• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 3
    Mar.  2020
    Turn off MathJax
    Article Contents
    Zhu Zhaoxian, Zhao Xinfu, Lin Zuwei, Zhao Shaorui, 2020. In Situ Trace Elements and Sulfur Isotope Analysis of Pyrite from Jinchiling Gold Deposit in the Jiaodong Region: Implications for Ore Genesis. Earth Science, 45(3): 945-959. doi: 10.3799/dqkx.2019.057
    Citation: Zhu Zhaoxian, Zhao Xinfu, Lin Zuwei, Zhao Shaorui, 2020. In Situ Trace Elements and Sulfur Isotope Analysis of Pyrite from Jinchiling Gold Deposit in the Jiaodong Region: Implications for Ore Genesis. Earth Science, 45(3): 945-959. doi: 10.3799/dqkx.2019.057

    In Situ Trace Elements and Sulfur Isotope Analysis of Pyrite from Jinchiling Gold Deposit in the Jiaodong Region: Implications for Ore Genesis

    doi: 10.3799/dqkx.2019.057
    • Received Date: 2019-02-11
    • Publish Date: 2020-03-15
    • The Jinchiling gold deposit,located in the central and western part of Zhaoyuan-Laizhou gold metallogenic belt,is a typical lode gold deposit hosted in Late Jurassic Linglong granitoids in the Jiaodong region. The source of its ore-forming fluids and ore genesis,however,are still in debate. Based on the detailed study of mineralogy and microstructure of pyrite,trace elements and sulfur isotopes of gold bearing pyrite are analyzed by LA-(MC)-ICP-MS to constrain the source of ore-forming fluids and ore genesis. Two types (PyI and PyII) of gold-bearing pyrite can be identified. PyI is hosted in the quartz-pyrite stage,and PyII occurs in the quartz-polymetallic sulfide stage,which is associated with abundant visible gold. BSE images show that PyII commonly has core-rim texture. The PyIIa core contains many sulfide inclusions,whereas PyIIb rim is relatively clean. LA-ICP-MS analyses show that PyI contains medium contents of Au (< 0.015×10-6-2.18×10-6,mean 0.62×10-6) and As (78.98×10-6-857×10-6,mean 542×10-6),but very low contents of other metal elements (Pb and Zn). PyIIa has trace elements similar to those of PyI,but lower Au (< 0.015×10-6-0.59×10-6,mean 0.11×10-6) and As (0.62×10-6-198×10-6,mean 35.81×10-6). However,PyIIb has significantly high Au (< 0.015×10-6-19.71×10-6,mean 5.91×10-6) and As (399×10-6-18 153×10-6,mean 6 412×10-6),which shows a positive correlation. In addition,PyI and PyIIa have consistent in situ δ34S values,ranging from 3.0‰ to 4.9‰,whereas PyIIb is higher (5.2‰-6.6‰). Our data thus suggest that a new pulse of Au-As enriched ore-formed fluids were input into the mineralizing vein system during quartz-polymetallic sulfide stage,inducing the metasomatism of PyIIa and deposition of abundant visible gold. Our study hence implies that multiple phases of ore-forming fluids may be involved in the formation of high-grade lode gold deposits in Jiaodong.

       

    • loading
    • Barker, S. L. L., Hickey, K. A., Cline, J. S., et al., 2009. Unlocking Invisible Gold: Use of Nanosims to Evaluate Gold, Trace Elements, and Sulfur Isotopes in Pyrite From Carlin-Type Gold Deposit. Economic Geology, 104(7): 897-904. https://doi.org/10.2113/econgeo.104.7.897
      Bi, S. J., Li, J. W., Zhou, M. F., et al., 2011. Gold Distribution in As-Deficient Pyrite and Telluride Mineralogy of the Yangzhaiyu Gold Deposit, Xiaoqinling District, Southern North China Craton. Mineralium Deposita, 46(8): 925-941. https://doi.org/10.1007/s00126-011-0359-2
      Bralia, A., Sabatini, G., Troja, F., 1979. A Revaluation of the Co/Ni Ratio in Pyrite as Geochemical Tool in Ore Genesis Problems. Mineralium Deposita, 14(3):353-374. https://doi.org/10.1007/bf00206365
      Chen, L., Liu, Y. S., Hu, Z. C., et al., 2011. Accurate Determinations of Fifty-Four Major and Trace Elements in Carbonate by LA-ICP-MS Using Normalization Strategy of Bulk Components as 100%. Chemical Geology, 284(3-4): 283-295. https://doi.org/10.1016/j.chemgeo.2011.03.007
