Citation: | Zhu Yuhua, Chen Genwen, Shan Qiang, Xu Deru, Wang Lixing, He Miaoling, Lan Yongwen, Sun Jun, 2020. Geochemical Characteristics and Ore-Forming Materials of Luokuidong Molybdenum Ore Deposit in Hainan Island. Earth Science, 45(4): 1187-1212. doi: 10.3799/dqkx.2019.101 |
Atherton, M.P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0
|
Audétat, A., Li, W. T., 2017. The Genesis of Climax-Type Porphyry Mo Deposits: Insights from Fluid Inclusions and Melt Inclusions. Ore Geology Reviews, 88: 436-460. https://doi.org/10.1016/j.oregeorev.2017.05.018
|
Ballard, J.R., Palin, M.J., Campbell, I.H., 2002. Relative Oxidation States of Magmas Inferred from Ce(IV)/Ce(III) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364. https://doi.org/10.1007/s00410-002-0402-5
|
Bao, Z.W., Zhao, Z.H., Xiong, X.L., et al., 2000.Geochemistry of Ejinao Alkali Syenite and Its Geodynamic Significance.Geochimica, 29(5):462-468(in Chinese with English abstract).
|
Beard, J.S., Lofgren, G.E., 1989. Effect of Water on the Composition of Partial Melts of Greenstone and Amphibolite. Science, 244(4901): 195-197. https://doi.org/10.1126/science.244.4901.195
|
Beard, J.S., Lofgren, G.E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6. 9 kb. Journal of Petrology, 32(2): 365-401. https://doi.org/10.1093/petrology/32.2.365
|
Brooks, C.K., Tegner, C., Stein, H., et al., 2004. Re-Os and 40Ar/39Ar Ages of Porphyry Molybdenum Deposits in the East Greenland Volcanic-Rifted Margin. Economic Geology, 99(6): 1215-1222. https://doi.org/10.2113/gsecongeo.99.6.1215
|
Cai, J.X., Wu, C.J., Xu, D.R., et al., 2017. Structural Analysis of the Baolun Gold Deposit, Hainan Island, South China: Implications for Metallogeny. Ore Geology Reviews, 89: 253-269. https://doi.org/10.1016/j.oregeorev.2017.06.005
|
Cao, C., Shen, P., 2018.Advances and Problems in Study of Porphyry Molybdenum Deposits.Geological Review, 64(2):477-497(in Chinese with English abstract).
|
Castillo, P.R., Janney, P.E., Solidum, R.U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
|
Chaussidon, M., Lorand, J.P., 1990. Sulphur Isotope Composition of Orogenic Spinel Lherzolite Massifs from Ariege (North-Eastern Pyrenees, France): An Ion Microprobe Study. Geochimica et Cosmochimica Acta, 54(10): 2835-2846. https://doi.org/10.1016/0016-7037(90)90018-g
|
Chen, L., Zhao, Z.F., Zheng, Y.F., 2014. Origin of Andesitic Rocks: Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China. Lithos, 190-191(2): 220-239. https://doi.org/10.1016/j.lithos.2013.12.011
|
Chen, M.L., Lv, Z.Y., Ma, C.Q., et al., 2015. Re-Os Isotopic Dating and Geological Implications of Shimenshan Mo Polymetallic Deposit in Hainan Island. Mineral Resources and Geology, 61(4):546-551(in Chinese with English abstract).
|
Chen, Y.J., Pirajno, F., Li, N., et al., 2017. Molybdenum Deposits in China. Ore Geology Reviews, 81: 401-404. https://doi.org/10.1016/j.oregeorev.2016.11.002
|
Chung, S.L., Liu, D. Y., Ji, J.Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021-1024. https://doi.org/10.1130/g19796.1
|
Condie, K.C., 2005. TTGs and Adakites: Are they Both Slab Melts?. Lithos, 80(1-4): 33-44. https://doi.org/10.1016/j.lithos.2003.11.001
|
Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
|
Defant, M.J., Kepezhinskas, P., Defant, M.J., et al., 2002. Adakites:SomeVariations on a Theme. Acta Petrologica Sinica, 18(2):129-142.
|
DePaolo, D.J., Wasserburg, G.J., 1979. Petrogenetic Mixing Models and Nd-Sr Isotopic Patterns. Geochimica et Cosmochimica Acta, 43(4): 615-627. https://doi.org/10.1016/0016-7037(79)90169-8
|
Ferry, J.M., Watson, E.B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
|
Fu, W.W., Xu, D.R., Fu, Y.R., et al. 2013. Molybdenite Re-Os Isotopic Dating Of Hongmenling Mo-W Deposit in Hainan Province and Its Geological Implications. Journal of East China Institute of Technology(Natural Science), 36(2):135-142(in Chinese with English abstract).
