• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 7
    Jul.  2019
    Turn off MathJax
    Article Contents
    Huang Yong, Fu Jiangang, Li Guangming, Zhang Linkui, Liu Hong, 2019. Determination of Lalong Dome in South Tibet and New Discovery of Rare Metal Mineralization. Earth Science, 44(7): 2197-2206. doi: 10.3799/dqkx.2019.114
    Citation: Huang Yong, Fu Jiangang, Li Guangming, Zhang Linkui, Liu Hong, 2019. Determination of Lalong Dome in South Tibet and New Discovery of Rare Metal Mineralization. Earth Science, 44(7): 2197-2206. doi: 10.3799/dqkx.2019.114

    Determination of Lalong Dome in South Tibet and New Discovery of Rare Metal Mineralization

    doi: 10.3799/dqkx.2019.114
    • Received Date: 2019-04-11
    • Publish Date: 2019-07-15
    • The Lalong dome is located in the southeast margin of the Tethys-Himalayan tectonic belt, which constitutes another important dome belt parallel to the North Himalayan dome belt along with Cuonadong dome and Kuju dome. The dome is separated by fault into a core unit, a transitional zone and a caprock. The core unit is mainly composed of granitic gneiss, leucogranites and pegmatite. The zircon U-Pb age of granitic gneisses is 474.3±5.5 Ma. Leucogranties mainly consist of two-mica granite and muscovite granite. The transitional zone is composed of garnet schist, cross schist, andalusite schist, kyanite schist, marble, skarn and so on. The caprock is composed of Mesozoic epimetamorphic clastic sedimentary rocks. Three types of rare metal mineralization are recognized. The first type is pegmatite beryllium mineralization. The main beryllium-bearing mineral is beryl. The monazite U-Pb age of pegmatite is 23.19 ±0.12 Ma. The second type is skarn beryllium, tungsten, niobium and tantalum with rare polymetallic mineralization. The monazite U-Pb age of muscovite granite in the contact zone with skarn is 23.23±0.27 Ma. The third type is tectonically controlled hydrothermal Cu-Pb-Zn-Ag mineralization. The rare polymetallic mineralization in Lalong dome shows the zonation characteristics of Be, Be-W-Nb-Ta, Cu-Pb-Zn-Ag mineralization with leucogranite as the core. The determination of the Lalong dome indicates the existence of a "double dome" structural belt in the Tethys-Himalayan metallogenic belt. The discovery of rare polymetallic mineralization in the Lalong dome further confirms that the Tethys-Himalayan metallogenic belt has a huge potential for rare metal prospecting and is expected to become the third rare metal metallogenic belt after South China belt and Altai Xinjiang belt.

       

