• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 4
    Apr.  2020
    Turn off MathJax
    Article Contents
    Zhu Yuhua, Chen Genwen, Shan Qiang, Xu Deru, Wang Lixing, He Miaoling, Lan Yongwen, Sun Jun, 2020. Geochemical Characteristics and Ore-Forming Materials of Luokuidong Molybdenum Ore Deposit in Hainan Island. Earth Science, 45(4): 1187-1212. doi: 10.3799/dqkx.2019.101
    Citation: Zhu Yuhua, Chen Genwen, Shan Qiang, Xu Deru, Wang Lixing, He Miaoling, Lan Yongwen, Sun Jun, 2020. Geochemical Characteristics and Ore-Forming Materials of Luokuidong Molybdenum Ore Deposit in Hainan Island. Earth Science, 45(4): 1187-1212. doi: 10.3799/dqkx.2019.101

    Geochemical Characteristics and Ore-Forming Materials of Luokuidong Molybdenum Ore Deposit in Hainan Island

    doi: 10.3799/dqkx.2019.101
    • Received Date: 2019-04-29
    • Publish Date: 2020-04-15
    • The Luokuidong porphyry Mo deposit in Hainan Island is a large-scale low-grade deposit,controlled by volcanic apparatus. In order to understand petrogenesis of ore-forming porphyry and the sources of metallogenetic material,in this paper,it presents a systematic study of the major elements,trace elements,Sr-Nd-Pb isotopic compositions of whole rocks and S-Pb isotopic compositions of metal sulfide,with the following results.(1) The geochemical characteristics of Luokuidong porphyritic granite are similar to the adakitic rock,showing high SiO2(70.94%-72.59%),Al2O3(15.11%-16.26%) and low MgO (0.56%-0.68%),high Sr (421×10-6-564×10-6) and low Y (7.50×10-6-14.57×10-6),Yb (0.76×10-6-1.30×10-6),negligible Eu anomalies (average 0.75),depletion of HFSE,enrichment of LREE and LILE,high La/Yb (26.1-46.4) and Sr/Y (36.9-67.1). (2) Porphyritic granite has(87Sr/86Sr)i=0.708 38-0.708 44,(143Nd/144Nd)i=0.512 22-0.512 23,εNd(t)=-5.6——5.5 and TDM2=1.35-1.36 Ga,indicating they may have derived from underplating thickened lower crust (Mesoproterozoic) remelting. (3) Temperatures from the concentration of Zr in whole-rock and Ti in zircon are 795±12℃ (σ) and 690±21℃ (σ),respectively,reflecting their magmatic hydrothermal system experienced partial melting under near-water-saturated conditions. (4) The ratio Ce4+/Ce3+ (174-621,average 383) of zircons from porphyritic granite reflect a high oxygen fugacity environment when their magmatic-hydrothermal system formed. (5) S-Pb isotopic compositions of metal sulfide suggest ore-forming materials belong to crust-mantle mixed source type dominated by deep crust source. (6) The Luokuidong porphyry Mo deposit is preliminarily considered belonging to Endako type porphyry Mo deposit after comparison in chronology,mineralogy,geochemistry and forming environment,respectively.

       

    • loading
    • Atherton, M.P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0
      Audétat, A., Li, W. T., 2017. The Genesis of Climax-Type Porphyry Mo Deposits: Insights from Fluid Inclusions and Melt Inclusions. Ore Geology Reviews, 88: 436-460. https://doi.org/10.1016/j.oregeorev.2017.05.018
      Ballard, J.R., Palin, M.J., Campbell, I.H., 2002. Relative Oxidation States of Magmas Inferred from Ce(IV)/Ce(III) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364. https://doi.org/10.1007/s00410-002-0402-5
      Bao, Z.W., Zhao, Z.H., Xiong, X.L., et al., 2000.Geochemistry of Ejinao Alkali Syenite and Its Geodynamic Significance.Geochimica, 29(5):462-468(in Chinese with English abstract).
      Beard, J.S., Lofgren, G.E., 1989. Effect of Water on the Composition of Partial Melts of Greenstone and Amphibolite. Science, 244(4901): 195-197. https://doi.org/10.1126/science.244.4901.195
      Beard, J.S., Lofgren, G.E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6. 9 kb. Journal of Petrology, 32(2): 365-401. https://doi.org/10.1093/petrology/32.2.365
      Brooks, C.K., Tegner, C., Stein, H., et al., 2004. Re-Os and 40Ar/39Ar Ages of Porphyry Molybdenum Deposits in the East Greenland Volcanic-Rifted Margin. Economic Geology, 99(6): 1215-1222. https://doi.org/10.2113/gsecongeo.99.6.1215
      Cai, J.X., Wu, C.J., Xu, D.R., et al., 2017. Structural Analysis of the Baolun Gold Deposit, Hainan Island, South China: Implications for Metallogeny. Ore Geology Reviews, 89: 253-269. https://doi.org/10.1016/j.oregeorev.2017.06.005
      Cao, C., Shen, P., 2018.Advances and Problems in Study of Porphyry Molybdenum Deposits.Geological Review, 64(2):477-497(in Chinese with English abstract).