|
Fu, W.W., Xu, D.R., Wu, C.J., et al. 2014. LA-ICP-MS Zircon U-Pb Dating of Syenogranites Hosting Gaotongling Mo Deposit in Hainan Province:Implications for Metallogenesis. Mineral Deposits, 33(2):419-427(in Chinese with English abstract).
|
Gao, S., Ducea, M.N., Jin, Z.M., et al., 1998.Lower Crustal Delamination and Evolutionof Continental Crust.Geological Journal of China Universities, 4(3):241-249(in Chinese with English abstract).
|
Gao, J., Klemd, R., Long, L. L., et al., 2009. Adakitic Signature Formed by Fractional Crystallization: An Interpretation for the Neo-Proterozoic Meta-Plagiogranites of the NE Jiangxi Ophiolitic Mélange Belt, South China. Lithos, 110(1-4): 277-293. https://doi.org/10.1016/j.lithos.2009.01.009
|
Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
|
Guo, F., Nakamuru, E., Fan, W., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China. Journal of Petrology, 48(4): 661-692. https://doi.org/10.1093/petrology/egl077
|
Harrison, T.M., Watson, E.B., Aikman, A.B., 2007. Temperature Spectra of Zircon Crystallization in Plutonic Rocks. Geology, 35(7): 635-638. https://doi.org/10.1130/g23505a.1
|
Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. https://doi.org/10.1016/s0012-821x(04)00007-x
|
Hou, Z.Q., Mo, X.X., Gao, Y.F., et al., 2003.Adakite, a Possible Host Rock for Porphyry Copper Deposits:Case Studies of Porphyry Copper Belts in Tibetan Plateau and in Northern Chile.Mineral Deposits, 22(1):1-12(in Chinese with English abstract).
|
Hou, Z.Q., Pan, X.F., Yang, Z.M., et al., 2007.Porphyry Cu-(Mo-Au) Deposits no Related to Oceanic-Slab Subduction:Examples from Chinese Porphyry Deposits in Continental Settings.Geoscience, 21(2):332-351(in Chinese with English abstract).
|
Hsü, K.J., Li, J. L., Chen, H. H., et al., 1990. Tectonics of South China: Key to Understanding West Pacific Geology. Tectonophysics, 183(1-4): 9-39. https://doi.org/10.1016/0040-1951(90)90186-c
|
Hu, J., Xu, D.M., Zhang, K., et al., 2017. LA-ICP-MS Zircon U-Pb and Molybdenite Re-Os Dating of Xincun Mo Ore Deposit in Hainan Province and Its Geological Significance. Mineral Deposits, 36(2):303-316(in Chinese with English abstract).
|
Huang, F., Wang, D.H., Wang, C.H., et al., 2014.Resources Characteristics of Molybdenum Deposits and Their Regional Metallogeny in China.Acta Geologica Sinica, 88(12):2296-2314(in Chinese with English abstract).
|
Jacobsen, S.B., Wasserburg, G.J., 1980. Sm-Nd Isotopic Evolution of Chondrites. Earth and Planetary Science Letters, 50(1): 139-155. https://doi.org/10.1016/0012-821X(80)90125-9
|
Jia, X.H., Wang, J.Q., Tang, G.J., et al., 2010.Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Late Early Cretaceous Adakitic Intrusive Rocks in the Tunchang Area, Hainan Province.Geochimica, 39(6):497-519(in Chinese with English abstract).
|
Kay, R.W., Kay, S.M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1-3): 177-189. https://doi.org/10.1016/0040-1951(93)90295-u
|
König, S., Schuth, S., Münker, C., et al., 2007. The Role of Slab Melting in the Petrogenesis of High-Mg Andesites: Evidence from Simbo Volcano, Solomon Islands. Contributions to Mineralogy and Petrology, 153(1): 85-103. https://doi.org/10.1007/s00410-006-0136-x
|
Li, J.W., Zhao, X.F., Zhou, M.F., et al., 2008. Origin of the Tongshankou Porphyry-Skarn Cu-Mo Deposit, Eastern Yangtze Craton, Eastern China: Geochronological, Geochemical, and Sr-Nd-Hf Isotopic Constraints. Mineralium Deposita, 43(3): 315-336. https://doi.org/10.1007/s00126-007-0161-3
|
Li, N., Ulrich, T., Chen, Y.J., et al., 2012. Fluid Evolution of the Yuchiling Porphyry Mo Deposit, East Qinling, China. Ore Geology Reviews, 48: 442-459. https://doi.org/10.1016/j.oregeorev.2012.06.002
|
Li, S.X., Chen, M.L., Yang, D.S., et al., 2014. The Molybdenite Re-Os Age and Analysis of Geodynamic Background in Hainan Island. Geology and Mineral Resources of South China, 30(3):272-279(in Chinese with English abstract).
