• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 5
    May  2019
    Turn off MathJax
    Article Contents
    Liu Jianhua, Cao Shuyun, Zhou Dingkui, Li Junyu, Cheng Xuemei, 2019. Deformation Characteristics and Seismic Wave Anisotropy of Amphibole in Amphibolite from Red River-Ailao Shan Shear Zone. Earth Science, 44(5): 1716-1733. doi: 10.3799/dqkx.2019.053
    Citation: Liu Jianhua, Cao Shuyun, Zhou Dingkui, Li Junyu, Cheng Xuemei, 2019. Deformation Characteristics and Seismic Wave Anisotropy of Amphibole in Amphibolite from Red River-Ailao Shan Shear Zone. Earth Science, 44(5): 1716-1733. doi: 10.3799/dqkx.2019.053

    Deformation Characteristics and Seismic Wave Anisotropy of Amphibole in Amphibolite from Red River-Ailao Shan Shear Zone

    doi: 10.3799/dqkx.2019.053
    • Received Date: 2019-02-06
    • Publish Date: 2019-05-15
    • Amphibolite is an important component in middle to lower crustal rocks, and the deformation behavior and mechanical strength of rocks and minerals in it control the mechanical properties and state of middle to lower crustal rocks directly, so it's quite meaningful to study amphibole's deformation behavior and seismic anisotropy. we took deformed amphibolite from Red River-Ailao Shan shear zone as our studying object. Microstructure analysis of amphibolite shows three types of mylonites:coarse-grained banded mylonite, medium-grained banded mylonite and fine-grained banded ultramylonite. we carried out EBSD crystal preferred orientation analysis and seismic anisotropy calculation of three types of amphibole respectively. Results show that these three types of amphiboles have different initial orientations and typical crystal plastic deformation, (100)[001] is the dominant slip system, furthermore, two secondary slip systems (010)[001] and (110)[001] are also developed. It is concluded that in the process of shear deformation amphibole's twin slip and cleavage plane slip contribute to the grain size reduction together. As amphibole's grain size become finer from coarse-grained banded mylonite to fine-grained banded ultramylonite, AVps of amphiboles also tend to be smaller, it indicates that amphibole's deformation behavior, shape preferred orientation and crystal preferred orientation affect its seismic wave anisotropy together.

       

    • loading
    • Aleksandrov, K.S., Ryzhova, T.V., 1961.The Elastic Properties of Rock Forming Minerals, Pyroxenes and Amphiboles.Bull.Acad.Sci.USSR Geophys.Ser., 871-875:1339-1344.
      Allison, I., La Tour, T.E., 1977.Brittle Deformation of Hornblende in a Mylonite:A Direct Geometrical Analogue of Ductile Deformation by Translation Gliding.Canadian Journal of Earth Sciences, 14(8):1953-1958. https://doi.org/10.1139/e77-166
      Babaie, H.A., La Tour, T.E., 1994.Semibrittle and Cataclastic Deformation of Hornblende-Quartz Rocks in a Ductile Shear Zone.Tectonophysics, 229(1-2):19-30. https://doi.org/10.1016/0040-1951(94)90003-5
      Baker, D.W., Carter, N.L., 1972.Seismic Velocity Anisotropy Calculated for Ultramafic Minerals and Aggregates, in Flow and Fracture of Rocks, Geophysics.Monogr.Ser., 16:157-166.
      Bestmann, M., Prior, D.J., 2003.Intragranular Dynamic Recrystallization in Naturally Deformed Calcite Marble:Diffusion Accommodated Grain Boundary Sliding as a Result of Subgrain Rotation Recrystallization.Journal of Structural Geology, 25(10):1597-1613. https://doi.org/10.1016/s0191-8141(03)00006-3
      Biermann, C., van Roermund, H.L.M., 1983.Defect Structures in Naturally Deformed Clinoamphiboles-A TEM Study.Tectonophysics, 95(3-4):267-278. https://doi.org/10.1016/0040-1951(83)90072-0
      Birch, F., 1960.The Velocity of Compressional Waves in Rocks to 10 Kilobars:1.Journal of Geophysical Research, 65(4):1083-1102. https://doi.org/10.1029/jz065i004p01083
      Brodie, K.H., Rutter, E., 1985.On the Relationship between Deformation and Metamorphism with Special Reference to the Behavior of Basic Rocks.In: Thompson, A.B., Rubie, D.C., eds., Advances in Physical Geochemistry.Springer, Berlin, 138-179.
