Citation: | Xiao Xun, Shi Wenguang, Wang Quanrong, 2020. Effect of Mixing Effect and Scale-Dependent Dispersion for Radial Solute Transport near the Injection Well. Earth Science, 45(4): 1439-1446. doi: 10.3799/dqkx.2019.124 |
Bharati, V. K., Singh, V. P., Sanskrityayn, A., et al., 2017. Analytical Solution of Advection-Dispersion Equation with Spatially Dependent Dispersivity. Journal of Engineering Mechanics, 143(11):04017126. https://doi.org/10.1061/(asce)em.1943-7889.0001346
|
Chen, C. S., 1987. Analytical Solutions for Radial Dispersion with Cauchy Boundary at Injection Well. Water Resources Research, 23(7):1217-1224. https://doi.org/10.1029/wr023i007p01217
|
Chen, H. T., Chen, C.O.K., 1988. Hybrid Laplace Transform/Finite Difference Method for Transient Heat Conduction Problems. International Journal for Numerical Methods in Engineering, 26(6):1433-1447. https://doi.org/10.1002/nme.1620260613
|
Chen, H.T., Chen, T.M., Chen, C.O.K., 1987. Hybrid Laplace Transform/Finite Element Method for One-Dimensional Transient Heat Conduction Problems. Computer Methods in Applied Mechanics and Engineering, 63(1):83-95. https://doi.org/10.1029/WR023i007p01217
|
Chen, J. S., Liu, C. W., Chen, C. S., et al., 1996. A Laplace Transform Solution for Tracer Tests in a Radially Convergent Flow Field with Upstream Dispersion. Journal of Hydrology, 183(3-4):263-275. https://doi.org/10.1016/0022-1694(95)02972-9
|
Cheng, J.M., 2002.Analysis on Field Scale Effect of Dispersivity in Consideration of Relative Reliability Level of Data. Journal of Hydraulic Engineering, 33(2):90-94(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb200202016
|
de Hoog F.R., Knight, J.H., Stokes, A.N., 1982.An Improved Method for Numerical Inversion of Laplace Transforms. SIAM Journal on Scientific and Statistical Computing, 3(3):357-366. https://doi.org/10.1137/0903022
|
Dubner, H., Abate, J., 1968. Numerical Inversion of Laplace Transforms by Relating Them to the Finite Fourier Cosine Transform. Journal of the ACM, 15(1):115-123. https://doi.org/10.1145/321439.321446
|
Gao, G.Y., Feng, S.Y., Huo, Z.L., et al., 2009.Semi-Analytical Solution for Solute Radial Transport Dynamic Model with Scale-Dependent Dispersion. Journal of Hydrodynamics(Ser.A), 24(2):156-163(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdlxyjyjz200902005
|
Gelhar, L. W., Welty, C., Rehfeldt, K. R., 1992. A Critical Review of Data on Field-Scale Dispersion in Aquifers. Water Resources Research, 28(7):1955-1974. https://doi.org/10.1029/92wr00607
|
Gu, H.C., Wang, Q.R., Zhan, H.B., 2018. An Improved Approach in Modeling Injection-Withdraw Test of the Partially Penetrating Well. Earth Science(in Chinese with English abstract). http://kns.cnki.net/kcms/detail/42.1874.p.20181116.0912.008.html
|
Han, C., Kang, J., Choe, J., 2003. Finite Difference Modeling for Scale-Dependent Dispersivity in a Fractured Medium. Energy Sources, 25(4):265-278. https://doi.org/10.1080/00908310390142316
|
Huang, J. Q., Liu, C. Q., 1986. Analytical Solution of Partial Differential Equations for Radial Transport of a Solute in Double Porous Media. Applied Mathematics and Mechanics, 7(4):327-336. https://doi.org/10.1007/bf01898222
|
Lai, K. H., Liu, C. W., Liang, C. P., et al., 2016. A Novel Method for Analytically Solving a Radial Advection-Dispersion Equation. Journal of Hydrology, 542:532-540. https://doi.org/10.1016/j.jhydrol.2016.09.027
|
Li, G.M., Chen, C.X., 1995.Fractal Geometry and Estimation of Scale-Dependent Dispersivity in Geologic Media. Earth Science, 20(4):405-409(in Chinese with English abstract).
|
McGuire, J. T., Long, D. T., Klug, M. J., et al., 2002. Evaluating Behavior of Oxygen, Nitrate, and Sulfate during Recharge and Quantifying Reduction Rates in a Contaminated Aquifer. Environmental Science & Technology, 36(12):2693-2700. https://doi.org/10.1021/es015615q
|
Mishra, S., Parker, J. C., 1990. Analysis of Solute Transport with a Hyperbolic Scale-Dependent Dispersion Model. Hydrological Processes, 4(1):45-57. https://doi.org/10.1002/hyp.3360040105
|
Moench, A. F., Ogata, A., 1981. A Numerical Inversion of the Laplace Transform Solution to Radial Dispersion in a Porous Medium. Water Resources Research, 17(1):250-252. https://doi.org/10.1029/wr017i001p00250
|
Novakowski, K. S., 1992a. An Evaluation of Boundary Conditions for One-Dimensional Solute Transport:1. Mathematical Development. Water Resources Research, 28(9):2399-2410. https://doi.org/10.1029/92wr00593
|
Novakowski, K. S., 1992b. An Evaluation of Boundary Conditions for One-Dimensional Solute Transport:2. Column Experiments. Water Resources Research, 28(9):2411-2423. https://doi.org/10.1029/92wr00592
|
Ogata, A., 1958. Dispersion in Porous Media(Dissertation). Northwestern University, Evanston, lllinois.