|
Li, X.H., 1997. Geochemistry of the Longsheng Ophiolite from the Southern Margin of Yangtze Craton, SE China. Geochemical Journal, 31(5): 323-337. https://doi.org/10.2343/geochemj.31.323
|
Li, X.H., Zhou, H. W., Chung, S.L., et al., 2002. Geochemical and Sm-Nd Isotopic Characteristics of Metabasites from Central Hainan Island, South China and Their Tectonic Significance.The Island Arc, 11(3): 193-205. https://doi.org/10.1046/j.1440-1738.2002.00365.x
|
Li, X.Y., Chi, G.X., Zhou, Y.Z., et al., 2017. Oxygen Fugacity of Yanshanian Granites in South China and Implications for Metallogeny. Ore Geology Reviews, 88: 690-701. https://doi.org/10.1016/j.oregeorev.2017.02.002
|
Li, Z.X., Li, X.H., 2007. Formation of the 1300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
|
Li, Y., Ling, M.X., Ding, X., et al., 2009.Adakites or Adakitic Rocks and Associated Metallogenesis in Eastern China.Geotectonica et Metallogenia, 33(3):448-464(in Chinese with English abstract).
|
Liang, H.Y., Campbell, I.H., Allen, C., et al., 2006. Zircon Ce4+/Ce3+ Ratios and Ages for Yulong Ore-Bearing Porphyries in Eastern Tibet. Mineralium Deposita, 41(2): 152-159. https://doi.org/10.1007/s00126-005-0047-1
|
Liang, X.R., Wei, G.J., Li, X.H., et al., 2003. Precise Measurement of 143Nd/144Nd and Sm/Nd Ratios Using Multiple-Collectors Inductively Coupled Plasma-Mass Spectrometer (MC-ICPMS). Geochimica, 32(1):91-96(in Chinese with English abstract).
|
Liao, X.J., Wang, P.G., Qin, H.C., et al., 2008.Geology, Geochemistry and Ore-Forming Age of the Gaotongling Molybdenum Deposit, Tunchang Area, Hainan, China.Geological Bulletin of China, 27(4):560-570(in Chinese with English abstract).
|
Ludington, S., Plumlee, G.S., 2009. Climax-Type Porphyry Molybdenum Deposits. US Geological Survey, Virginia.
|
Lugmair, G.W., Marti, K., 1978. Lunar Initial 143Nd/144Nd: Differential Evolution of the Lunar Crust and Mantle. Earth and Planetary Science Letters, 39(3): 349-357. https://doi.org/10.1016/0012-821x(78)90021-3
|
Ma, D.Q., Huang, X.D., Chen, Z.P., et al., 1997. New Advanced in the Study of the Baoban Group in Hainan Province. Regional Geology of China, 16(2):130-136(in Chinese with English abstract).
|
Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4): 581-593. https://doi.org/10.1016/j.epsl.2005.12.034
|
Mao, J.W., Pirajno, F., Cook, N., 2011. Mesozoic Metallogeny in East China and Corresponding Geodynamic Settings-An Introduction to the Special Issue. Ore Geology Reviews, 43(1): 1-7. https://doi.org/10.1016/j.oregeorev.2011.09.003
|
Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004.Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China.Earth Science Frontiers, 11(1):45-55(in Chinese with English abstract).
|
Martin, H., 1993. The Mechanisms of Petrogenesis of the Archaean Continental Crust-Comparison with Modern Processes. Lithos, 30(3-4): 373-388. https://doi.org/10.1016/0024-4937(93)90046-f
|
Metcalfe, I., 1996. Gondwanaland Dispersion, Asian Accretion and Evolution of Eastern Tethys.Australian Journal of Earth Sciences, 43(6): 605-623. https://doi.org/10.1080/08120099608728282
|
Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. https://doi.org/10.1016/j.jseaes.2012.12.020
|
Middlemost, E.A.K., 1985. Magmas and Magmatic Rocks. Longman, London.
|
Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. https://doi.org/10.1130/0091-7613(2003)031<0529: hacgio>2.0.co; 2
|
Mungall, J.E., 2002. Roasting the Mantle: Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits. Geology, 30(10): 915-918. <0915: rtmsma>2.0.co;2
|
Mutschler, F.E., Wright, E.G., Ludington, S., et al., 1981. Granite Molybdenite Systems. Economic Geology, 76(4): 874-897. https://doi.org/10.2113/gsecongeo.76.4.874
|
Ohmoto, H., 1986. Stable Isotope Geochemistry of Ore Deposits. Reviews in Mineralogy & Geochemistry, 16(6):491-559.
|
Pearce, J.A., Peate, D.W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
|
Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
|
Qin, K.Z., Li, G.M., Zhao, J.X., et al., 2008.Discovery of Sharang Large-Scale Porphyry Molybdenum Deposit, the First Single Mo Deposit in Tibet and Its Significance.Geology in China, 35(6):1101-1112(in Chinese with English abstract).
