org/10.1007/bf00310881
      Harris, N., Massey, J., 1994. Decompression and Anatexis of Himalayan Metapelites. Tectonics, 13(6):1537-1546. https://doi.org/10.1029/94tc01611
      Harrison, M. T., Grove, M., Mckeegan, K. D., et al., 1999. Origin and Episodic Emplacement of the Manaslu Intrusive Complex, Central Himalaya. Journal of Petrology, 40(1):3-19. https://doi.org/10.1093/petroj/40.1.3
      Hofmann, A. W., 1988. Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3):297-314. https://doi.org/10.1016/ 0012-821x(88)90132-x doi: 10.1016/0012-821x(88)90132-x
      Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4):481-492 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200904010
      Hu, G. Y., Zeng, L. S., Gao, L. E., et al., 2011. Lanthanide Kinked Shape, similar to Tetrad Effect, Observed in Sub-Volcanic Rocks from Qiaga, Southern Tibet, China. Geological Bulletin of China, 30(1):82-94 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201101008
      Huang, C. M., Li, G. M., Zhang, Z., et al., 2018. Petrogenesis of the Cuonadong Leucogranite in South Tibet:Constraints from Bulk-Rock Geochemistry and Zircon U-Pb Dating. Earth Science Frontiers, 25(6):182-195 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201806015
      Kellett, D. A., Grujic, D., Erdmann, S., 2009. Miocene Structural Reorganization of the South Tibetan Detachment, Eastern Himalaya:Implications for Continental Collision. Lithosphere, 1(5):259-281. https://doi.org/10.1130/l56.1
      Kellett, D. A., Grujic, D., Warren, C., et al., 2010. Metamorphic History of a Syn-Convergent Orogen-Parallel Detachment:The South Tibetan Detachment System, Bhutan Himalaya. Journal of Metamorphic Geology, 28(8):785-808. https://doi.org/10.1111/j.1525-1314.2010.00893.x
      Lee, J., Hacker, B. R., Dinklage, W. S., et al., 2000. Evolution of the Kangmar Dome, Southern Tibet:Structural, Petrologic, and Thermochronologic Constraints. Tectonics, 19(5):872-895. https://doi.org/10.1029/1999tc001147
      Lee, J., Hacker, B., Wang, Y., 2004. Evolution of North Himalayan Gneiss Domes:Structural and Metamorphic Studies in Mabja Dome, Southern Tibet. Journal of Structural Geology, 26(12):2297-2316. https://doi.org/10.1016/j.jsg.2004.02.013
      Lee, J., McClelland, W., Wang, Y., et al., 2006. Oligocene-Miocene Middle Crustal Flow in Southern Tibet:Geochronology of Mabja Dome. Geological Society, London, Special Publications, 268(1):445-469. https://doi.org/10.1144/gsl.sp.2006.268.01.21
      Li, D. W., Liu, D. M., Liao, Q. A., et al., 2003. Definition and Significance of the Lhagoi Kangri Metamorphic Core Complexes in Sa'gya, Southern Tibet. Geological Bulletin of China, 22(5):303-307 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200305002
      Li, G. M., Zhang, L. K., Jiao, Y. J., et al., 2017. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4):1003-1008 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014
      Liang, W., Zhang, L. K., Xia, X. B., et al., 2018. Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China. Earth Science, 43(8):2742-2754 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.154
      Lin, B., Tang, J. X., Zheng, W. B., et al., 2016. Geochemical Characteristics, Age and Genesis of Cuonadong Leucogranite, Tibet. Acta Petrologica et Mineralogica, 35(3):391-406 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201603002
      Lin, Y., Pollard, P. J., Hu, S.X., et al., 1995. Geologic and Geochemical Characteristics of the Yichun Ta-Nb-Li Deposit, Jiangxi Province, South China. Economic Geology, 90(3):577-585. https://doi.org/10.2113/gsecongeo.90.3.577
      Liu, Z. C., Wu, F. Y., Ding, L., et al., 2016. Highly Fractionated Late Eocene (~35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240-243:337-354. https://doi.org/10.1016/j.lithos.2015.11.026
      Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208-209:118-136. https://doi.org/10.1016/j.lithos.2014.08.022
      Marignac, C., Cuney, M., 1999. Ore Deposits of the French Massif Central:Insight into the Metallogenesis of the Variscan Collision Belt. Mineralium Deposita, 34(5-6):472-504. https://doi.org/10.1007/s001260050216
      Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and Some Implications for Crustal Evolution. Lithos, 79(1-2):1-24. https://doi.org/10.1016/j.lithos.2004.04.048
      Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6):529-532. https://doi.org/10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2
      Montel, J. M., 1993. A Model for Monazite/Melt Equilibrium and Application to the Generation of Granitic Magmas. Chemical Geology, 110(1-3):127-146. https://doi.org/10.1016/0009-2541(93)90250-m
      Patino Douce, A. E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4):689-710. https://doi.org/10.1093/petroj/39.4.689
      Peng, J. T., Hu, R. Z., Burnard, P. G., 2003. Samarium-neodymium Isotope Systematics of Hydrothermal Calcites from the Xikuangshan Antimony Deposit (Hunan, China):The Potential of Calcite as a Geochronometer. Chemical Geology, 200(1-2):129-136. https://doi.org/10.1016/s0009-2541(03)00187-6
      Qi, X. X., Li, T. F., Meng, X. J., et al., 2008. Cenozoic Tectonic Evolution of the Tethyan Himalayan Foreland Fault-Fold Belt in Southern Tibet, and Its Constraint on Antimony-Gold Polymetallic Minerogenesis. Acta Petrologica Sinica, 24(7):1638-1648 (in Chinese with English abstract).