    • loading
    • Aikman, A. B., Harrison, T. M., Lin, D., 2008. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1-2):14-23. https://doi.org/10.1016/j.epsl.2008.06.038
      Aoya, M., Wallis, S. R., Kawakami, T., et al., 2006. The Malashan Gneiss Dome in South Tibet:Comparative Study with the Kangmar Dome with Special Reference to Kinematics of Deformation and Origin of Associated Granites. Geological Society, London, Special Publications, 268(1):471-495. https://doi.org/10.1144/gsl.sp.2006.268.01.22
      Fu, J. G., Li, G. M., Wang, G. H., et al., 2018. Establishment of the North Himalayan Double Gneiss Domes:Evidence from Field Identification of the Cuonadong Dome, South Tibet. Geology in China, 45(4):783-802 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804011
      Gao, L., Zeng, L. S., Xie, K. J., 2012. Eocene High Grade Metamorphism and Crustal Anatexis in the North Himalaya Gneiss Domes, Southern Tibet. Chinese Science Bulletin, 57(6):639-650. https://doi.org/10.1007/s11434-011-4805-4
      Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis:Application to Lead Isotope Analysis. Analytical Chemistry, 87(2):1152-1157. https://doi.org/10.1021/ac503749k
      Huang, C. M., Zhao, Z. D., Li, G. M., et al., 2017. Leucogranites in Lhozag, Southern Tibet:Implications for the Tectonic Evolution of the Eastern Himalaya. Lithos, 294-295:246-262. https://doi.org/10.1016/j.lithos.2017.09.014
      Huang, Y., Liang, W., Zhang, L. K., et al., 2018. The Initial Break-Up between Tethyan-Himalaya and Indian Terrane:Evidences from Late Cretaceous OIB-Type Basalt in Southern Tibet. Earth Science, 43(8):2651-2663 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.573
      Le Fort, P., 1981. Manaslu Leucogranite:A Collision Signature of the Himalaya:A Model for Its Genesis and Emplacement. Journal of Geophysical Research:Solid Earth, 86(B11):10545-10568. https://doi.org/10.1029/jb086ib11p10545
      Le Fort, P., Cronin, V., 1988. Granites in the Tectonic Evolution of the Himalaya, Karakoram and Southern Tibet[and Discussion]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 326(1589):281-299. https://doi.org/10.1098/rsta.1988.0088
      Li, G. M., Zhang, L. K., Jiao, Y. J., et al., 2017. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4):1003-1008 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014
      Liang, W., Zhang, L. K., Xiao, X. B., et al., 2018. Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China. Earth Science, 43(8):2742-2754 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.154
      Lin, B., Tang, J. X., Zeng, W. B., et al., 2014. Petrochemical Features, Zircon U-Pb Dating and Hf Isotopic Composition of the Rhyolite in Zhaxikang Deposit, Southern Xizang (Tibet). Geological Review, 60(1):178-189 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201401017
      Liu, X. C., Wu, F. Y., Yu, L. J., et al., 2015. Emplacement Age of Leucogranite in the Kampa Dome, Southern Tibet. Tectonophysics, 667:163-175. https://doi.org/10.1016/j.tecto.2015.12.001
      Liu, Z. C., Wu, F. Y., Ding, L., et al., 2016. Highly Fractionated Late Eocene (~35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240-243:337-354. https://doi.org/10.1016/j.lithos.2015.11.026
      Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208-209:118-136. https://doi.org/10.1016/j.lithos.2014.08.022
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
      Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley.
      Qi, X. X., Zeng, L. S., Meng, X. J., et al., 2008. Zircon SHRIMP U-Pb Dating for Dala Granite in the Tethyan Himalaya and Its Geological Implication. Acta Petrologica Sinica, 24(7):1501-1508 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807007
      Wang, R. C., Wu, F. Y., Xie, L., et al., 2017. A Preliminary Study of Rare-Metal Mineralization in the Himalayan Leucogranite Belts, South Tibet. Science in China (Series D), 47(8):871-880 (in Chinese).
      Wang, X. X., Zhang, J. J., Yan, S. Y., et al., 2016. Age and Geochemistry of the Cuona Leucogranite in Southern Tibet and Its Geological Implications. Geological Bulletin of China, 35(1):91-103 (in Chinese with English abstract).
      Wu, F. Y., Liu, Z. C., Liu, X. C., et al., 2015. Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1):1-36 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001
      Yin, A., Dubey, C. S., Webb, A. A. G., et al., 2010. Geologic Correlation of the Himalayan Orogen and Indian Craton:Part 1. Structural Geology, U-Pb Zircon Geochronology, and Tectonic Evolution of the Shillong Plateau and Its Neighboring Regions in NE India. Geological Society of America Bulletin, 122(3-4):336-359. https://doi.org/10.1130/b26460.1
      Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zeng, L. S., Gao, L. E., 2017. Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt. Acta Petrologica Sinica, 33(5):1420-1444 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705004
      Zhang, J. J., Guo, L., Zhang, B., 2007. Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China. Chinese Journal of Geology, 42(1):16-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200701003
      Zhang, J. J., Santosh, M., Wang, X. X., et al., 2012. Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Research, 21(4):939-960. https://doi.org/10.1016/j.gr.2011.11.004
      Zhang, Z., Zhang, L. K., Li, G. M., et al., 2017. The Cuonadong Gneiss Dome of North Himalaya:A New Member of Gneiss Dome and a New Proposition for the Ore-Controlling Role of North Himalaya Gneiss Domes. Acta Geoscientia Sinica, 38(5):754-766 (in Chinese with English abstract).
      Zhang, Z. M., Ding, L., Zhao, Z. D., et al., 2017. Tectonic Evolution and Dynamics of the Tibetan Plateau. Gondwana Research, 41:1-8. https://doi.org/10.1016/j.gr.2016.09.001
      付建刚, 李光明, 王根厚, 等, 2018.北喜马拉雅双穹窿构造的建立:来自藏南错那洞穹窿的厘定.中国地质, 45(4):783-802. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201804011.htm
      黄勇, 梁维, 张林奎, 等, 2018.特提斯喜马拉雅-印度地体初始裂解:来自藏南地区晚白垩世OIB型玄武岩的证据.地球科学, 43(8):2651-2663. http://earth-science.net/WebPage/Article.aspx?id=3903
      李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014
      梁维, 张林奎, 夏祥标, 等, 2018.藏南地区错那洞钨锡多金属矿床地质特征及成因.地球科学, 43(8):2742-2754. http://earth-science.net/WebPage/Article.aspx?id=3909
      林彬, 唐菊兴, 郑文宝, 等, 2014.藏南扎西康矿区流纹岩的岩石地球化学、锆石U-Pb测年和Hf同位素组成.地质论评, 60(1):178-189. http://d.old.wanfangdata.com.cn/Periodical/dzlp201401017
      戚学祥, 曾令森, 孟祥金, 等, 2008.特提斯喜马拉雅打拉花岗岩的锆石SHRIMP U-Pb定年及其地质意义.岩石学报, 24(7):1501-1508. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807007
      王汝成, 吴福元, 谢磊, 等, 2017.藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究.中国科学(D辑), 47(8):871-880. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201708001
      王晓先, 张进江, 闫淑玉, 等, 2016.藏南错那淡色花岗岩LA-MC-ICP-MS锆石U-Pb年龄、岩石地球化学及其地质意义.地质通报, 35(1):91-103. doi: 10.3969/j.issn.1671-2552.2016.01.008
      吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003
      曾令森, 高利娥, 2017.喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩.岩石学报, 33(5):1420-1444. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201705004
      张进江, 郭磊, 张波, 2007.北喜马拉雅穹窿带雅拉香波穹窿的构造组成和运动学特征.地质科学, 42(1):16-30. doi: 10.3321/j.issn:0563-5020.2007.01.003
      张志, 张林奎, 李光明, 等, 2017.北喜马拉雅错那洞穹窿:片麻岩穹窿新成员与穹窿控矿新命题.地球学报, 38(5):754-766. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705015.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(1)

      Article views (6087) PDF downloads(109) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return