|
Qu, X. M., Hou, Z.Q., Li, Y.G., 2004. Melt Components Derived from a Subducted Slab in Late Orogenic Ore-Bearing Porphyries in the Gangdese Copper Belt, Southern Tibetan Plateau. Lithos, 74(3-4): 131-148. https://doi.org/10.1016/j.lithos.2004.01.003
|
Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
|
Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites. Precambrian Research, 51(1-4): 1-25. https://doi.org/10.1016/0301-9268(91)90092-o
|
Rushmer, T., 1991. Partial Melting of Two Amphibolites: Contrasting Experimental Results under Fluid-Absent Conditions. Contributions to Mineralogy and Petrology, 107(1): 41-59. https://doi.org/10.1007/bf00311184
|
Schiano, P., Monzier, M., Eissen, J.P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410-009-0478-2
|
Sen, C., Dunn, T., 1994. Dehydration Melting of a Basaltic Composition Amphibolite at 1.5 and 2.0 GPa: Implications for the Origin of Adakites. Contributions to Mineralogy and Petrology, 117(4): 394-409. https://doi.org/10.1007/bf00307273
|
Shan, H.Z., 1990.Study on the Gold-Bearing Stratigraphic Age in Baoban Region, Hainan Province.Acta Scifntiarum Naturalium Universitatis Sunyaatseni, 29(2):71-77(in Chinese with English abstract).
|
Shen, P., Hattori, K., Pan, H. D., et al., 2015. Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace-Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt. Economic Geology, 110(7): 1861-1878. https://doi.org/10.2113/econgeo.110.7.1861
|
Shinohara, H., Kazahaya, K., Lowenstern, J.B., 1995. Volatile Transport in a Convecting Magma Column: Implications for Porphyry Mo Mineralization. Geology, 23(12): 1091. https://doi.org/10.1130/0091-7613(1995)023<1091: vtiacm>2.3.co; 2
|
Simon, A.C., Ripley, E.M., 2011. The Role of Magmatic Sulfur in the Formation of Ore Deposits. Reviews in Mineralogy and Geochemistry, 73(1): 513-578. https://doi.org/10.2138/rmg.2011.73.16
|
Sinclair, W.D., 2007. Porphyry Deposits. In:Goodfellow, W.D., ed., Mineral Deposits of Canada:A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, 5:223-243.
|
Stacey, J.S., Kramers, J.D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26(2): 207-221. https://doi.org/10.1016/0012-821x(75)90088-6
|
Steiger, R.H., J?ger, E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362. https://doi.org/10.1016/0012-821x(77)90060-7
|
Streck, M.J., Leeman, W.P., Chesley, J., 2007. High-Magnesian Andesite from Mount Shasta: A Product of Magma Mixing and Contamination, not a Primitive Mantle Melt. Geology, 35(4): 351-354. https://doi.org/10.1130/g23286a.1
|
Sun, S.S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
Sun, W.D., Arculus, R.J., Kamenetsky, V.S., et al., 2004. Release of Gold-Bearing Fluids in Convergent Margin Magmas Prompted by Magnetite Crystallization. Nature, 431(7011): 975-978. https://doi.org/10.1038/nature02972
|
Sun, W.D., Huang, R.F., Li, H., et al., 2015. Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews, 65: 97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004
|
Sun, Y., Liu, J.M., Zeng, Q.D., et al., 2012.An Approach to the Metallogenic Mechanism of Porphyry Copper (Molybdenum) Deposits and Porphyry Molybdenum (Copper) Deposits:Influence of Evolving Processes of Ore-Forming Fluids and Tectonic Settings.Earth Science Frontiers, 19(6):179-193(in Chinese with English abstract).
|
Tang, L.M., Chen, H.L., Dong, C.W., et al., 2010.Triassic Neutral and Basic Rocks in Hainan Island, Geochemistry and Their Geological Signinficance.Chinese Journal of Geology, 45(4):1139-1155(in Chinese with English abstract).