      Cook, N. J., Ciobanu, C. L., Mao, J. W., 2009. Textural Control on Gold Distribution in As-Free Pyrite from the Dongping, Huangtuliang and Hougou Gold Deposits, North China Craton (Hebei Province, China). Chemical Geology, 264(1-4): 101-121. https://doi.org/10.1016/j.chemgeo.2009.02.020
      Cook, N. J., Spry, P. G., Vokes, F. M., 1998. Mineralogy and Textural Relationships among Sulphosalts and Related Minerals in the Bleikvassli Zn-Pb-(Cu) Deposit, Nordland, Norway. Mineralium Deposita, 34(1): 35-56. https://doi.org/10.1007/s001260050184
      Deditius, A. P., Reich, M., Kesler, S. E., et al., 2014. The Coupled Geochemistry of Au and as in Pyrite from Hydrothermal Ore Deposits. Geochimica et Cosmochimica Acta, 140: 644-670. https://doi.org/10.1016/j.gca.2014.05.045
      Deditius, A. P., Utsunomiya, S., Reich, M., et al., 2011. Trace Metal Nanoparticles in Pyrite. Ore Geology Reviews, 42(1): 32-46. https://doi.org/10.1016/j.oregeorev.2011.03.003
      Du, G. F., Zou, H. Y., Yang, L., et al., 2012. Characteristics of Ore-Forming Fluid from the Jinchiling Gold Deposit in Shandong Province. Geology and Exploration, 48(4): 677-684 (in Chineres with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201204002
      Feng, K., Fan, H. R., Hu, F. F., et al., 2018. Involvement of Anomalously As-Au-Rich Fluids in the Mineralization of the Heilan'gou Gold Deposit, Jiaodong, China: Evidence from Trace Element Mapping and In-Situ Sulfur Isotope Composition. Journal of Asian Earth Sciences, 160: 304-321. https://doi.org/10.1016/j.jseaes.2017.12.023
      Fleet, M. E., Chryssoulis, S. L., MacLean, P. J., et al., 1993. Arsenian Pyrite from Gold Deposits: Au and As Distribution Investigated by SIMS and EMP, and Color Staining and Surface Oxidation by XPS and LIMS. The Canadian Mineralogist, 31(1):1-17.
      Fougerouse, D., Micklethwaite, S., Tomkins, A. G., et al., 2016. Gold Remobilisation and Formation of High Grade Ore Shoots Driven by Dissolution-Reprecipitation Replacement and Ni Substitution into Auriferous Arsenopyrite. Geochimica et Cosmochimica Acta, 178: 143-159. https://doi.org/10.1016/j.gca.2016.01.040
      Goldfarb, R. J., Santosh, M., 2014. The Dilemma of the Jiaodong Gold Deposits: Are They Unique? Geoscience Frontiers, 5(2): 139-153. https://doi.org/10.1016/j.gsf.2013.11.001
      Hou, M. L., Jiang, Y. H., Jiang, S. Y., et al., 2007. Contrasting Origins of Late Mesozoic Adakitic Granitoids from the Northwestern Jiaodong Peninsula, East China: Implications for Crustal Thickening to Delamination. Geological Magazine, 144(4): 619-631. https://doi.org/10.1017/s0016756807003494
      Huang, D. Y., 1994. Sulfur Isotope Studies of the Metallogenic Series of Gold Deposits in Jiaodong (Eastern Shandong) Area. Mineral Deposits, 13(1): 75-87 (in Chinese with English abstract).
      Jahn, B. M., Liu, D., Wan, Y., et al., 2008. Archean Crustal Evolution of the Jiaodong Peninsula, China, as Revealed by Zircon SHRIMP Geochronology, Elemental and Nd-Isotope Geochemistry. American Journal of Science, 308(3): 232-269. https://doi.org/10.2475/03.2008.03
      Large, R. R., Danyushevsky, L., Hollit, C., et al., 2009. Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits. Economic Geology, 104(5): 635-668. https://doi.org/10.2113/gsecongeo.104.5.635
      Li, X. H., Fan, H. R., Yang, K. F., et al., 2018.Pyrite Textures and Compositions from the Zhuangzi Au Deposit, Southeastern North China Craton: Implication for Ore-Forming Processes. Contributions to Mineralogy and Petrology, 173(9): 1-20. https://doi.org/10.1007/s00410-018-1501-2
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Mikucki, E. J., 1998. Hydrothermal Transport and Depositional Processes in Archean Lode-Gold Systems: A Review. Ore Geology Reviews, 13(1-5): 307-321. https://doi.org/10.1016/s0169-1368(97)00025-5