      Burlini, L., Fountain, D.M., 1993.Seismic Anisotropy of Metapelites from the Ivrea-Verbano Zone and Serie Dei Laghi (Northern Italy).Physics of the Earth and Planetary Interiors, 78(3-4):301-317. https://doi.org/10.1016/0031-9201(93)90162-3
      Cai, Z.R., Xiang, J.Y., Huang, Q.T., et al., 2018.The Morphology of Nanoparticles in the Ductile Shear Zone of Red River Fault and Its Tectonic Significance.Earth Science, 43(5):1524-1531(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201805013
      Cao, S.Y., Liu, J.L., 2006.Modern Techniques for the Analysis of Rock Microstructure:EBSD and Its Application.Advances in Earth Science, 21(10):1091-1096(in Chinese with English abstract).
      Cao, S.Y., Liu, J.L., Hu, L., 2007.Micro-and Submicrostructural Evidence for High Temperature Brittle-Ductile Transition Deformation of Hornblende:Case Study of High-Grade Mylonites from Diancangshan, Western Yunnan.Science in China (Series D:Earth Sciences), 37(8):1004-1013(in Chinese).
      Cao, S.Y., Liu, J.L., Leiss, B., 2010a.Orientation-Related Deformation Mechanisms of Naturally Deformed Amphibole in Amphibolite Mylonites from the Diancang Shan, SW Yunnan, China.Journal of Structural Geology, 32(5):606-622. doi: 10.1016/j.jsg.2010.03.012
      Cao, S.Y., Liu, J.L., Leiss, B., et al., 2010b.New Zircon U-Pb Geochronology of the Post-Kinematic Granitic Plutons in the Diancang Shan Metamorphic Massif along the Ailao Shan-Red River Shear Zone and Its Geological Implications.Acta Geologica Sinica (English Edition), 84(6):1474-1487. https://doi.org/10.1111/j.1755-6724.2010.00342.x
      Cao, S.Y., Liu, J.L., Leiss, B., et al., 2011a.Oligo-Miocene Shearing along the Ailao Shan-Red River Shear Zone:Constraints from Structural Analysis and Zircon U/Pb Geochronology of Magmatic Rocks in the Diancang Shan Massif, SE Tibet, China.Gondwana Research, 19(4):975-993. https://doi.org/10.1016/j.gr.2010.10.006
      Cao, S.Y., Neubauer, F., Liu, J.L., et al., 2011b.Exhumation of the Diancang Shan Metamorphic Complex along the Ailao Shan-Red River Belt, Southwestern Yunnan, China:Evidence from 40Ar/39Ar Thermochronology.Journal of Asian Earth Sciences, 42(3):525-550. https://doi.org/10.1016/j.jseaes.2011.04.017
      Cheng, X.M., Cao, S.Y., Li, J.Y., et al., 2018.Metamorphic, Deformation, Fluids and Geological Significance of Low-Temperature Retrograde Mylonites of Diancangshan Metamorphic Massif along Ailaoshan-Red River Strike-Slip Fault Zone, Yunnan, China.Science China Earth Sciences, 61(8):1023-1041. https://doi.org/10.1007/s11430-017-9194-4
      Christensen, N.I., Mooney, W.D., 1995.Seismic Velocity Structure and Composition of the Continental Crust:A Global View.Journal of Geophysical Research (Solid Earth), 100(B6):9761-9788. https://doi.org/10.1029/95jb00259
      Crampin, S., Gao, Y., Bukits, J., 2015.A Review of Retrospective Stress-Forecasts of Earthquakes and Eruptions.Physics of the Earth and Planetary Interiors, 245:76-87. https://doi.org/10.1016/j.pepi.2015.05.008
      Dempsey, E.D., Prior, D.J., Mariani, E., et al., 2011.Mica-Controlled Anisotropy within Mid-to-Upper Crustal Mylonites:An EBSD Study of Mica Fabrics in the Alpine Fault Zone, New Zealand.Geological Society, London, Special Publications, 360(1):33-47. https://doi.org/10.1144/sp360.3
      Díaz Aspiroz, M., Lloyd, G.E., Fernández, C., 2007.Development of Lattice Preferred Orientation in Clinoamphiboles Deformed under Low-Pressure Metamorphic Conditions:A SEM/EBSD Study of Metabasites from the Aracena Metamorphic Belt (SW Spain).Journal of Structural Geology, 29(4):629-645. https://doi.org/10.1016/j.jsg.2006.10.010
