Citation: | Qing Guoshuai, Qi Yong'an, Yang Wentao, Dai Mingyue, Bai Wanbei, Fan Yuchao, Liu Bingchen, 2020. Bioturbated Structures and Their Geochemical Features from the Zhushadong Formation of the Cambrian Series 2 in Dengfeng Area of West Henan. Earth Science, 45(4): 1103-1114. doi: 10.3799/dqkx.2019.136 |
Aller, R.C., 1994. Bioturbation and Remineralization of Sedimentary Organic Matter:Effects of Redox Oscillation. Chemical Geology, 114(3-4):331-345. https://doi.org/10.1016/0009-2541(94)90062-0
|
Boyle, R.A., Dahl, T.W., Dale, A.W., et al., 2014. Stabilization of the Coupled Oxygen and Phosphorus Cycles by the Evolution of Bioturbation. Nature Geoscience, 7(9):671-676. https://doi.org/10.1038/ngeo2213
|
Boyle, R.A., Dahl, T.W., Bjerrum, C.J., et al., 2018. Bioturbation and Directionality in Earth's Carbon Isotope Record across the Neoproterozoic-Cambrian Transition. Geobiology, 16(3):252-278. https://doi.org/10.1111/gbi.12277
|
Buatois, L.A., Narbonne, G.M., Mángano, M. G., et al., 2014. Relict Ecosystems at the Dawn of the Phanerozoic Revolution. Nature Communications, 5:3544. doi: 10.1038/ncomms4544
|
Canfield, D.E., Farquhar, J., 2009. Animal Evolution, Bioturbation, and the Sulfate Concentration of the Oceans. Proceedings of the National Academy of Sciences, 106(20):8123-8127. https://doi.org/10.1073/pnas.0902037106
|
Cao, C.Q., Wang, W., Yan, G.S., 2002. Carbon Isotope Variation near the Boundary of the Permian-Triassic System in the Meishan Area, Zhejiang. Chinese Science Bulletin, 47(4):302-306 (in Chinese). doi: 10.1360/02tb9072
|
D'Andrea, A. F., DeWitt, T. H., 2009. Geochemical Ecosystem Engineering by the Mud Shrimp Upogebia pugettensis (Crustacea:Thalassinidae) in Yaquina Bay, Oregon:Density-Dependent Effects on Organic Matter Remineralization and Nutrient Cycling. Limnology and Oceanography, 54(6):1911-1932. https://doi.org/10.4319/lo.2009.54.6.1911
|
Deena, P., George, B., 2011. Bioengineering Effects of Burrowing Thalassinidean Shrimps on Marine Soft-Bottom Ecosystems. Oceanography and Marine Biology:An Annual Review, 49:137-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7adf45262ee1ef7f91e52d0fe2c8a293
|
Dornbos, S. Q., Bottjer, D. J., Chen, J. Y., 2005. Paleoecology of Benthic Metazoans in the Early Cambrian Maotianshan Shale Biota and the Middle Cambrian Burgess Shale Biota:Evidence for the Cambrian Substrate Revolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1-2):47-67. https://doi.org/10.1016/j.palaeo.2003.11.016
|
Ekdale, A. A., Bromley, R. G., 2003. Paleoethologic Interpretation of Complex Thalassinoides in Shallow-Marine Limestones, Lower Ordovician, Southern Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology, 192(1-4):221-227. https://doi.org/10.1016/s0031-0182(02)00686-7 doi: 10.1016/S0031-0182(02)00686-7
|
Feng, D., Chen, D.F., Su, Z., et al., 2006. Anaerobic Oxidation of Metane and Seep Carbonate Precipitation Kinetics at Seafloor. Marine Geology & Quaternary Geology, 26(3):125-131(in Chinese with English abstract). doi: 10.1016/S1001-8042(06)60021-3
|
Gingras, M.K., Baniak, G., Gordon, J., et al., 2012, Porosity and Permeability in Bioturbated Sediments. Developments in Sedimentology, 64:837-868. https://doi.org/10.1016/B978-0-444-5381 3-0.00027-7 doi: 10.1016/B978-0-444-53813-0.00027-7
|
Horacek, M., Brandner, R., Abart, R., 2007. Carbon Isotope Record of the P/T Boundary and the Lower Triassic in the Southern Alps:Evidence for Rapid Changes in Storage of Organic Carbon. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2):347-354. https://doi.org/10.1016/j.palaeo.2006.11.049
|
Jin, J.S., Harper, D.A.T., Rasmussen, J.A., et al., 2012.Late Ordovician Massive-Bedded Thalassinoides Ichnofacies along the Palaeoequator of Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology, 367-368:73-88. https://doi.org/10.1016/j.palaeo.2011.05.023
|
Jones, C.G., Lawton, J.H., Shachak, M., 1994. Organisms as Ecosystem Engineers. Oikos, 69(3):373. https://doi.org/10.2307/3545850
|
Kinoshita, K., Wada, M., Kogure, K., et al., 2003. Mud Shrimp Burrows as Dynamic Traps and Processors of Tidal-Flat Materials. Marine Ecology Progress Series, 247:159-164. https://doi.org/10.3354/meps247159
|
Kinoshita, K., Wada, M., Kogure, K., et al., 2008. Microbial Activity and Accumulation of Organic Matter in the Burrow of the Mud Shrimp, Upogebia Major (Crustacea:Thalassinidea). Marine Biology, 153(3):277-283. https://doi.org/10.1007/s00227-007-0802-1