      Raimbault, L., Cuney, M., Azencott, C., et al., 1995. Geochemical Evidence for a Multistage Magmatic Genesis of Ta-Sn-Li Mineralization in the Granite at Beauvoir, French Massif Central. Economic Geology, 90(3):548-576. https://doi.org/10.2113/gsecongeo.90.3.548
      Smit, M. A., Hacker, B. R., Lee, J., 2014. Tibetan Garnet Records Early Eocene Initiation of Thickening in the Himalaya. Geology, 42(7):591-594. https://doi.org/10.1130/g35524.1
      Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4):29-44. https://doi.org/10.1016/s0024-4937(98)00024-3
      Tuttle, O. F., Bowen, N. L., 1958. Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geological Society of America Memoirs, 74:1-146. https://doi.org/10.1130/MEM74-p1
      Wang, X., Chen, J., Ren, M. H., 2016. Hydrothermal Zircon Geochronology:Age Constraint on Nanling Range Tungsten Mineralization (Southeast China). Ore Geology Reviews, 74:63-75. https://doi.org/10.1016/j.oregeorev.2015.10.034
      Warren, C. J., Grujic, D., Kellett, D. A., et al., 2011. Probing the Depths of the India-Asia Collision:U-Th-Pb Monazite Chronology of Granulites from NW Bhutan. Tectonics, 30(2):1-24. https://doi.org/10.1029/2010tc002738
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Identification and Study of Highly Differentiated Granite. Science in China (Series D), 47(7):745-765 (in Chinese).
      Wu, F. Y., Liu, Z. C., Liu, X. C., et al., 2015. Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1):1-36 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001
      Zeng, L. S., Gao, L. E., Tang, S. H., et al., 2014. Eocene Magmatism in the Tethyan Himalaya, Southern Tibet. Geological Society, London, Special Publications, 412(1):287-316. https://doi.org/10.1144/sp412.8
      Zeng, L. S., Liu, J., Gao, L. E., et al., 2009. Early Oligocene Anatexis in the YardoiGneiss Dome, Southern Tibet and Geological Implications. Chinese Science Bulletin, 54(3):373-381 (in Chinese with English abstract). doi: 10.1007-s11434-008-0362-x/
      Zhang, J. J., Guo, L., Zhang, B., 2007. Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China. Chinese Journal of Geology, 42(1):16-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200701003
      Zhang, J. J., Yang, X. Y., Qi, G. W., et al., 2011. Geochronology of the Malashan Dome and Its Application in Formation of the Southern Tibet Detachment System (STDS) and Northern Himalayan Gneiss Domes (NHGD). Acta Petrologica Sinica, 27(12):3535-3544 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201112003
      Zhang, L. K., Zhang, Z., Li, G. M., et al., 2018.Rock Assemblage, Structural Characteristics and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya. Earth Science, 43(8):2664-2683 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.141
      Zhang, Z., Zhang, L. K., Li, G. M., et al., 2017. The Cuonadong Gneiss Dome of North Himalaya:A New Member of Gneiss Dome and a New Proposition for the Ore-Controlling Role of North Himalaya Gneiss Domes. Acta Geoscientica Sinica, 38(5):754-766 (in Chinese with English abstract).