      Castillo, P.R., Janney, P.E., Solidum, R.U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
      Chaussidon, M., Lorand, J.P., 1990. Sulphur Isotope Composition of Orogenic Spinel Lherzolite Massifs from Ariege (North-Eastern Pyrenees, France): An Ion Microprobe Study. Geochimica et Cosmochimica Acta, 54(10): 2835-2846. https://doi.org/10.1016/0016-7037(90)90018-g
      Chen, L., Zhao, Z.F., Zheng, Y.F., 2014. Origin of Andesitic Rocks: Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China. Lithos, 190-191(2): 220-239. https://doi.org/10.1016/j.lithos.2013.12.011
      Chen, M.L., Lv, Z.Y., Ma, C.Q., et al., 2015. Re-Os Isotopic Dating and Geological Implications of Shimenshan Mo Polymetallic Deposit in Hainan Island. Mineral Resources and Geology, 61(4):546-551(in Chinese with English abstract).
      Chen, Y.J., Pirajno, F., Li, N., et al., 2017. Molybdenum Deposits in China. Ore Geology Reviews, 81: 401-404. https://doi.org/10.1016/j.oregeorev.2016.11.002
      Chung, S.L., Liu, D. Y., Ji, J.Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021-1024. https://doi.org/10.1130/g19796.1
      Condie, K.C., 2005. TTGs and Adakites: Are they Both Slab Melts?. Lithos, 80(1-4): 33-44. https://doi.org/10.1016/j.lithos.2003.11.001
      Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
      Defant, M.J., Kepezhinskas, P., Defant, M.J., et al., 2002. Adakites:SomeVariations on a Theme. Acta Petrologica Sinica, 18(2):129-142.
      DePaolo, D.J., Wasserburg, G.J., 1979. Petrogenetic Mixing Models and Nd-Sr Isotopic Patterns. Geochimica et Cosmochimica Acta, 43(4): 615-627. https://doi.org/10.1016/0016-7037(79)90169-8
      Ferry, J.M., Watson, E.B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      Fu, W.W., Xu, D.R., Fu, Y.R., et al. 2013. Molybdenite Re-Os Isotopic Dating Of Hongmenling Mo-W Deposit in Hainan Province and Its Geological Implications. Journal of East China Institute of Technology(Natural Science), 36(2):135-142(in Chinese with English abstract).
      Fu, W.W., Xu, D.R., Wu, C.J., et al. 2014. LA-ICP-MS Zircon U-Pb Dating of Syenogranites Hosting Gaotongling Mo Deposit in Hainan Province:Implications for Metallogenesis. Mineral Deposits, 33(2):419-427(in Chinese with English abstract).
      Gao, S., Ducea, M.N., Jin, Z.M., et al., 1998.Lower Crustal Delamination and Evolutionof Continental Crust.Geological Journal of China Universities, 4(3):241-249(in Chinese with English abstract).
      Gao, J., Klemd, R., Long, L. L., et al., 2009. Adakitic Signature Formed by Fractional Crystallization: An Interpretation for the Neo-Proterozoic Meta-Plagiogranites of the NE Jiangxi Ophiolitic Mélange Belt, South China. Lithos, 110(1-4): 277-293. https://doi.org/10.1016/j.lithos.2009.01.009
      Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
      Guo, F., Nakamuru, E., Fan, W., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China. Journal of Petrology, 48(4): 661-692. https://doi.org/10.1093/petrology/egl077
      Harrison, T.M., Watson, E.B., Aikman, A.B., 2007. Temperature Spectra of Zircon Crystallization in Plutonic Rocks. Geology, 35(7): 635-638. https://doi.org/10.1130/g23505a.1
      Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. https://doi.org/10.1016/s0012-821x(04)00007-x
      Hou, Z.Q., Mo, X.X., Gao, Y.F., et al., 2003.Adakite, a Possible Host Rock for Porphyry Copper Deposits:Case Studies of Porphyry Copper Belts in Tibetan Plateau and in Northern Chile.Mineral Deposits, 22(1):1-12(in Chinese with English abstract).
      Hou, Z.Q., Pan, X.F., Yang, Z.M., et al., 2007.Porphyry Cu-(Mo-Au) Deposits no Related to Oceanic-Slab Subduction:Examples from Chinese Porphyry Deposits in Continental Settings.Geoscience, 21(2):332-351(in Chinese with English abstract).
      Hsü, K.J., Li, J. L., Chen, H. H., et al., 1990. Tectonics of South China: Key to Understanding West Pacific Geology. Tectonophysics, 183(1-4): 9-39. https://doi.org/10.1016/0040-1951(90)90186-c
      Hu, J., Xu, D.M., Zhang, K., et al., 2017. LA-ICP-MS Zircon U-Pb and Molybdenite Re-Os Dating of Xincun Mo Ore Deposit in Hainan Province and Its Geological Significance. Mineral Deposits, 36(2):303-316(in Chinese with English abstract).
