• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 4
    Apr.  2020
    Turn off MathJax
    Article Contents
    Qing Guoshuai, Qi Yong'an, Yang Wentao, Dai Mingyue, Bai Wanbei, Fan Yuchao, Liu Bingchen, 2020. Bioturbated Structures and Their Geochemical Features from the Zhushadong Formation of the Cambrian Series 2 in Dengfeng Area of West Henan. Earth Science, 45(4): 1103-1114. doi: 10.3799/dqkx.2019.136
    Citation: Qing Guoshuai, Qi Yong'an, Yang Wentao, Dai Mingyue, Bai Wanbei, Fan Yuchao, Liu Bingchen, 2020. Bioturbated Structures and Their Geochemical Features from the Zhushadong Formation of the Cambrian Series 2 in Dengfeng Area of West Henan. Earth Science, 45(4): 1103-1114. doi: 10.3799/dqkx.2019.136

    Bioturbated Structures and Their Geochemical Features from the Zhushadong Formation of the Cambrian Series 2 in Dengfeng Area of West Henan

    doi: 10.3799/dqkx.2019.136
    • Received Date: 2019-06-06
    • Publish Date: 2020-04-15
    • The bioturbation plays a critical role in modern marine biogeochemical cycling. It influences the character of benthic communities, decomposition rate of organic matter, chemical properties of seawater, redox properties of sediment and nutrient recycling. Abundant bioturbated structures dominated by Thalassinoides occur in carbonate rocks of the Cambrian Series 2 Zhushadong Formation in Dengfeng area of west Henan. The determination of carbon and nitrogen isotopes can help us to understand the influence of bioturbators reworking to sediment biogeochemical cycling. The determination results show that there is a great difference of δ13Ccarb value between the Thalassinoides burrow fillings and matrix, and it also displays a dramatic difference in different bioturbated intensity. But there exists a weak difference of δ13Corg and δ15N values between the Thalassinoides burrow fillings and matrix. The results mean that the sediment reworking of bioturbation can greatly change the redox property, porosity and permeability of sediments. The changes may be related to the decrease of the proportion of authigenic carbonates caused by the increase of oxygen content in sediment pore water and enhancement of dolomitization during diagenesis. The sediment mixing and reworking formed by Thalassinoides bioturbators not only have significantly changed the primary physical and chemical information and promoted the biogeochemical cycle between seawater and sediments, but also may have efficiently triggered the substrate revolution, acting as ecosystem engineers as well.

       