      Endrun, B., Lebedev, S., Meier, T., et al., 2011.Complex Layered Deformation within the Aegean Crust and Mantle Revealed by Seismic Anisotropy.Nature Geoscience, 4:203-207. https://doi.org/10.1038/ngeo1065
      Fliervoet, T.F., Drury, M.R., Choprac, P.N., 1999.Crystallographic Preferred Orientations and Misorientations in Some Olivine Rocks Deformed by Diffusion or Dislocation Creep.Tectonophysics, 303(1-4):1-27. https://doi.org/10.1016/s0040-1951(98)00250-9
      Fliervoet, T.F., White, S.H., Drury, M.R., 1997.Evidence for Dominant Grain-Boundary Sliding Deformation in Greenschist-and Amphibolite-Grade Polymineralic Ultramylonites from the Redbank Deformed Zone, Central Australia.Journal of Structural Geology, 19(12):1495-1520. https://doi.org/10.1016/s0191-8141(97)00076-x
      Getsinger, A.J., Hirth, G., 2014.Amphibole Fabric Formation during Diffusion Creep and the Rheology of Shear Zones.Geology, 42(6):535-538. https://doi.org/10.1130/g35327.1
      Gilley, L.D., Harrison, T.M., Leloup, P.H., et al., 2003.Direct Dating of Left-Lateral Deformation along the Red River Shear Zone, China and Vietnam.Journal of Geophysical Research (Solid Earth), 108(B2):108. https://doi.org/10.1029/2001jb001726
      Gong, W., Jiang, X.D., 2017.Thermal Evolution History and Its Genesis of the Ailao Shan-Red River Fault Zone in the Ailao Shan and Day Nui Con Voi Massif during Oligocene-Early Miocene.Earth Science, 42(2):223-239(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201702005
      Guo, X.F., Wang, Y.J., Liu, H.C., et al., 2016.Zircon U-Pb Geochronology of the Cenozoic Granitic Mylonite along the Ailaoshan-Red River Shear Zone:New Constraints on the Timing of the Sinistral Shearing.Journal of Earth Science, 27(3):435-443. doi: 10.1007/s12583-016-0678-2
      Imon, R., Okudaira, T., Kanagawa, K., 2004.Development of Shape-and Lattice-Preferred Orientations of Amphibole Grains during Initial Cataclastic Deformation and Subsequent Deformation by Dissolution-Precipitation Creep in Amphibolites from the Ryoke Metamorphic Belt, SW Japan.Journal of Structural Geology, 26(5):793-805. https://doi.org/10.1016/j.jsg.2003.09.004
      Ji, S.C., Mainprice, D., 1988.Natural Deformation Fabrics of Plagioclase:Implications for Slip Systems and Seismic Anisotropy.Tectonophysics, 147(1-2):145-163. https://doi.org/10.1016/0040-1951(88)90153-9
      Ji, S.C., Shao, T.B., Michibayashi, K., et al., 2013.A New Calibration of Seismic Velocities, Anisotropy, Fabrics, and Elastic Moduli of Amphibole-Rich Rocks.Journal of Geophysical Research (Solid Earth), 118(9):4699-4728. https://doi.org/10.1002/jgrb.50352
      Ji, S.C., Shao, T.B., Michibayashi, K., et al., 2015.Magnitudeand Symmetry of Seismic Anisotropy in Mica-and Amphibole-Bearing Metamorphic Rocks and Implications for Tectonic Interpretation of Seismic Data from the Southeast Tibetan Plateau.Journal of Geophysical Research (Solid Earth), 120(9):6404-6430. https://doi.org/10.1002/2015jb012209
      Jiang, Z.T., Prior, D.J., Wheeler, J., 2000.Albite Crystallographic Preferred Orientation and Grain Misorientation Distribution in a Low-Grade Mylonite:Implications for Granular Flow.Journal of Structural Geology, 22(11-12):1663-1674. https://doi.org/10.1016/s0191-8141(00)00079-1
      Jin, Z.M., Ji, S.C., Jin, S.Y., 1994.Lattice Preferred Orientation of Olivines and Seismic Anisotropy in the Upper Mantle.Acta Geophysica Sinica, 37(4):469-477(in Chinese with English abstract).