      Huang, F., Wang, D.H., Wang, C.H., et al., 2014.Resources Characteristics of Molybdenum Deposits and Their Regional Metallogeny in China.Acta Geologica Sinica, 88(12):2296-2314(in Chinese with English abstract).
      Jacobsen, S.B., Wasserburg, G.J., 1980. Sm-Nd Isotopic Evolution of Chondrites. Earth and Planetary Science Letters, 50(1): 139-155. https://doi.org/10.1016/0012-821X(80)90125-9
      Jia, X.H., Wang, J.Q., Tang, G.J., et al., 2010.Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Late Early Cretaceous Adakitic Intrusive Rocks in the Tunchang Area, Hainan Province.Geochimica, 39(6):497-519(in Chinese with English abstract).
      Kay, R.W., Kay, S.M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1-3): 177-189. https://doi.org/10.1016/0040-1951(93)90295-u
      König, S., Schuth, S., Münker, C., et al., 2007. The Role of Slab Melting in the Petrogenesis of High-Mg Andesites: Evidence from Simbo Volcano, Solomon Islands. Contributions to Mineralogy and Petrology, 153(1): 85-103. https://doi.org/10.1007/s00410-006-0136-x
      Li, J.W., Zhao, X.F., Zhou, M.F., et al., 2008. Origin of the Tongshankou Porphyry-Skarn Cu-Mo Deposit, Eastern Yangtze Craton, Eastern China: Geochronological, Geochemical, and Sr-Nd-Hf Isotopic Constraints. Mineralium Deposita, 43(3): 315-336. https://doi.org/10.1007/s00126-007-0161-3
      Li, N., Ulrich, T., Chen, Y.J., et al., 2012. Fluid Evolution of the Yuchiling Porphyry Mo Deposit, East Qinling, China. Ore Geology Reviews, 48: 442-459. https://doi.org/10.1016/j.oregeorev.2012.06.002
      Li, S.X., Chen, M.L., Yang, D.S., et al., 2014. The Molybdenite Re-Os Age and Analysis of Geodynamic Background in Hainan Island. Geology and Mineral Resources of South China, 30(3):272-279(in Chinese with English abstract).
      Li, X.H., 1997. Geochemistry of the Longsheng Ophiolite from the Southern Margin of Yangtze Craton, SE China. Geochemical Journal, 31(5): 323-337. https://doi.org/10.2343/geochemj.31.323
      Li, X.H., Zhou, H. W., Chung, S.L., et al., 2002. Geochemical and Sm-Nd Isotopic Characteristics of Metabasites from Central Hainan Island, South China and Their Tectonic Significance.The Island Arc, 11(3): 193-205. https://doi.org/10.1046/j.1440-1738.2002.00365.x
      Li, X.Y., Chi, G.X., Zhou, Y.Z., et al., 2017. Oxygen Fugacity of Yanshanian Granites in South China and Implications for Metallogeny. Ore Geology Reviews, 88: 690-701. https://doi.org/10.1016/j.oregeorev.2017.02.002
      Li, Z.X., Li, X.H., 2007. Formation of the 1300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
      Li, Y., Ling, M.X., Ding, X., et al., 2009.Adakites or Adakitic Rocks and Associated Metallogenesis in Eastern China.Geotectonica et Metallogenia, 33(3):448-464(in Chinese with English abstract).
      Liang, H.Y., Campbell, I.H., Allen, C., et al., 2006. Zircon Ce4+/Ce3+ Ratios and Ages for Yulong Ore-Bearing Porphyries in Eastern Tibet. Mineralium Deposita, 41(2): 152-159. https://doi.org/10.1007/s00126-005-0047-1
      Liang, X.R., Wei, G.J., Li, X.H., et al., 2003. Precise Measurement of 143Nd/144Nd and Sm/Nd Ratios Using Multiple-Collectors Inductively Coupled Plasma-Mass Spectrometer (MC-ICPMS). Geochimica, 32(1):91-96(in Chinese with English abstract).
      Liao, X.J., Wang, P.G., Qin, H.C., et al., 2008.Geology, Geochemistry and Ore-Forming Age of the Gaotongling Molybdenum Deposit, Tunchang Area, Hainan, China.Geological Bulletin of China, 27(4):560-570(in Chinese with English abstract).
      Ludington, S., Plumlee, G.S., 2009. Climax-Type Porphyry Molybdenum Deposits. US Geological Survey, Virginia.
      Lugmair, G.W., Marti, K., 1978. Lunar Initial 143Nd/144Nd: Differential Evolution of the Lunar Crust and Mantle. Earth and Planetary Science Letters, 39(3): 349-357. https://doi.org/10.1016/0012-821x(78)90021-3
      Ma, D.Q., Huang, X.D., Chen, Z.P., et al., 1997. New Advanced in the Study of the Baoban Group in Hainan Province. Regional Geology of China, 16(2):130-136(in Chinese with English abstract).
      Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4): 581-593. https://doi.org/10.1016/j.epsl.2005.12.034
      Mao, J.W., Pirajno, F., Cook, N., 2011. Mesozoic Metallogeny in East China and Corresponding Geodynamic Settings-An Introduction to the Special Issue. Ore Geology Reviews, 43(1): 1-7. https://doi.org/10.1016/j.oregeorev.2011.09.003
      Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004.Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China.Earth Science Frontiers, 11(1):45-55(in Chinese with English abstract).