|
Koike, I., Mukai, H., 1983. Oxygen and Inorganic Nitrogen Contents and Fluxes in Burrows of the Shrimps Callianassa Japonica and Upogebia Major. Marine Ecology Progress Series, 12:185-190. https://doi.org/10.3354/meps012185
|
Li, Y.C., 1998.The Carbon Isotope Cyclostratigraphic Responses to Sea Level Change in Upper Permian Limestones from South China.Acta Sedimentologica Sinica, 16(3):52-57(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800006551
|
Luff, R., Wallmann, K., Aloisi, G., 2004. Numerical Modeling of Carbonate Crust Formation at Cold Vent Sites:Significance for Fluid and Methane Budgets and Chemosynthetic Biological Communities. Earth and Planetary Science Letters, 221(1-4):337-353. https://doi.org/10.1016/s0012-821x(04)00107-4 doi: 10.1016/S0012-821X(04)00107-4
|
Mángano, M. G., Buatois, L. A., 2014. Decoupling of Body-Plan Diversification and Ecological Structuring during the Ediacaran-Cambrian Transition:Evolutionary and Geobiological Feedbacks. Proceedings of the Royal Society B:Biological Sciences, 281(1780):20140038. https://doi.org/10.1098/rspb.2014.0038
|
Mángano, M.G., Buatois, L.A., 2004. Reconstructing Early Phanerozoic Intertidal Ecosystems:Ichnology of the Cambrian Campanario Formation in Northwest Argentina. Fossils and Strata, 51:17-38.
|
Myrow, P. M., 1995. Thalassinoides and the Enigma of Early Paleozoic Open-Framework Burrow Systems. Palaios, 10(1):58. https://doi.org/10.2307/3515007
|
Pei, F., Zhang, H.Q., Yan, G.S., et al., 2008. Research on Stratigraphic Paleontology in Henan Province, Volume 3, Early Paleozoic (North China). Yellow River Water Conservancy Press, Zhengzhou(in Chinese).
|
Peng, S.P., He, H., Shao, L.Y., et al., 2002.Carbon Isotopic Compositions of the Cambrian-Ordovician Carbonates in Tarim Basin. Journal of China University of Mining & Technology, 31(4):353-357(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb200204006
|
Qi, Y.A., 1999.The Description and Analysis of Bioturbation and Ichnofabric.Henan Geology, (4): 273-277(in Chinese with English abstract).
|
Qi, Y.A., Meng, Y., Dai, M.Y., et al., 2014.Biogenic Leopard Patch Structures from the Zhushadong Formation (Cambrian Series 2), Dengfeng Area, Western Henan. Geological Science and Technology Information, 33(5):1-8(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201405001
|
Repetto, M., Griffen, B. D., 2012. Physiological Consequences of Parasite Infection in the Burrowing Mud Shrimp, Upogebia Pugettensis, a Widespread Ecosystem Engineer. Marine and Freshwater Research, 63(1):60. https://doi.org/10.1071/mf11158 doi: 10.1071/MF11158
|
Sang, S.X., Zheng, Y.F., Zhang, H., et al., 2004.Researches on Carbon and Oxygen Stable Isotopes of Lower Paleozoic Carbonates in Xuzhou Area. Acta Petrologica Sinica, 20(3):707-716(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200403035
|
Sigman, D.M., Karsh, K.L., Casciotti, K.L., 2009. Nitrogen Isotopes in the Ocean. Encyclopedia of Ocean Sciences, 40-54. http://cn.bing.com/academic/profile?id=22f6390b73e0cf67d51b2d02a58d7457&encoded=0&v=paper_preview&mkt=zh-cn
|
Solan, M., Wigham, B.D., 2005. Biogenic Particle Reworking and Bacterial-Invertebrate Interactions in Marine Sediments. Bioturbation and the Microbial Community, 105-124. https://doi.org/10.1029/60CE07. http://cn.bing.com/academic/profile?id=5a34faaf1f33c0d37be4b486d99ee1ed&encoded=0&v=paper_preview&mkt=zh-cn
|
Stamhuis, E. J., Schreurs, C. E., Videler, J.J., 1997. Burrow Architecture and Turbative Activity of the Thalassinid Shrimp Callianassa Subterranea from the Central North Sea. Marine Ecology Progress Series, 151:155-163. https://doi.org/10.3354/meps151155
|
Tarhan, L.G., 2018. The Early Paleozoic Development of Bioturbation-Evolutionary and Geobiological Consequences. Earth-Science Reviews, 178:177-207. https://doi.org/10.1016/j.earscirev.2018.01.011
|
Taylor, A. M., Goldring, R., 1993. Description and Analysis of Bioturbation and Ichnofabric. Journal of the Geological Society London, 150(1):141-148. https://doi.org/10.1144/gsjgs.150.1.0141
|
Wang, D., Zhu, X. K., Ling, H. F., 2015. Application of Nitrogen Biogeochemical Cycle and Nitrogen Isotope Index in Ancient Marine Environment Research. Acta Geologica Sinica, 89(S1):74-76(in Chinese with English abstract).