|
Thompson, J.F.H., Sillitoe, R.H., Baker, T., et al., 1999. Intrusion-Related Gold Deposits Associated with Tungsten-Tin Provinces. Mineralium Deposita, 34(4): 323-334. https://doi.org/10.1007/s001260050207
|
Wang, G.G., Ni, P., Zhao, C., et al., 2017a. A Combined Fluid Inclusion and Isotopic Geochemistry Study of the Zhilingtou Mo Deposit, South China: Implications for Ore Genesis and Metallogenic Setting. Ore Geology Reviews, 81: 884-897 http://dx.doi.org/10.1016/j.oregeorev.2015.11.023
|
Wang, G. R., Wu, G., Xu, L. Q., et al., 2017b. Molybdenite Re-Os Age, H-O-C-S-Pb Isotopes, and Fluid Inclusion Study of the Caosiyao Porphyry Mo Deposit in Inner Mongolia, China. Ore Geology Reviews, 81: 728-744. https://doi.org/10.1016/j.oregeorev.2016.07.008
|
Wang, G.G., Ni, P., Yu, W., et al., 2014. Petrogenesis of Early Cretaceous Post-Collisional Granitoids at Shapinggou, Dabie Orogen: Implications for Crustal Architecture and Porphyry Mo Mineralization. Lithos, 184-187: 393-415. https://doi.org/10.1016/j.lithos.2013.11.009
|
Wang, Q., Li, X.H., Jia, X.H., et al., 2012. Late Early Cretaceous Adakitic Granitoids and Associated Magnesian and Potassium-Rich Mafic Enclaves and Dikes in the Tunchang-Fengmu Area, Hainan Province (South China): Partial Melting of Lower Crust and Mantle, and Magma Hybridization. Chemical Geology, 328: 222-243. https://doi.org/10.1016/j.chemgeo.2012.04.029
|
Wang, Q., McDermott, F., Xu, J.F., et al., 2005. Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intracontinental Setting. Geology, 33(6): 465. https://doi.org/10.1130/g21522.1
|
Wang, Q., Wyman, D.A., Xu, J.F., et al., 2007. Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China: Implications for Cu-Au Mineralization.The Journal of Geology, 115(2): 149-161. https://doi.org/10.1086/510643
|
Wang, Q., Xu, J.F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070
|
Wang, G.J., Liu, J., Cao, Y.L., et al., 2010.Metallogenic Characteristics of Luokuidong Porphyry Molybdenum Deposit in the Baoting County, Hainan Province.Geotechnical Engineering World, 1(5):453-457(in Chinese with English abstract).
|
Wang, Q., Xu, J.F., Zhao, Z.H., et al., 2001a.The Summary and Comment on Research on a New Kind of Igneous Rock-Adakite.Advance in Earth Sciences, 16(2):201-208(in Chinese with English abstract).
|
Wang, Q., Zhao, Z.H., Xiong, X.L., et al., 2001b.Melting of the Underplated Basaltic Lower Crust:Evidence from the Shaxi Adakitic Sodic Quartz Diorite-Porphyrites, Anhui Province, China.Geochimica, 30(4):353-362(in Chinese with English abstract).
|
Wang, Q., Zhao, Z.H., Xiong, X.L., et al., 2002.Ascertainment of the Shaoxing Enping Alkali Rich Intrusive Rock Zone and Preliminary Discussion on Its Geodynamic Implications.Geochimica, 31(5):433-442(in Chinese with English abstract).
|
Wang, Y., Zhang, Q., Qian, Q., et al., 2000.Adakite:Geochemical Characteristics and Tectonic Significances.Scientia Geologica Sinica, 35(2):251-256(in Chinese with English abstract).
|
Wang, Y.W., Wang, J.B., 2007.Magma-Mixing Genesis of Quartz Monzodiorite in the Weiya Xinjiang.Acta Petrologica Sinica, 23(4):733-746(in Chinese with English abstract).
|
Watson, E.B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x
|
Watson, E. B., Harrison, T.M., 2005. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science, 308(5723): 841-844. https://doi.org/10.1126/science.1110873
|
Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
|
Wei, G.J., Liang, X.R., Li, X.H., et al., 2002. Precise Measurement of Sr Isotopic Composition of Liquid and Solid Base Using (LP)MC-ICPMS. Geochimica, 31(3):295-299(in Chinese with English abstract).
|
Westra, G., Keith, S.B., 1981. Classification and Genesis of Stockwork Molybdenum Deposits. Economic Geology, 76(4): 844-873. https://doi.org/10.2113/gsecongeo.77.5.1252
|
Whalen, J.B., Anderson, R.G., Struik, L.C., et al., 2001. Geochemistry and Nd Isotopes of the Fran?ois Lake Plutonic Suite, Endako Batholith: Host and Progenitor to the Endako Molybdenum Camp, Central British Columbia. Canadian Journal of Earth Sciences, 38(4): 603-618. https://doi.org/10.1139/e00-080
|
Winther, K.T., Newton, R.C., 1991. Experimental Melting Of Hydrous Low-K Tholeiite:Evidence on the Origin of Archean Cratons. Bulletin of the Geological Society of Denmark, 39(5):2932-2945.
|
Wolf, M.B., Wyllie, P.J., 1991. Dehydration-Melting of Solid Amphibolite at 10 kbar: Textural Development, Liquid Interconnectivity and Applications to the Segregation of Magmas. Mineralogy and Petrology, 44(3-4): 151-179. https://doi.org/10.1007/bf01166961
|
Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6):1217-1238(in Chinese with English abstract).