      Martin, H., 1993. The Mechanisms of Petrogenesis of the Archaean Continental Crust-Comparison with Modern Processes. Lithos, 30(3-4): 373-388. https://doi.org/10.1016/0024-4937(93)90046-f
      Metcalfe, I., 1996. Gondwanaland Dispersion, Asian Accretion and Evolution of Eastern Tethys.Australian Journal of Earth Sciences, 43(6): 605-623. https://doi.org/10.1080/08120099608728282
      Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. https://doi.org/10.1016/j.jseaes.2012.12.020
      Middlemost, E.A.K., 1985. Magmas and Magmatic Rocks. Longman, London.
      Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. https://doi.org/10.1130/0091-7613(2003)031<0529: hacgio>2.0.co; 2
      Mungall, J.E., 2002. Roasting the Mantle: Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits. Geology, 30(10): 915-918. <0915: rtmsma>2.0.co;2
      Mutschler, F.E., Wright, E.G., Ludington, S., et al., 1981. Granite Molybdenite Systems. Economic Geology, 76(4): 874-897. https://doi.org/10.2113/gsecongeo.76.4.874
      Ohmoto, H., 1986. Stable Isotope Geochemistry of Ore Deposits. Reviews in Mineralogy & Geochemistry, 16(6):491-559.
      Pearce, J.A., Peate, D.W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
      Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      Qin, K.Z., Li, G.M., Zhao, J.X., et al., 2008.Discovery of Sharang Large-Scale Porphyry Molybdenum Deposit, the First Single Mo Deposit in Tibet and Its Significance.Geology in China, 35(6):1101-1112(in Chinese with English abstract).
      Qu, X. M., Hou, Z.Q., Li, Y.G., 2004. Melt Components Derived from a Subducted Slab in Late Orogenic Ore-Bearing Porphyries in the Gangdese Copper Belt, Southern Tibetan Plateau. Lithos, 74(3-4): 131-148. https://doi.org/10.1016/j.lithos.2004.01.003
      Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
      Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites. Precambrian Research, 51(1-4): 1-25. https://doi.org/10.1016/0301-9268(91)90092-o
      Rushmer, T., 1991. Partial Melting of Two Amphibolites: Contrasting Experimental Results under Fluid-Absent Conditions. Contributions to Mineralogy and Petrology, 107(1): 41-59. https://doi.org/10.1007/bf00311184
      Schiano, P., Monzier, M., Eissen, J.P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410-009-0478-2
      Sen, C., Dunn, T., 1994. Dehydration Melting of a Basaltic Composition Amphibolite at 1.5 and 2.0 GPa: Implications for the Origin of Adakites. Contributions to Mineralogy and Petrology, 117(4): 394-409. https://doi.org/10.1007/bf00307273
      Shan, H.Z., 1990.Study on the Gold-Bearing Stratigraphic Age in Baoban Region, Hainan Province.Acta Scifntiarum Naturalium Universitatis Sunyaatseni, 29(2):71-77(in Chinese with English abstract).
      Shen, P., Hattori, K., Pan, H. D., et al., 2015. Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace-Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt. Economic Geology, 110(7): 1861-1878. https://doi.org/10.2113/econgeo.110.7.1861
      Shinohara, H., Kazahaya, K., Lowenstern, J.B., 1995. Volatile Transport in a Convecting Magma Column: Implications for Porphyry Mo Mineralization. Geology, 23(12): 1091. https://doi.org/10.1130/0091-7613(1995)023<1091: vtiacm>2.3.co; 2
      Simon, A.C., Ripley, E.M., 2011. The Role of Magmatic Sulfur in the Formation of Ore Deposits. Reviews in Mineralogy and Geochemistry, 73(1): 513-578. https://doi.org/10.2138/rmg.2011.73.16
      Sinclair, W.D., 2007. Porphyry Deposits. In:Goodfellow, W.D., ed., Mineral Deposits of Canada:A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, 5:223-243.
      Stacey, J.S., Kramers, J.D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26(2): 207-221. https://doi.org/10.1016/0012-821x(75)90088-6
      Steiger, R.H., J?ger, E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362. https://doi.org/10.1016/0012-821x(77)90060-7
      Streck, M.J., Leeman, W.P., Chesley, J., 2007. High-Magnesian Andesite from Mount Shasta: A Product of Magma Mixing and Contamination, not a Primitive Mantle Melt. Geology, 35(4): 351-354. https://doi.org/10.1130/g23286a.1
      Sun, S.S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, W.D., Arculus, R.J., Kamenetsky, V.S., et al., 2004. Release of Gold-Bearing Fluids in Convergent Margin Magmas Prompted by Magnetite Crystallization. Nature, 431(7011): 975-978. https://doi.org/10.1038/nature02972
      Sun, W.D., Huang, R.F., Li, H., et al., 2015. Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews, 65: 97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004
      Sun, Y., Liu, J.M., Zeng, Q.D., et al., 2012.An Approach to the Metallogenic Mechanism of Porphyry Copper (Molybdenum) Deposits and Porphyry Molybdenum (Copper) Deposits:Influence of Evolving Processes of Ore-Forming Fluids and Tectonic Settings.Earth Science Frontiers, 19(6):179-193(in Chinese with English abstract).