      Zhu, D. C., Xia, Y., Qiu, B. B., et al., 2013. Why do we Need to Propose the Early Cretaceous Comei Large Igneous Province in Southeastern Tibet?. Acta Petrologica Sinica, 29(11):3659-3670 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311001
      Zhu, J. C., Li, R. K., Li, F. C., et al., 2001. Topaz-Albite Granites and Rare-Metal Mineralization in the Limu District, Guangxi Province, Southeast China. Mineralium Deposita, 36(5):393-405. https://doi.org/10.1007/s001260100160
      Zhu, J. C., Rao, B., Xiong, X. L., et al., 2002. Comparison and Genetic Interpretation of Li-F Rich, Rare-Metal Bearing Granitic Rocks. Geochimica, 31(2):141-152 (in Chinese with English abstract).
      陈有炘, 裴先治, 李佐臣, 等, 2015.东昆仑东段巴窿花岗质片麻岩年代学、地球化学特征及地质意义.岩石学报, 31(8):2230-2244. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201508008.htm
      董汉文, 许志琴, 孟元库, 等, 2017.藏南错那洞淡色花岗岩年代学研究及其对藏南拆离系活动时间的限定.岩石学报, 33(12):3741-3752. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201712004
      高利娥, 高家昊, 赵令浩, 等, 2017.藏南拿日雍错片麻岩穹窿中新世淡色花岗岩的形成过程:变泥质岩部分熔融与分离结晶作用.岩石学报, 33(8):2395-2411. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201708005
      高利娥, 曾令森, 谢克家, 2011.北喜马拉雅片麻岩穹窿始新世高级变质和深熔作用的厘定.科学通报, 56(36):3078-3090. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201136008
      辜平阳, 何世平, 李荣社, 等, 2013.藏南拉轨岗日变质核杂岩核部花岗质片麻岩的地球化学特征及构造意义.岩石学报, 29(3):756-768. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303002
      侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
      胡古月, 曾令森, 高利娥, 等, 2011.藏南窿子地区恰嘎流纹质次火山岩稀土元素类似四分组效应.地质通报, 30(1):82-94. doi: 10.3969/j.issn.1671-2552.2011.01.008
      黄春梅, 李光明, 张志, 等, 2018.藏南错那洞淡色花岗岩成因:来自全岩地球化学和锆石U-Pb年龄的约束.地学前缘, 25(6):182-195. http://d.old.wanfangdata.com.cn/Periodical/dxqy201806015
      李德威, 刘德民, 廖群安, 等, 2003.藏南萨迦拉轨岗日变质核杂岩的厘定及其成因.地质通报, 22(5):303-307. doi: 10.3969/j.issn.1671-2552.2003.05.002
      李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014
      梁维, 张林奎, 夏祥标, 等, 2018.藏南地区错那洞钨锡多金属矿床地质特征及成因分析.地球科学, 43(8): 2742-2754. http://earth-science.net/WebPage/Article.aspx?id=3909
      林彬, 唐菊兴, 郑文宝, 等, 2016.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因.岩石矿物学杂志, 35(3):391-406. doi: 10.3969/j.issn.1000-6524.2016.03.002
      戚学祥, 李天福, 孟祥金, 等, 2008.藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用.岩石学报, 24(7):1638-1648. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807020
      吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学(D辑), 47(7):745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001
      吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003
      曾令森, 刘静, 高利娥, 等, 2009.藏南也拉香波穹窿早渐新世地壳深熔作用及其地质意义.科学通报, 54(3):373-381. http://www.cnki.com.cn/Article/CJFDTotal-KXTB200903019.htm
      张进江, 郭磊, 张波, 2007.北喜马拉雅穹窿带雅拉香波穹窿的构造组成和运动学特征.地质科学, 42(1):16-30. doi: 10.3321/j.issn:0563-5020.2007.01.003
      张进江, 杨雄英, 戚国伟, 等, 2011.马拉山穹窿的活动时限及其在藏南拆离系-北喜马拉雅片麻岩穹窿形成机制的应用.岩石学报, 27(12):3535-3544. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201112004.htm
      张林奎, 张志, 李光明, 等, 2018.特提斯喜马拉雅错那洞穹窿的岩石组合、构造特征与成因.地球科学, 43(8):2664-2683. http://earth-science.net/WebPage/Article.aspx?id=3904
      张志, 张林奎, 李光明, 等, 2017.北喜马拉雅错那洞穹窿:片麻岩穹窿新成员与穹窿控矿新命题.地质学报, 38(5):754-766.
      朱弟成, 夏瑛, 裘碧波, 等, 2013.为什么要提出西藏东南部早白垩世措美大火成岩省.岩石学报, 29 (11): 3659-3670. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311001
      朱金初, 饶冰, 熊小林, 等, 2002.富锂氟含稀有矿化花岗质岩石的对比和成因思考.地球化学, 31(2):141-152. doi: 10.3321/j.issn:0379-1726.2002.02.005
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(3)

      Article views (4458) PDF downloads(104) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return