      Jung, H., Park, M., Jung, S., et al., 2010.Lattice Preferred Orientation, Water Content, and Seismic Anisotropy of Orthopyroxene.Journal of Earth Science, 21(5):555-568. https://doi.org/10.1007/s12583-010-0118-9
      Kang, H., Jung, H., 2019.Lattice-Preferred Orientation of Amphibole, Chlorite, and Olivine Found in Hydrated Mantle Peridotites from Bjørkedalen, Southwestern Norway, and Implications for Seismic Anisotropy.Tectonophysics, 750:137-152. https://doi.org/10.1016/j.tecto.2018.11.011
      Kern, H., Wenk, H.R., 1990.Fabric-Related Velocity Anisotropy and Shear-Wave Splitting in Rocks from the Santa Rosa Mylonite Zone, California.Journal of Geophysical Research, 95:11213-11224. doi: 10.1029/JB095iB07p11213
      Kitamura, K., 2006.Constraint of Lattice-Preferred Orientation (LPO) on Vp Anisotropy of Amphibole-Rich Rocks.Geophysical Journal International, 165(3):1058-1065. https://doi.org/10.1111/j.1365-246x.2006.02961.x
      Ko, B., Jung, H., 2015.Crystal Preferred Orientation of an Amphibole Experimentally Deformed by Simple Shear.Nature Communications, 6:6586. https://doi.org/10.1038/ncomms7586
      Kruse, R., Stünitz, H., 1999.Deformation Mechanisms and Phase Distribution in Mafic High-Temperature Mylonites from the Jotun Nappe, Southern Norway.Tectonophysics, 303(1-4):223-249. https://doi.org/10.1016/s0040-1951(98)00255-8
      Leloup, P.H., Arnaud, N., Lacassin, R., et al., 2001.New Constraints on the Structure, Thermochronology, and Timing of the Ailao Shan-Red River Shear Zone, SE Asia.Journal of Geophysical Research (Solid Earth), 106(B4):6683-6732. https://doi.org/10.1029/2000jb900322
      Leloup, P.H., Kienast, J.R., 1993.High-Temperature Metamorphism in a Major Strike-Slip Shear Zone:The Ailao Shan-Red River, People's Republic of China.Earth and Planetary Science Letters, 118(1-4):213-234.https://doi.org/10.1016/0012-821x (93)90169-a doi: 10.1016/0012-821x(93)90169-a
      Leloup, P.H., Lacassin, R., Tapponnier, P., et al., 1995.The Ailao Shan-Red River Shear Zone (Yunnan, China), Tertiary Transform Boundary of Indochina.Tectonophysics, 251(1-4):3-10, 13-84. https://doi.org/10.1016/0040-1951(95)00070-4
      Licciardi, A., Eken, T., Taymaz, T., et al., 2018.Seismic Anisotropy in Central North Anatolian Fault Zone and Its Implications on Crustal Deformation.Physics of the Earth and Planetary Interiors, 277:99-112. https://doi.org/10.1016/j.pepi.2018.01.012
      Liu, J.L., Cao, S.Y., Zhai, Y.F., et al., 2007.Rotation of Crustal Blocks as an Explanation of Oligo-Miocene Extension in Southeastern Tibet-Evidenced by the Diancangshan and nearby Metamorphic Core Complexes.Earth Science Frontiers, 14(4):40-48. https://doi.org/10.1016/s1872-5791(07)60028-1
      Lloyd, G.E., Butler, R.W.H., Casey, M.et al., 2009.Mica, Deformation Fabrics and the Seismic Properties of the Continental Crust.Earth Planet.Sci.Lett, 288:320-328. doi: 10.1016/j.epsl.2009.09.035
      Lloyd, G.E., Butler, R.W.H., Casey, M., et al., 2011.Constraints on the Seismic Properties of the Middle and Lower Continental Crust.Geological Society, London, Special Publications, 360(1):7-32. doi: 10.1144/SP360.2