      Tang, L.M., Chen, H.L., Dong, C.W., et al., 2010.Triassic Neutral and Basic Rocks in Hainan Island, Geochemistry and Their Geological Signinficance.Chinese Journal of Geology, 45(4):1139-1155(in Chinese with English abstract).
      Thompson, J.F.H., Sillitoe, R.H., Baker, T., et al., 1999. Intrusion-Related Gold Deposits Associated with Tungsten-Tin Provinces. Mineralium Deposita, 34(4): 323-334. https://doi.org/10.1007/s001260050207
      Wang, G.G., Ni, P., Zhao, C., et al., 2017a. A Combined Fluid Inclusion and Isotopic Geochemistry Study of the Zhilingtou Mo Deposit, South China: Implications for Ore Genesis and Metallogenic Setting. Ore Geology Reviews, 81: 884-897 http://dx.doi.org/10.1016/j.oregeorev.2015.11.023
      Wang, G. R., Wu, G., Xu, L. Q., et al., 2017b. Molybdenite Re-Os Age, H-O-C-S-Pb Isotopes, and Fluid Inclusion Study of the Caosiyao Porphyry Mo Deposit in Inner Mongolia, China. Ore Geology Reviews, 81: 728-744. https://doi.org/10.1016/j.oregeorev.2016.07.008
      Wang, G.G., Ni, P., Yu, W., et al., 2014. Petrogenesis of Early Cretaceous Post-Collisional Granitoids at Shapinggou, Dabie Orogen: Implications for Crustal Architecture and Porphyry Mo Mineralization. Lithos, 184-187: 393-415. https://doi.org/10.1016/j.lithos.2013.11.009
      Wang, Q., Li, X.H., Jia, X.H., et al., 2012. Late Early Cretaceous Adakitic Granitoids and Associated Magnesian and Potassium-Rich Mafic Enclaves and Dikes in the Tunchang-Fengmu Area, Hainan Province (South China): Partial Melting of Lower Crust and Mantle, and Magma Hybridization. Chemical Geology, 328: 222-243. https://doi.org/10.1016/j.chemgeo.2012.04.029
      Wang, Q., McDermott, F., Xu, J.F., et al., 2005. Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intracontinental Setting. Geology, 33(6): 465. https://doi.org/10.1130/g21522.1
      Wang, Q., Wyman, D.A., Xu, J.F., et al., 2007. Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China: Implications for Cu-Au Mineralization.The Journal of Geology, 115(2): 149-161. https://doi.org/10.1086/510643
      Wang, Q., Xu, J.F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070
      Wang, G.J., Liu, J., Cao, Y.L., et al., 2010.Metallogenic Characteristics of Luokuidong Porphyry Molybdenum Deposit in the Baoting County, Hainan Province.Geotechnical Engineering World, 1(5):453-457(in Chinese with English abstract).
      Wang, Q., Xu, J.F., Zhao, Z.H., et al., 2001a.The Summary and Comment on Research on a New Kind of Igneous Rock-Adakite.Advance in Earth Sciences, 16(2):201-208(in Chinese with English abstract).
      Wang, Q., Zhao, Z.H., Xiong, X.L., et al., 2001b.Melting of the Underplated Basaltic Lower Crust:Evidence from the Shaxi Adakitic Sodic Quartz Diorite-Porphyrites, Anhui Province, China.Geochimica, 30(4):353-362(in Chinese with English abstract).
      Wang, Q., Zhao, Z.H., Xiong, X.L., et al., 2002.Ascertainment of the Shaoxing Enping Alkali Rich Intrusive Rock Zone and Preliminary Discussion on Its Geodynamic Implications.Geochimica, 31(5):433-442(in Chinese with English abstract).
      Wang, Y., Zhang, Q., Qian, Q., et al., 2000.Adakite:Geochemical Characteristics and Tectonic Significances.Scientia Geologica Sinica, 35(2):251-256(in Chinese with English abstract).
      Wang, Y.W., Wang, J.B., 2007.Magma-Mixing Genesis of Quartz Monzodiorite in the Weiya Xinjiang.Acta Petrologica Sinica, 23(4):733-746(in Chinese with English abstract).
      Watson, E.B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      Watson, E. B., Harrison, T.M., 2005. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science, 308(5723): 841-844. https://doi.org/10.1126/science.1110873
      Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
      Wei, G.J., Liang, X.R., Li, X.H., et al., 2002. Precise Measurement of Sr Isotopic Composition of Liquid and Solid Base Using (LP)MC-ICPMS. Geochimica, 31(3):295-299(in Chinese with English abstract).