|
Wang, D., Ling, H.F., Struck Ulrich, et al., 2016.Organic Carbon Isotope Stratigraphy of the Early Cambrian Huitong Section in Hunan Province, Southeastern Yangtze, China. Geological Journal of China Universities, 22(2):274-288(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201602007
|
Wang, Q.C., Yan, Z., Ning, B., et al., 2016.Characteristics and Genesis of Leopard Limestone of the Ordovician Majiagou Formation in Ordos Basin. Journal of Palaeogeography (Chinese Edition), 18(1):39-48(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gdlxb201601003
|
Witbaard, R., Duineveld, G.C.A., 1989. Some Aspects of the Biology and Ecology of the Burrowing Shrimp Callianassa Subterranea (Montagu) (Thalassinidea) from the Southern North Sea. Sarsia, 74(3):209-219. https://doi.org/10.1080/00364827.1989.10413430
|
Zhang, L. J., Qi, Y. A., Buatois, L. A., et al., 2017. The Impact of Deep-Tier Burrow Systems in Sediment Mixing and Ecosystem Engineering in Early Cambrian Carbonate Settings. Scientific Reports, 7(1):1-9. https://doi.org/10.1038/srep45773 doi: 10.1038/s41598-016-0028-x
|
Ziebis, W., Forster, S., Huettel, M., et al., 1996. Complex Burrows of the Mud Shrimp Callianassa Truncata and their Geochemical Impact in the Sea Bed. Nature, 382(6592):619-622. https://doi.org/10.1038/382619a0
|
曹长群, 王伟, 金玉, 等, 2002.浙江煤山二叠-三叠系界线附近碳同位素变化.科学通报, 47(4):302-306. doi: 10.3321/j.issn:0023-074X.2002.04.014
|
冯东, 陈多福, 苏正, 等, 2006.海底甲烷缺氧氧化与冷泉碳酸盐岩沉淀动力学研究进展.海洋地质与第四纪地质, 26(3):125-131. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200603018
|
李玉成, 1998.华南晚二叠世碳酸盐岩碳同位素旋回对海平面变化的响应.沉积学报, 16(3):52-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800006551
|
裴放, 张海青, 闫国顺, 等, 2008.河南省地层古生物研究, 第3分册, 早古生代(华北型).郑州:黄河水利出版社.
|
彭苏萍, 何宏, 邵龙义, 等, 2002.塔里木盆地C-O碳酸盐岩碳同位素组成特征.中国矿业大学学报, 31(4):353-357. doi: 10.3321/j.issn:1000-1964.2002.04.006
|
齐永安, 1999.生物扰动和遗迹组构的描述与分析.河南地质, (4):273-277.
|
齐永安, 孟瑶, 代明月, 等, 2014.豫西登封地区寒武系第二统朱砂洞组生物成因的豹斑构造.地质科技情报, 33(5):1-8. http://d.old.wanfangdata.com.cn/Thesis/D739739
|
桑树勋, 郑永飞, 张华, 等, 2004.徐州地区下古生界碳酸盐岩的碳、氧同位素研究.岩石学报, 20(3):707-716. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200403035
|
王丹, 凌洪飞, Struck, U., 等, 2016.湖南会同寒武纪早期有机碳同位素地层学研究.高校地质学报, 22(2):274-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201602007
|
王丹, 朱祥坤, 凌洪飞, 等, 2015.氮的生物地球化学循环及氮同位素指标在古海洋环境研究中的应用.地质学报, 89(S1):74-76. http://d.old.wanfangdata.com.cn/Conference/8771783
|
王起琮, 闫佐, 宁博, 等, 2016.鄂尔多斯盆地奥陶系马家沟组豹皮灰岩特征及其成因.古地理学报, 18(1):39-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201601003
|