|
Phanikumar, M. S., McGuire, J. T., 2010. A Multi-Species Reactive Transport Model to Estimate Biogeochemical Rates Based on Single-Well Push-Pull Test Data. Computers & Geosciences, 36(8):997-1004. https://doi.org/10.1016/j.cageo.2010.04.001
|
Pickens, J. F., Grisak, G. E., 1981a. Modeling of Scale-Dependent Dispersion in Hydrogeologic Systems. Water Resources Research, 17(6):1701-1711. https://doi.org/10.1029/wr017i006p01701
|
Pickens, J. F., Grisak, G. E., 1981b. Scale-Dependent Dispersion in a Stratified Granular Aquifer. Water Resources Research, 17(4):1191-1211. https://doi.org/10.1029/wr017i004p01191
|
Ren, L., 1994.A Hybrid Laplace Transform Finite Element Method for Solute Radial Dispersion Problem in Subsurface Flow. Journal of Hydrodynamics(Ser.A), 9(1):37-43(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400399541
|
Schapery, R.A., 1962. Approximate Methods of Transform Inversion for Viscoelastic Stress Analysis. Proc. Fourth USN at Congr. Appl. Mech., 2:1075-1085. http://cn.bing.com/academic/profile?id=404faa0d2b48fffb86324f69c0e6e983&encoded=0&v=paper_preview&mkt=zh-cn
|
Schulze-Makuch, D., 2005. Longitudinal Dispersivity Data and Implications for Scaling Behavior. Ground Water, 43(3):443-456. https://doi.org/10.1111/j.1745-6584.2005.0051.x
|
Stehfest, H., 1970a. Algorithm 368:Numerical Inversion of Laplace Transforms[D5]. Communications of the ACM, 13(1):47-49. https://doi.org/10.1145/361953.361969
|
Stehfest, H., 1970b. Remark on Algorithm 368:Numerical Inversion of Laplace Transforms. Communications of the ACM, 13(10):624. https://doi.org/10.1145/355598.362787
|
Tang, D. H., Babu, D. K., 1979. Analytical Solution of a Velocity Dependent Dispersion Problem. Water Resources Research, 15(6):1471-1478. https://doi.org/10.1029/wr015i006p01471
|
Valocchi, A. J., 1986. Effect of Radial Flow on Deviations from Local Equilibrium during Sorbing Solute Transport through Homogeneous Soils. Water Resources Research, 22(12):1693-1701. https://doi.org/10.1029/wr022i012p01693
|
Wang, Q., Shi, W., Zhan, H., et al., 2018. Models of Single-Well Push-Pull Test with Mixing Effect in the Wellbore. Water Resources Research, 54(12):10155-10171. https://doi.org/10.1029/2018WR023317
|
Wang, Q. R., Zhan, H. B., 2013. Radial Reactive Solute Transport in an Aquifer-Aquitard System. Advances in Water Resources, 61(11):51-61. https://doi.org/10.1016/j.advwatres.2013.08.013
|
Wang, Q. R., Zhan, H. B., 2015. On Different Numerical Inverse Laplace Methods for Solute Transport Problems. Advances in Water Resources, 75:80-92. https://doi.org/10.1016/j.advwatres.2014.11.001
|
Yates, S.R., 1990. An Analytical Solution for One-Dimensional Transport in Heterogeneous Porous Media. Water Resources Research, 26(10):2331-2338. https://doi.org/10.1029/wr026i010p02331
|
You, K. H., Zhan, H. B., 2013. New Solutions for Solute Transport in a Finite Column with Distance-Dependent Dispersivities and Time-Dependent Solute Sources. Journal of Hydrology, 487(2):87-97. https://doi.org/10.1016/j.jhydrol.2013.02.027
|
Zhang, D.S., Chang, A.D., Shen, B., et al., 2005.Quasi-Analytical Solution and Numerical Simulation for Advection-Dispersion Model of Adsorbed Solute Transport through Soils under Steady State Flow. Journal of Hydrodynamics(Ser.A), 20(2):226-232(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdlxyjyjz200502014
|
成建梅, 2002.考虑可信度的弥散度尺度效应分析.水利学报, 33(2):90-94. doi: 10.3321/j.issn:0559-9350.2002.02.016
|
高光耀, 冯绍元, 霍再林, 等, 2009.考虑弥散尺度效应的溶质径向运移动力学模型及半解析解.水动力学研究与进展(A辑), 24(2):156-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdlxyjyjz200902005
|
顾昊琛, 王全荣, 詹红兵, 2018.非完整井下单井注抽试验数值模拟方法改进.地球科学. http://kns.cnki.net/kcms/detail/42.1874.p.20181116.0912.008.html
|
李国敏, 陈崇希, 1995.空隙介质水动力弥散尺度效应的分形特征及弥散度初步估计.地球科学, 20(4):405-409. http://www.earth-science.net/article/id/232
|
任理, 1994.地下水溶质径向弥散问题的混合拉普拉斯变换有限单元解.水动力学研究与进展(A辑), 9(1):37-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400399541
|
张德生, 常安定, 沈冰, 等, 2005.土壤中吸附性溶质运移对流-弥散模型的准解析解及其数值模拟.水动力学研究与进展(A辑), 20(2):226-232. http://d.old.wanfangdata.com.cn/Periodical/sdlxyjyjz200502014
|