      Westra, G., Keith, S.B., 1981. Classification and Genesis of Stockwork Molybdenum Deposits. Economic Geology, 76(4): 844-873. https://doi.org/10.2113/gsecongeo.77.5.1252
      Whalen, J.B., Anderson, R.G., Struik, L.C., et al., 2001. Geochemistry and Nd Isotopes of the Fran?ois Lake Plutonic Suite, Endako Batholith: Host and Progenitor to the Endako Molybdenum Camp, Central British Columbia. Canadian Journal of Earth Sciences, 38(4): 603-618. https://doi.org/10.1139/e00-080
      Winther, K.T., Newton, R.C., 1991. Experimental Melting Of Hydrous Low-K Tholeiite:Evidence on the Origin of Archean Cratons. Bulletin of the Geological Society of Denmark, 39(5):2932-2945.
      Wolf, M.B., Wyllie, P.J., 1991. Dehydration-Melting of Solid Amphibolite at 10 kbar: Textural Development, Liquid Interconnectivity and Applications to the Segregation of Magmas. Mineralogy and Petrology, 44(3-4): 151-179. https://doi.org/10.1007/bf01166961
      Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6):1217-1238(in Chinese with English abstract).
      Xi, A.H., Ge, Y.H., Liu, J., et al., 2018.Discovery of Adakite in Tieli Luming-Molybdenum Mine, Heilongjiang Province and Its Geological Implications.Acta Petrologica Sinica, 34(3):719-732(in Chinese with English abstract).
      Xiong, X.L., 2006. Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite. Geology, 34(11): 945-948. https://doi.org/10.1130/g22711a.1
      Xu, D.R., Kusiak, M.A., Wang, Z.L., et al., 2015. Microstructural Observation and Chemical Dating on Monazite from the Shilu Group, Hainan Province of South China: Implications for Origin and Evolution of the Shilu Fe-Co-Cu Ore District. Lithos, 216-217: 158-177. https://doi.org/10.1016/j.lithos.2014.12.017
      Xu, D.R., Wang, Z.L., Cai, J.X., et al., 2013. Geological Characteristics and Metallogenesis of the Shilu Fe-Ore Deposit in Hainan Province, South China. Ore Geology Reviews, 53: 318-342. https://doi.org/10.1016/j.oregeorev.2013.01.015
      Xu, D.R., Wang, Z.L., Wu, C.J., et al., 2016. Mesozoic Gold Mineralization in Hainan Province of South China: Genetic Types, Geological Characteristics and Geodynamic Settings. Journal of Asian Earth Sciences, 137: 80-108. https://doi.org/10.1016/j.jseaes.2016.09.004
      Xu, J.F., Shinjo, R., Defant, M.J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust?. Geology, 30(12): 1111-1114. https://doi.org/10.1130/0091-7613(2002)030<1111: oomair>2.0.co; 2
      Xu, J.F., Wu, J.B., Wang, Q., et al., 2014. Research Advances of Adakites and Adakitic Rocks in China. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1):6-13(in Chinese with English abstract).
      Xu, D.R., Liang, X.Q., Tang, H.F., et al., 2000.Geochemical Characteristics of Metamorphic Basic Volcanics from the Baoban Group, Western Hainan and Its Tectonic Implications.Geotectonica et Metallogenia, 24(4):303-313(in Chinese with English abstract).
      Xu, D.R., Wu, C.J., Hu, G.C., et al., 2016. Late Mesozoic Molybdenum Mineralization on Hainan Island, South China: Geochemistry, Geochronology and Geodynamic Setting. Ore Geology Reviews, 72: 402-433. https://doi.org/10.1016/j.oregeorev.2015.07.023
      Xu, W.G., Fan, H.R., Hu, F.F., et al., 2011.Ore-Forming Fluids of the Oxidized and Reduced Porphyry Deposits.Earth Science Frontiers, 18(5):103-120(in Chinese with English abstract).
      Yang, Z., Jiang, H., Yang, M.G., et al., 2017.Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance.Earth Science, 42(3):339-356(in Chinese with English abstract).
      Yang, Z.M., Hou, Z.Q., 2009.Porphyry Cu Deposits in Collisional Orogen Setting:A Preliminary Genetic Model.Mineral Deposits, 28(5):515-538(in Chinese with English abstract).
      Yang, Z.M., Hou, Z.Q., Yang, Z.S., et al., 2008.Genesis of Porphyries and Tectonic Controls on the Narigongma Porphyry Mo(-Cu) Deposit, Southern Qinghai.Acta Petrologica Sinica, 24(3):489-502(in Chinese with English abstract).
      Ye, T.Z., Wei, C.S., Wang, Y.W., et al., 2017.. Metallogenic Prognosis Theries and Methods in Exploration Areas(Pandect). Geological Publishing House, Beijing, 406(in Chinese).
      Zartman, R.E., Doe, B.R., 1981. Plumbotectonics-The Model. Tectonophysics, 75(1-2): 135-162. https://doi.org/10.1016/0040-1951(81)90213-4
      Zeng, Q.D., Liu, J.M., Qin, K.Z., et al., 2013. Types, Characteristics, and Time-Space Distribution of Molybdenum Deposits in China. International Geology Review, 55(11): 1311-1358. https://doi.org/10.1080/00206814.2013.774195
      Zhang, H., Li, C. Y., Yang, X.Y., et al., 2014. Shapinggou: The Largest Climax-Type Porphyry Mo Deposit in China. International Geology Review, 56(3): 313-331. https://doi.org/10.1080/00206814.2013.855363
      Zhang, Q., Qian, Q., Wang, E.Q., et al., 2001.An East China Plateau in Mid-Late Yanshanian Period:Implication from Adakites.Scientia Geologica Sinica, 36(2):248-255(in Chinese with English abstract).