|
Xi, A.H., Ge, Y.H., Liu, J., et al., 2018.Discovery of Adakite in Tieli Luming-Molybdenum Mine, Heilongjiang Province and Its Geological Implications.Acta Petrologica Sinica, 34(3):719-732(in Chinese with English abstract).
|
Xiong, X.L., 2006. Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite. Geology, 34(11): 945-948. https://doi.org/10.1130/g22711a.1
|
Xu, D.R., Kusiak, M.A., Wang, Z.L., et al., 2015. Microstructural Observation and Chemical Dating on Monazite from the Shilu Group, Hainan Province of South China: Implications for Origin and Evolution of the Shilu Fe-Co-Cu Ore District. Lithos, 216-217: 158-177. https://doi.org/10.1016/j.lithos.2014.12.017
|
Xu, D.R., Wang, Z.L., Cai, J.X., et al., 2013. Geological Characteristics and Metallogenesis of the Shilu Fe-Ore Deposit in Hainan Province, South China. Ore Geology Reviews, 53: 318-342. https://doi.org/10.1016/j.oregeorev.2013.01.015
|
Xu, D.R., Wang, Z.L., Wu, C.J., et al., 2016. Mesozoic Gold Mineralization in Hainan Province of South China: Genetic Types, Geological Characteristics and Geodynamic Settings. Journal of Asian Earth Sciences, 137: 80-108. https://doi.org/10.1016/j.jseaes.2016.09.004
|
Xu, J.F., Shinjo, R., Defant, M.J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust?. Geology, 30(12): 1111-1114. https://doi.org/10.1130/0091-7613(2002)030<1111: oomair>2.0.co; 2
|
Xu, J.F., Wu, J.B., Wang, Q., et al., 2014. Research Advances of Adakites and Adakitic Rocks in China. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1):6-13(in Chinese with English abstract).
|
Xu, D.R., Liang, X.Q., Tang, H.F., et al., 2000.Geochemical Characteristics of Metamorphic Basic Volcanics from the Baoban Group, Western Hainan and Its Tectonic Implications.Geotectonica et Metallogenia, 24(4):303-313(in Chinese with English abstract).
|
Xu, D.R., Wu, C.J., Hu, G.C., et al., 2016. Late Mesozoic Molybdenum Mineralization on Hainan Island, South China: Geochemistry, Geochronology and Geodynamic Setting. Ore Geology Reviews, 72: 402-433. https://doi.org/10.1016/j.oregeorev.2015.07.023
|
Xu, W.G., Fan, H.R., Hu, F.F., et al., 2011.Ore-Forming Fluids of the Oxidized and Reduced Porphyry Deposits.Earth Science Frontiers, 18(5):103-120(in Chinese with English abstract).
|
Yang, Z., Jiang, H., Yang, M.G., et al., 2017.Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance.Earth Science, 42(3):339-356(in Chinese with English abstract).
|
Yang, Z.M., Hou, Z.Q., 2009.Porphyry Cu Deposits in Collisional Orogen Setting:A Preliminary Genetic Model.Mineral Deposits, 28(5):515-538(in Chinese with English abstract).
|
Yang, Z.M., Hou, Z.Q., Yang, Z.S., et al., 2008.Genesis of Porphyries and Tectonic Controls on the Narigongma Porphyry Mo(-Cu) Deposit, Southern Qinghai.Acta Petrologica Sinica, 24(3):489-502(in Chinese with English abstract).
|
Ye, T.Z., Wei, C.S., Wang, Y.W., et al., 2017.. Metallogenic Prognosis Theries and Methods in Exploration Areas(Pandect). Geological Publishing House, Beijing, 406(in Chinese).
|
Zartman, R.E., Doe, B.R., 1981. Plumbotectonics-The Model. Tectonophysics, 75(1-2): 135-162. https://doi.org/10.1016/0040-1951(81)90213-4
|
Zeng, Q.D., Liu, J.M., Qin, K.Z., et al., 2013. Types, Characteristics, and Time-Space Distribution of Molybdenum Deposits in China. International Geology Review, 55(11): 1311-1358. https://doi.org/10.1080/00206814.2013.774195
|
Zhang, H., Li, C. Y., Yang, X.Y., et al., 2014. Shapinggou: The Largest Climax-Type Porphyry Mo Deposit in China. International Geology Review, 56(3): 313-331. https://doi.org/10.1080/00206814.2013.855363
|
Zhang, Q., Qian, Q., Wang, E.Q., et al., 2001.An East China Plateau in Mid-Late Yanshanian Period:Implication from Adakites.Scientia Geologica Sinica, 36(2):248-255(in Chinese with English abstract).
|
Zhang, Q., Wang, Y., Liu, W., et al., 2002.Adakite:Its Characteristics and Implications.Regional Geology of China, 21(7):431-435(in Chinese with English abstract).