      Mills, S. E., Tomkins, A. G., Weinberg, R. F., et al., 2015. Implications of Pyrite Geochemistry for Gold Mineralisation and Remobilisation in the Jiaodong Gold District, Northeast China. Ore Geology Reviews, 71(8): 150-168. https://doi.org/10.1016/j.oregeorev.2015.04.022
      Morey, A. A., Tomkins, A. G., Bierlein, F. P., et al., 2008. Bimodal Distribution of Gold in Pyrite and Arsenopyrite: Examples from the Archean Boorara and Bardoc Shear Systems, Yilgarn Craton, Western Australia. Economic Geology, 103(3): 599-614. https://doi.org/10.2113/gsecongeo.103.3.599
      Mumin, A. H., Fleet, M. E., Chryssoulis, S. L., 1994. Gold Mineralization in As-Rich Mesothermal Gold Ores of the Bogosu-Prestea Mining District of the Ashanti Gold Belt, Ghana: Remobilization of "Invisible" Gold. Mineralium Deposita, 29(6):445-460. https://doi.org/10.1007/bf00193506
      Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5): 551-578. https://doi.org/10.2113/gsecongeo.67.5.551
      Pokrovski, G. S., Tagirov, B. R., Schott, J., et al., 2009. A New View on Gold Speciation in Sulfur-Bearing Hydrothermal Fluids from in Situ X-Ray Absorption Spectroscopy and Quantum-Chemical Modeling. Geochimica et Cosmochimica Acta, 73(18): 5406-5427. https://doi.org/10.1016/j.gca.2009.06.007
      Qiu, Y. M., Groves, D. I., McNaughton, N. J., et al., 2002. Nature, Age, and Tectonic Setting of Granitoid-Hosted, Orogenic Gold Deposits of the Jiaodong Peninsula, Eastern North China Craton, China. Mineralium Deposita, 37(3): 283-305. https://doi.org/10.1007/s00126-001-0238-3
      Reich, M., Deditius, A., Chryssoulis, S., et al., 2013. Pyrite as a Record of Hydrothermal Fluid Evolution in a Porphyry Copper System: A SIMS/EMPA Trace Element Study. Geochimica et Cosmochimica Acta, 104: 42-62. https://doi.org/10.1016/j.gca.2012.11.006
      Reich, M., Kesler, S. E., Utsunomiya, S., et al., 2005. Solubility of Gold in Arsenian Pyrite. Geochimica et Cosmochimica Acta, 69(11): 2781-2796. https://doi.org/10.1016/j.gca.2005.01.011
      Simmons, S. F., White, N. C., John, D. A., 2005. Geological Characteristics of Epithermal Precious and Base Metal Deposits. 100th Anniversary Volume, Society of Economic Geologists, 485-522. https: //doi.org/10.5382/av100.16
      Sung, Y. H., Brugger, J., Ciobanu, C. L., et al., 2009. Invisible Gold in Arsenian Pyrite and Arsenopyrite from a Multistage Archaean Gold Deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Mineralium Deposita, 44(7): 765-791. https://doi.org/10.1007/s00126-009-0244-4
      Tang, J., Zheng, Y. F., Wu, Y. B., et al., 2007. Geochronology and Geochemistry of Metamorphic Rocks in the Jiaobei Terrane: Constraints on Its Tectonic Affinity in the Sulu Orogen. Precambrian Research, 152(1-2): 48-82. https://doi.org/10.1016/j.precamres.2006.09.001
      Vaughan, J. P., Kyin, A., 2004. Refractory Gold Ores in Archaean Greenstones, Western Australia: Mineralogy, Gold Paragenesis, Metallurgical Characterization and Classification. Mineralogical Magazine, 68(2): 255-277. https://doi.org/10.1180/0026461046820186
      Wang, Q. F., Deng, J., Zhao, H. S., et al., 2019. Review on Orogenic Gold Deposits. Earth Science, 44(6): 2155-2186 (in Chinese with English abstract).
      Wang, Y. W., Zhu, F. S., Gong, R. T., et al., 2002. Tectonic Isotope Geochemistry—Further Study on Sulfur Isotope of Jiaodong Gold Concentration Area. Gold, 23(4): 1-16 (in Chinese with English abstract).
      Yang, K. F., Fan, H. R., Santosh, M., et al., 2012. Reactivation of the Archean Lower Crust: Implications for Zircon Geochronology, Elemental and Sr-Nd-Hf Isotopic Geochemistry of Late Mesozoic Granitoids from Northwestern Jiaodong Terrane, the North China Craton. Lithos, 146-147: 112-127. https://doi.org/10.1016/j.lithos.2012.04.035
      Yang, L., 2014. On the Relationship between Magmatic Rocks and Metallogeny in the Jinchiling Gold Deposit, Zhaoyuan Area, Shandong Province(Dissertation). Central South University, Changsha (in Chinese with English abstract).