      Zhang, Q., Wang, Y., Liu, W., et al., 2002.Adakite:Its Characteristics and Implications.Regional Geology of China, 21(7):431-435(in Chinese with English abstract).
      Zhao, Z.H., 2010.Trace Element Geochemistry of Accessory Minerals and Its Applications in Petrogenesis and Metallogenesis.Earth Science Frontiers, 17(1):267-286(in Chinese with English abstract).
      Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Significance of Rongga Porphyry Mo Deposit in the Bangong-Nujiang Metallogenic Belt, Tibet.Earth Science, 42(9):1441-1453(in Chinese with English abstract).
      Zhou, T.C., Zeng, Q.D., Chu, S.X., et al., 2018. Magmatic Oxygen Fugacities of Porphyry Mo Deposits in the East Xing'an-Mongolian Orogenic Belt (NE China) with Metallogenic Implications. Journal of Asian Earth Sciences, 165: 145-159. https://doi.org/10.1016/j.jseaes.2018.04.004
      Zhou, X.M., Li, W.X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3-4): 269-287. https://doi.org/10.1016/s0040-1951(00)00120-7
      Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.1007/s00254-006-0175-7
      Zhou, Y., Liang, X. Q., Kr?ner, A., et al., 2015. Late Cretaceous Lithospheric Extension in SE China: Constraints from Volcanic Rocks in Hainan Island. Lithos, 232: 100-110.https://doi.org/10.1016/j.lithos.2015.06.028
      Zhou, Y., Liang, X.Q., Liang, X.R., et al., 2015.Geochronology and Geochemistry of Cretaceous Volcanic Rocks from Liuluo Formation in Hainan Island and Their Tectonic Implications.Geotectonica et Metallogenia, 39(5):903-918(in Chinese with English abstract).
      Zhu, Y.H., Yu, L.L, Yu, D.S., et al., 2017. LA-ICP-MS Zircon U-Pb Dating, Hf Isotopic Composition and Ce4+/Ce3+ Characteristics of Gaotongling Molybdenum Ore Deposit in Hainan Province and Their Implications for Metallogeny. Mineral Deposits, 36(1):185-199(in Chinese with English abstract).
      Zhu, Y.H., Shan, Q., Wang, L.X., et al., 2018.Age of Host-Rocks and Mineralization from the Luokuidong Molybdenum Ore Deposit in Hainan Island:Implication for Deposit Genesis.Geochimica, 47(3):268-287(in Chinese with English abstract).
      包志伟, 赵振华, 熊小林, 等, 2000.广东恶鸡脑碱性正长岩的地球化学及其地球动力学意义.地球化学, 29(5):462-468.
      曹冲, 申萍, 2018.斑岩型钼矿床研究进展与问题.地质论评, 64(2):477-497.
      陈沐龙, 吕昭英, 马昌前, 等, 2015.海南岛石门山钼多金属矿床的Re-Os同位素定年及地质意义.矿产与地质, 61(4): 546-551.
      付王伟, 许德如, 傅杨荣, 等, 2013.海南省红门岭钼钨矿床辉钼矿Re-Os同位素定年及地质意义.东华理工大学学报(自然科学版), 36(2): 135-142.
      付王伟, 许德如, 吴传军, 等, 2014.海南省高通岭钼矿床赋矿岩体LA-ICP-MS锆石U-Pb定年及成矿意义.矿床地质, 33(2): 419-427.
      高山, Ducea, M.N., 金振民, 等, 1998.下地壳拆沉作用及大陆地壳演化.高校地质学报, 4(3): 241-249.
      侯增谦, 莫宣学, 高永丰, 等, 2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例.矿床地质, 22(1):1-12.
      侯增谦, 潘小菲, 杨志明, 等, 2007.初论大陆环境斑岩铜矿.现代地质, 21(2):332-351.
      胡军, 徐德明, 张鲲, 等, 2017.海南省新村钼矿床LA-ICP-MS锆石U-Pb和辉钼矿Re-Os年龄及其地质意义.矿床地质, 36(2): 303-316.
      黄凡, 王登红, 王成辉, 等, 2014.中国钼矿资源特征及其成矿规律概要.地质学报, 88(12):2296-2314.
      贾小辉, 王强, 唐功建, 等, 2010.海南屯昌早白垩世晚期埃达克质侵入岩的锆石U-Pb年代学、地球化学与岩石成因.地球化学, 39(6):497-519.
      李孙雄, 陈沐龙, 杨东生, 等, 2014.海南岛钼矿床Re-Os年龄及其成矿地球动力学背景探讨.华南地质与矿产, 30(3): 272-279.