|
Zhao, Z.H., 2010.Trace Element Geochemistry of Accessory Minerals and Its Applications in Petrogenesis and Metallogenesis.Earth Science Frontiers, 17(1):267-286(in Chinese with English abstract).
|
Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Significance of Rongga Porphyry Mo Deposit in the Bangong-Nujiang Metallogenic Belt, Tibet.Earth Science, 42(9):1441-1453(in Chinese with English abstract).
|
Zhou, T.C., Zeng, Q.D., Chu, S.X., et al., 2018. Magmatic Oxygen Fugacities of Porphyry Mo Deposits in the East Xing'an-Mongolian Orogenic Belt (NE China) with Metallogenic Implications. Journal of Asian Earth Sciences, 165: 145-159. https://doi.org/10.1016/j.jseaes.2018.04.004
|
Zhou, X.M., Li, W.X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3-4): 269-287. https://doi.org/10.1016/s0040-1951(00)00120-7
|
Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.1007/s00254-006-0175-7
|
Zhou, Y., Liang, X. Q., Kr?ner, A., et al., 2015. Late Cretaceous Lithospheric Extension in SE China: Constraints from Volcanic Rocks in Hainan Island. Lithos, 232: 100-110.https://doi.org/10.1016/j.lithos.2015.06.028
|
Zhou, Y., Liang, X.Q., Liang, X.R., et al., 2015.Geochronology and Geochemistry of Cretaceous Volcanic Rocks from Liuluo Formation in Hainan Island and Their Tectonic Implications.Geotectonica et Metallogenia, 39(5):903-918(in Chinese with English abstract).
|
Zhu, Y.H., Yu, L.L, Yu, D.S., et al., 2017. LA-ICP-MS Zircon U-Pb Dating, Hf Isotopic Composition and Ce4+/Ce3+ Characteristics of Gaotongling Molybdenum Ore Deposit in Hainan Province and Their Implications for Metallogeny. Mineral Deposits, 36(1):185-199(in Chinese with English abstract).
|
Zhu, Y.H., Shan, Q., Wang, L.X., et al., 2018.Age of Host-Rocks and Mineralization from the Luokuidong Molybdenum Ore Deposit in Hainan Island:Implication for Deposit Genesis.Geochimica, 47(3):268-287(in Chinese with English abstract).
|
包志伟, 赵振华, 熊小林, 等, 2000.广东恶鸡脑碱性正长岩的地球化学及其地球动力学意义.地球化学, 29(5):462-468.
|
曹冲, 申萍, 2018.斑岩型钼矿床研究进展与问题.地质论评, 64(2):477-497.
|
陈沐龙, 吕昭英, 马昌前, 等, 2015.海南岛石门山钼多金属矿床的Re-Os同位素定年及地质意义.矿产与地质, 61(4): 546-551.
|
付王伟, 许德如, 傅杨荣, 等, 2013.海南省红门岭钼钨矿床辉钼矿Re-Os同位素定年及地质意义.东华理工大学学报(自然科学版), 36(2): 135-142.
|
付王伟, 许德如, 吴传军, 等, 2014.海南省高通岭钼矿床赋矿岩体LA-ICP-MS锆石U-Pb定年及成矿意义.矿床地质, 33(2): 419-427.
|
高山, Ducea, M.N., 金振民, 等, 1998.下地壳拆沉作用及大陆地壳演化.高校地质学报, 4(3): 241-249.
|
侯增谦, 莫宣学, 高永丰, 等, 2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例.矿床地质, 22(1):1-12.
|
侯增谦, 潘小菲, 杨志明, 等, 2007.初论大陆环境斑岩铜矿.现代地质, 21(2):332-351.
|
胡军, 徐德明, 张鲲, 等, 2017.海南省新村钼矿床LA-ICP-MS锆石U-Pb和辉钼矿Re-Os年龄及其地质意义.矿床地质, 36(2): 303-316.
|
黄凡, 王登红, 王成辉, 等, 2014.中国钼矿资源特征及其成矿规律概要.地质学报, 88(12):2296-2314.
|
贾小辉, 王强, 唐功建, 等, 2010.海南屯昌早白垩世晚期埃达克质侵入岩的锆石U-Pb年代学、地球化学与岩石成因.地球化学, 39(6):497-519.
|
李孙雄, 陈沐龙, 杨东生, 等, 2014.海南岛钼矿床Re-Os年龄及其成矿地球动力学背景探讨.华南地质与矿产, 30(3): 272-279.
|
李印, 凌明星, 丁兴, 等, 2009.中国东部埃达克岩及成矿作用.大地构造与成矿学, 33(3):448-464.
|
梁细荣, 韦刚健, 李献华, 等, 2003.利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值.地球化学, 32(1): 91-96.
|
廖香俊, 王平安, 覃海灿, 等, 2008.海南屯昌地区高通岭钼矿床的地质、地球化学特征及成矿时代.地质通报, 27(4):560-570.