      Yang, L., Zou, H. Y., Yang, M., et al., 2012. Ore-Forming Fluid Characteristics and Genesis of Jinchiling Gold Deposit in Jiaodong. The Chinese Journal of Nonferrous Metals, 22(3): 726-732 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgysjsxb201203013
      Yang, L. Q., Deng, J., Wang, Z. L., et al., 2016. Relationships between Gold and Pyrite at the Xincheng Gold Deposit, Jiaodong Peninsula, China: Implications for Gold Source and Deposition in a Brittle Epizonal Environment. Economic Geology, 111(1): 105-126. https://doi.org/10.2113/econgeo.111.1.105
      Zhang, J., Zhao, Z. F., Zheng, Y. F., et al., 2010. Postcollisional Magmatism: Geochemical Constraints on the Petrogenesis of Mesozoic Granitoids in the Sulu Orogen, China. Lithos, 119(3-4): 512-536. https://doi.org/10.1016/j.lithos.2010.08.005
      Zhang, J. H., Tian, H., Wang, H. C., et al., 2019. Re-Definition of the Two-Stage Early-Precambrian Meta-Supracrustal Rocks in the Huai'an Complex, North China Craton:Evidences from Petrology and Zircon U-Pb Geochronology. Earth Science, 44(1): 1-22 (in Chinese with English abstract).
      Zhang, X., 2012. Research on the Genetic Mineralogy and Genesis Model of Jinchiling Gold Deposit in Zhaoyuan Country, Shandong (Dissertation). China University of Geosicences, Beijing (in Chinese with English abstract).
      Zhang, X., Li, S. R., Lu, J., et al., 2012.H-O, He-Ar Isotopic Compositions of Fluid Inclusions for Tracing the Source of Ore-Formation Fluids of Jinchiling Gold Deposit, Northwest Jiaodong Area. Journal of Mineralogy and Petrology, 32(1): 40-47 (in Chinese with English abstract).
      Zhao, X. F., Li, Z. K., Zhao, S. R., et al., 2019. Early Cretaceous Regional-Scale Magmatic-Hydrothermal Metallogenic System at the Southern Margin of the North China Carton. Earth Science, 44(1): 52-68 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201901005
      Zheng, Y. F., Xu, Z., Zhao, Z. F., et al., 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Scientia Sinica Terrae, 48(4):379-414 (in Chinese).
      Zhu, R. X., Fan, H. R., Li, J. W., et al., 2015. Decratonic Gold Deposits. Scientia Sinica Terrae, 45(8):1153-1168 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4c20249752de85e8e961b02c55d0cfda
      杜高峰, 邹海洋, 杨柳, 等, 2012.山东金翅岭金矿成矿流体特征.地质与勘探, 48(4):677-684. http://d.old.wanfangdata.com.cn/Periodical/dzykt201204002
      黄德业, 1994.胶东金矿成矿系列硫同位素研究.矿床地质, 13(1):75-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400286654
      王庆飞, 邓军, 赵鹤森, 等, 2019.造山型金矿研究进展:兼论中国造山型金成矿作用.地球科学, 44(6):2155-2186. doi: 10.3799/dqkx.2019.105
      王义文, 朱奉三, 宫润谭, 等, 2002.构造同位素地球化学——胶东金矿集中区硫同位素再研究.黄金, 23(4):1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj200204001
      杨柳, 2014.山东招远金翅岭金矿岩浆岩与金成矿关系研究(博士学位论文).长沙: 中南大学.
      杨柳, 邹海洋, 杨牧, 等, 2012.胶东金翅岭金矿成矿流体特征及地质意义.中国有色金属学报, 22(3):726-732. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201203013
      张家辉, 田辉, 王惠初, 等, 2019.华北克拉通怀安杂岩中早前寒武纪两期变质表壳岩的重新厘定:岩石学及锆石U-Pb年代学证据.地球科学, 44(1):1-22. doi: 10.3799/dqkx.2018.259
      张旭, 2012.山东招远金翅岭金矿成因矿物学与成矿模式研究(硕士学位论文).北京: 中国地质大学.
      张旭, 李胜荣, 卢晶, 等, 2012.山东招远金翅岭金矿床H, O, He, Ar同位素组成及其对成矿流体示踪的研究.矿物岩石, 32(1):40-47. http://d.old.wanfangdata.com.cn/Periodical/kwys201201006
      赵新福, 李占轲, 赵少瑞, 等, 2019.华北克拉通南缘早白垩世区域大规模岩浆-热液成矿系统.地球科学, 44(1):52-68. doi: 10.3799/dqkx.2018.372
      郑永飞, 徐峥, 赵子福, 等, 2018.华北中生代镁铁质岩浆与克拉通破坏.中国科学:地球科学, 48(4):379-414.
      朱日祥, 范宏瑞, 李建威, 等, 2015.克拉通破坏型金矿床.中国科学:地球科学, 45(8):1153-1168.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(2)

      Article views (4107) PDF downloads(170) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return