      李印, 凌明星, 丁兴, 等, 2009.中国东部埃达克岩及成矿作用.大地构造与成矿学, 33(3):448-464.
      梁细荣, 韦刚健, 李献华, 等, 2003.利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值.地球化学, 32(1): 91-96.
      廖香俊, 王平安, 覃海灿, 等, 2008.海南屯昌地区高通岭钼矿床的地质、地球化学特征及成矿时代.地质通报, 27(4):560-570.
      马大铨, 黄香定, 陈哲培, 等, 1997.海南省抱板群研究的新进展.地质通报, 16(2): 130-136.
      毛景文, 谢桂青, 李晓峰, 等, 2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 11(1):45-55.
      秦克章, 李光明, 赵俊兴, 等, 2008.西藏首例独立钼矿——冈底斯沙让大型斑岩钼矿的发现及其意义.中国地质, 35(6):1101-1112.
      单惠珍, 1990.海南抱板地区金矿地层时代归属的研究.中山大学学报(自然科学版), 29(2):71-77.
      孙燕, 刘建明, 曾庆栋, 等, 2012.斑岩型铜(钼)矿床和斑岩型钼(铜)矿床的形成机制探讨:流体演化及构造背景的影响.地学前缘, 19(6):179-193.
      唐立梅, 陈汉林, 董传万, 等, 2010.海南岛三叠纪中基性岩的年代学、地球化学及其她质竟义.地质科学, 45(4):1139-1155.
      王国君, 刘君, 曹玉莲, 等, 2010.海南罗葵洞斑岩型钼矿地质特征及矿床成因.矿产勘查, 1(5):453-457.
      王强, 许继锋, 赵振华, 等, 2001a.一种新的火成岩——埃达克岩的研究综述.地球科学进展, 16(2):201-208.
      王强, 赵振华, 熊小林, 等, 2001b.底侵玄武质下地壳的熔融:来自安徽沙溪adakite质富钠石英闪长玢岩的证据.地球化学, 30(4):353-362.
      王强, 赵振华, 熊小林, 等, 2002.华南绍兴-恩平富碱侵入岩带的厘定及其动力学意义初探.地球化学, 31(5):433-442.
      王焰, 张旗, 钱青, 等, 2000.埃达克岩(adakite)的地球化学特征及其构造意义.地质科学, 35(2):251-256.
      王玉往, 王京彬, 2007.新疆尾亚地区石英二长闪长岩的岩浆混合成因.岩石学报, 23(4):733-746.
      韦刚健, 梁细荣, 李献华, 等, 2002. (LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成.地球化学, 31(3): 295-299.
      吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6): 1217-1238.
      郗爱华, 葛玉辉, 刘珏, 等, 2018.黑龙江铁力鹿鸣斑岩型钼矿床埃达克岩的发现及其地质意义.岩石学报, 34(3):719-732.
      徐文刚, 范宏瑞, 胡芳芳, 等, 2011.氧化性和还原性斑岩型矿床流体成矿特征分析.地学前缘, 18(5):103-120.
      许德如, 梁新权, 唐红峰, 等, 2000.琼西抱板群变质基性火山岩的地球化学特征及其大地构造意义.大地构造与成矿学, 24(4):303-313.
      许继峰, 邬建斌, 王强, 等, 2014.埃达克岩与埃达克质岩在中国的研究进展.矿物岩石地球化学通报, 33(1):6-13.
      杨震, 姜华, 杨明国, 等, 2017.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地球科学, 42(3):339-356.
      杨志明, 侯增谦, 2009.初论碰撞造山环境斑岩铜矿成矿模型.矿床地质, 28(5):515-538.
      杨志明, 侯增谦, 杨竹森, 等, 2008.青海纳日贡玛斑岩钼(铜)矿床:岩石成因及构造控制.岩石学报, 24(3):489-502.
      叶天竺, 韦昌山, 王玉往, 等, 2017.勘查区找矿预测理论与方法(各论).地质出版社, 北京.
      张旗, 钱青, 王二七, 等, 2001.燕山中晚期的中国东部高原:埃达克岩的启示.地质科学, 36(2):248-255.
      张旗, 王焰, 刘伟, 等, 2002.埃达克岩的特征及其意义.地质通报, 21(7):431-435.
      赵振华, 2010.副矿物微量元素地球化学特征在成岩成矿作用研究中的应用.地学前缘, 17(1):267-286.
      郑有业, 次琼, 吴松, 等, 2017.西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453.
      周云, 梁新权, 梁细荣, 等, 2015.海南白垩纪六罗村组火山岩的年代学、地球化学特征及其大地构造意义.大地构造与成矿学, 39(5):903-918.
      朱昱桦, 于亮亮, 于得水, 等, 2017.海南岛高通岭钼矿床赋矿岩体LA-ICP-MS锆石U-Pb年龄、Hf同位素和Ce4+/Ce3+特征.矿床地质, 36(1): 185-199.
      朱昱桦, 单强, 王历星, 等, 2018.海南岛罗葵洞钼矿床成岩成矿时代及矿床成因探讨.地球化学, 47(3):268-287.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(5)

      Article views (2685) PDF downloads(84) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return