      Lloyd, G.E., Farmer, A.B., Mainprice, D., 1997.Misorientation Analysis and the Formation and Orientation of Subgrain and Grain Boundaries.Tectonophysics, 279(1-4):55-78. https://doi.org/10.1016/s0040-1951(97)00115-7
      Mahan, K., 2006.Retrograde Mica in Deep Crustal Granulites:Implications for Crustal Seismic Anisotropy.Geophysical Research Letters, 33(24):L24301. https://doi.org/10.1029/2006gl028130
      Mainprice, D., 1990.A FORTRAN Program to Calculate Seismic Anisotropy from the Lattice Preferred Orientation of Minerals.Computers & Geosciences, 16(3):385-393. https://doi.org/10.1016/0098-3004(90)90072-2
      Mainprice, D., Nicolas, A., 1989.Development of Shape and Lattice Preferred Orientations:Application to the Seismic Anisotropy of the Lower Crust.Journal of Structural Geology, 11(1-2):175-189. https://doi.org/10.1016/0191-8141(89)90042-4
      Mehl, L., Hirth, G., 2008.Plagioclase Preferred Orientation in Layered Mylonites:Evaluation of Flow Laws for the Lower Crust.Journal of Geophysical Research, 113(B5):1-19. https://doi.org/10.1029/2007jb005075
      Melosha, B.L., Rowe, C.D., Gerbi, C., et al., 2018.Seismic Cycle Feedbacks in a Mid-Crustal Shear Zone.Journal of Structural Geology, 112:95-111. https://doi.org/10.1016/j.jsg.2018.04.004
      McNamara, D.D., Wheeler, J., Pearce, M., et al., 2012.Fabrics Produced Mimetically during Static Metamorphism in Retrogressed Eclogites from the Zermatt-Saas Zone, Western Italian Alps.Journal of Structural Geology, 44:167-178. https://doi.org/10.1016/j.jsg.2012.08.006
      Nyman, M.W., Law, R.D., Smelik, E.A., 1992.Cataclastic Deformation Mechanism for the Development of Core-Mantle Structures in Amphibole.Geology, 20(5):455.https://doi.org/10.1130/0091-7613(1992)020<0455:cdmftd>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0455:cdmftd>2.3.co;2
      Peltzer, G., Tapponnier, P., 1988.Formation and Evolution of Strike-Slip Faults, Rifts, and Basins during the India-Asia Collision:An Experimental Approach.Journal of Geophysical Research (Solid Earth), 93(B12):15085-15117. https://doi.org/10.1029/jb093ib12p15085
      Pennock, G.M., Drury, M.R., Peach, C.J., et al., 2006.The Influence of Water on Deformation Microstructures and Textures in Synthetic NaCl Measured Using EBSD.Journal of Structural Geology, 28(4):588-601. https://doi.org/10.1016/j.jsg.2006.01.014
      Rasolofosaon, P.N.J., Rabbel, W., Siegesmund, S., et al., 2000.Characterization of Crack Distribution:Fabric Analysis versus Ultrasonic Inversion.Geophysical Journal International, 141(2):413-424. https://doi.org/10.1046/j.1365-246x.2000.00093.x
      Rudnick, R., Gao, S., 2003.Composition of the Continental Crust.Treatise Geochem., 3:1-64. doi: 10.1016-0016-7037(95)00038-2/
      Shapiro, N.M., Ritzwoller, M.H., Molnar, P., et al., 2004.Thinning and Flow of Tibetan Crust Constrained by Seismic Anisotropy.Science, 305(5681):233-236. https://doi.org/10.1126/science.1098276
      Sherrington, H.F., Zandt, G., Frederiksen, A., 2004.Crustal Fabric in the Tibetan Plateau Based on Waveform Inversions for Seismic Anisotropy Parameters.Journal of Geophysical Research (Solid Earth), 109(B2):376. https://doi.org/10.1029/2002jb002345