|
马大铨, 黄香定, 陈哲培, 等, 1997.海南省抱板群研究的新进展.地质通报, 16(2): 130-136.
|
毛景文, 谢桂青, 李晓峰, 等, 2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 11(1):45-55.
|
秦克章, 李光明, 赵俊兴, 等, 2008.西藏首例独立钼矿——冈底斯沙让大型斑岩钼矿的发现及其意义.中国地质, 35(6):1101-1112.
|
单惠珍, 1990.海南抱板地区金矿地层时代归属的研究.中山大学学报(自然科学版), 29(2):71-77.
|
孙燕, 刘建明, 曾庆栋, 等, 2012.斑岩型铜(钼)矿床和斑岩型钼(铜)矿床的形成机制探讨:流体演化及构造背景的影响.地学前缘, 19(6):179-193.
|
唐立梅, 陈汉林, 董传万, 等, 2010.海南岛三叠纪中基性岩的年代学、地球化学及其她质竟义.地质科学, 45(4):1139-1155.
|
王国君, 刘君, 曹玉莲, 等, 2010.海南罗葵洞斑岩型钼矿地质特征及矿床成因.矿产勘查, 1(5):453-457.
|
王强, 许继锋, 赵振华, 等, 2001a.一种新的火成岩——埃达克岩的研究综述.地球科学进展, 16(2):201-208.
|
王强, 赵振华, 熊小林, 等, 2001b.底侵玄武质下地壳的熔融:来自安徽沙溪adakite质富钠石英闪长玢岩的证据.地球化学, 30(4):353-362.
|
王强, 赵振华, 熊小林, 等, 2002.华南绍兴-恩平富碱侵入岩带的厘定及其动力学意义初探.地球化学, 31(5):433-442.
|
王焰, 张旗, 钱青, 等, 2000.埃达克岩(adakite)的地球化学特征及其构造意义.地质科学, 35(2):251-256.
|
王玉往, 王京彬, 2007.新疆尾亚地区石英二长闪长岩的岩浆混合成因.岩石学报, 23(4):733-746.
|
韦刚健, 梁细荣, 李献华, 等, 2002. (LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成.地球化学, 31(3): 295-299.
|
吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6): 1217-1238.
|
郗爱华, 葛玉辉, 刘珏, 等, 2018.黑龙江铁力鹿鸣斑岩型钼矿床埃达克岩的发现及其地质意义.岩石学报, 34(3):719-732.
|
徐文刚, 范宏瑞, 胡芳芳, 等, 2011.氧化性和还原性斑岩型矿床流体成矿特征分析.地学前缘, 18(5):103-120.
|
许德如, 梁新权, 唐红峰, 等, 2000.琼西抱板群变质基性火山岩的地球化学特征及其大地构造意义.大地构造与成矿学, 24(4):303-313.
|
许继峰, 邬建斌, 王强, 等, 2014.埃达克岩与埃达克质岩在中国的研究进展.矿物岩石地球化学通报, 33(1):6-13.
|
杨震, 姜华, 杨明国, 等, 2017.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地球科学, 42(3):339-356.
|
杨志明, 侯增谦, 2009.初论碰撞造山环境斑岩铜矿成矿模型.矿床地质, 28(5):515-538.
|
杨志明, 侯增谦, 杨竹森, 等, 2008.青海纳日贡玛斑岩钼(铜)矿床:岩石成因及构造控制.岩石学报, 24(3):489-502.
|
叶天竺, 韦昌山, 王玉往, 等, 2017.勘查区找矿预测理论与方法(各论).地质出版社, 北京.
|
张旗, 钱青, 王二七, 等, 2001.燕山中晚期的中国东部高原:埃达克岩的启示.地质科学, 36(2):248-255.
|
张旗, 王焰, 刘伟, 等, 2002.埃达克岩的特征及其意义.地质通报, 21(7):431-435.
|
赵振华, 2010.副矿物微量元素地球化学特征在成岩成矿作用研究中的应用.地学前缘, 17(1):267-286.
|
郑有业, 次琼, 吴松, 等, 2017.西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453.
|
周云, 梁新权, 梁细荣, 等, 2015.海南白垩纪六罗村组火山岩的年代学、地球化学特征及其大地构造意义.大地构造与成矿学, 39(5):903-918.
|
朱昱桦, 于亮亮, 于得水, 等, 2017.海南岛高通岭钼矿床赋矿岩体LA-ICP-MS锆石U-Pb年龄、Hf同位素和Ce4+/Ce3+特征.矿床地质, 36(1): 185-199.
|
朱昱桦, 单强, 王历星, 等, 2018.海南岛罗葵洞钼矿床成岩成矿时代及矿床成因探讨.地球化学, 47(3):268-287.
|