      Skemer, P., Karato, S.I., 2008.Sheared Lherzolite Xenoliths Revisited.Journal of Geophysical Research, 113(B7):1-14. https://doi.org/10.1029/2007jb005286
      Skrotzki, W., 1992.Defect Structure and Deformation Mechanisms in Naturally Deformed Hornblende.Physica Status Solidi (a), 131(2):605-624. https://doi.org/10.1002/pssa.2211310232
      Stünitz, H., Gerald, J.D.F., 1993.Deformation of Granitoids at Low Metamorphic Grade.Ⅱ:Granular Flow in Albite-Rich Mylonites.Tectonophysics, 221(3-4):299-324. https://doi.org/10.1016/0040-1951(93)90164-f
      Sun, S.S., Ji, S.C., 2011.On the Formation of Seismic Anisotropy and Shear Wave Splitting in Oceanic Subduction Zones.Geotectonica et Metallogenia, 35(4):628-647(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201104017
      Tapponnier, P., Lacassin, R., Leloup, P.H., et al., 1990.The Ailao Shan/Red River Metamorphic Belt:Tertiary Left-Lateral Shear between Indochina and South China.Nature, 343:431-437. https://doi.org/10.1038/343431a0
      Tatham, D.J., Lloyd, G.E., Butler, R.W.H., et al., 2008.Amphibole and Lower Crustal Seismic Properties.Earth and Planetary Science Letters, 267(1-2):118-128. https://doi.org/10.1016/j.epsl.2007.11.042
      Warren, J.M., Hirth, G., 2006.Grain Size Sensitive Deformation Mechanisms in Naturally Deformed Peridotites.Earth and Planetary Science Letters, 248(1-2):438-450. https://doi.org/10.1016/j.epsl.2006.06.006
      Wheeler, J., Prior, D., Jiang, Z., et al., 2001.The Petrological Significance of Misorientations between Grains.Contributions to Mineralogy and Petrology, 141(1):109-124. https://doi.org/10.1007/s004100000225
      Xu, H.J., Jin, S.Y., Zheng, B.R., 2007.New Technique of Petrofabric:Electron Backscatter Diffraction (EBSD).Geoscience, 21(2):213-225(in Chinese with English abstract).
      Zhang, J.F., Wang, Y.F., Jin, Z.M., 2007.Seismic Anisotropy of Ultrahigh Pressure Eclogite Induced by Deformation Fabric.Science in China (Series D:Earth Sciences), 37(11):1433-1443(in Chinese).
      蔡周荣, 向俊洋, 黄强太, 等, 2018.红河断裂韧性剪切带内纳米颗粒的形态及其构造意义.地球科学, 43(5):1524-1531. http://earth-science.net/WebPage/Article.aspx?id=3812
      曹淑云, 刘俊来, 2006.岩石显微构造分析现代技术——EBSD技术及应用.地球科学进展, 21(10):1091-1096. doi: 10.3321/j.issn:1001-8166.2006.10.014
      曹淑云, 刘俊来, 胡玲, 2007.角闪石高温脆-韧性转变变形的显微与亚微构造证据——以滇西点苍山深变质剪切糜棱岩为例.中国科学(D辑:地球科学), 37(8):1004-1013.
      宫伟, 姜效典, 2017.哀牢山-红河断裂带哀牢山-大象山段渐新世-早中新世热史演化及成因.地球科学, 42(2):223-239.
      金振民, Ji, S.C., 金淑燕, 1994.橄榄石晶格优选方位和上地幔地震波速各向异性.地球物理学报, 37(4):469-477. doi: 10.3321/j.issn:0001-5733.1994.04.007
      孙圣思, 嵇少丞, 2011.大洋板块俯冲带地震波各向异性及剪切波分裂的成因机制.大地构造与成矿学, 35(4):628-647. doi: 10.3969/j.issn.1001-1552.2011.04.017
      徐海军, 金淑燕, 郑伯让, 2007.岩石组构学研究的最新技术——电子背散射衍射(EBSD).现代地质, 21(2):213-225. doi: 10.3969/j.issn.1000-8527.2007.02.005
      章军锋, 王永锋, 金振民, 2007.变形组构引起的超高压榴辉岩地震波速各向异性.中国科学(D辑:地球科学), 37(11):1433-1443. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200711002
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (5086) PDF downloads(72) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return