    • loading
    • Aller, R.C., 1994. Bioturbation and Remineralization of Sedimentary Organic Matter:Effects of Redox Oscillation. Chemical Geology, 114(3-4):331-345. https://doi.org/10.1016/0009-2541(94)90062-0
      Boyle, R.A., Dahl, T.W., Dale, A.W., et al., 2014. Stabilization of the Coupled Oxygen and Phosphorus Cycles by the Evolution of Bioturbation. Nature Geoscience, 7(9):671-676. https://doi.org/10.1038/ngeo2213
      Boyle, R.A., Dahl, T.W., Bjerrum, C.J., et al., 2018. Bioturbation and Directionality in Earth's Carbon Isotope Record across the Neoproterozoic-Cambrian Transition. Geobiology, 16(3):252-278. https://doi.org/10.1111/gbi.12277
      Buatois, L.A., Narbonne, G.M., Mángano, M. G., et al., 2014. Relict Ecosystems at the Dawn of the Phanerozoic Revolution. Nature Communications, 5:3544. doi: 10.1038/ncomms4544
      Canfield, D.E., Farquhar, J., 2009. Animal Evolution, Bioturbation, and the Sulfate Concentration of the Oceans. Proceedings of the National Academy of Sciences, 106(20):8123-8127. https://doi.org/10.1073/pnas.0902037106
      Cao, C.Q., Wang, W., Yan, G.S., 2002. Carbon Isotope Variation near the Boundary of the Permian-Triassic System in the Meishan Area, Zhejiang. Chinese Science Bulletin, 47(4):302-306 (in Chinese). doi: 10.1360/02tb9072
      D'Andrea, A. F., DeWitt, T. H., 2009. Geochemical Ecosystem Engineering by the Mud Shrimp Upogebia pugettensis (Crustacea:Thalassinidae) in Yaquina Bay, Oregon:Density-Dependent Effects on Organic Matter Remineralization and Nutrient Cycling. Limnology and Oceanography, 54(6):1911-1932. https://doi.org/10.4319/lo.2009.54.6.1911
      Deena, P., George, B., 2011. Bioengineering Effects of Burrowing Thalassinidean Shrimps on Marine Soft-Bottom Ecosystems. Oceanography and Marine Biology:An Annual Review, 49:137-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7adf45262ee1ef7f91e52d0fe2c8a293
      Dornbos, S. Q., Bottjer, D. J., Chen, J. Y., 2005. Paleoecology of Benthic Metazoans in the Early Cambrian Maotianshan Shale Biota and the Middle Cambrian Burgess Shale Biota:Evidence for the Cambrian Substrate Revolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1-2):47-67. https://doi.org/10.1016/j.palaeo.2003.11.016
      Ekdale, A. A., Bromley, R. G., 2003. Paleoethologic Interpretation of Complex Thalassinoides in Shallow-Marine Limestones, Lower Ordovician, Southern Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology, 192(1-4):221-227. https://doi.org/10.1016/s0031-0182(02)00686-7 doi: 10.1016/S0031-0182(02)00686-7
      Feng, D., Chen, D.F., Su, Z., et al., 2006. Anaerobic Oxidation of Metane and Seep Carbonate Precipitation Kinetics at Seafloor. Marine Geology & Quaternary Geology, 26(3):125-131(in Chinese with English abstract). doi: 10.1016/S1001-8042(06)60021-3
      Gingras, M.K., Baniak, G., Gordon, J., et al., 2012, Porosity and Permeability in Bioturbated Sediments. Developments in Sedimentology, 64:837-868. https://doi.org/10.1016/B978-0-444-5381 3-0.00027-7 doi: 10.1016/B978-0-444-53813-0.00027-7
      Horacek, M., Brandner, R., Abart, R., 2007. Carbon Isotope Record of the P/T Boundary and the Lower Triassic in the Southern Alps:Evidence for Rapid Changes in Storage of Organic Carbon. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2):347-354. https://doi.org/10.1016/j.palaeo.2006.11.049
      Jin, J.S., Harper, D.A.T., Rasmussen, J.A., et al., 2012.Late Ordovician Massive-Bedded Thalassinoides Ichnofacies along the Palaeoequator of Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology, 367-368:73-88. https://doi.org/10.1016/j.palaeo.2011.05.023
      Jones, C.G., Lawton, J.H., Shachak, M., 1994. Organisms as Ecosystem Engineers. Oikos, 69(3):373. https://doi.org/10.2307/3545850
      Kinoshita, K., Wada, M., Kogure, K., et al., 2003. Mud Shrimp Burrows as Dynamic Traps and Processors of Tidal-Flat Materials. Marine Ecology Progress Series, 247:159-164. https://doi.org/10.3354/meps247159
      Kinoshita, K., Wada, M., Kogure, K., et al., 2008. Microbial Activity and Accumulation of Organic Matter in the Burrow of the Mud Shrimp, Upogebia Major (Crustacea:Thalassinidea). Marine Biology, 153(3):277-283. https://doi.org/10.1007/s00227-007-0802-1
      Koike, I., Mukai, H., 1983. Oxygen and Inorganic Nitrogen Contents and Fluxes in Burrows of the Shrimps Callianassa Japonica and Upogebia Major. Marine Ecology Progress Series, 12:185-190. https://doi.org/10.3354/meps012185
      Li, Y.C., 1998.The Carbon Isotope Cyclostratigraphic Responses to Sea Level Change in Upper Permian Limestones from South China.Acta Sedimentologica Sinica, 16(3):52-57(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800006551
      Luff, R., Wallmann, K., Aloisi, G., 2004. Numerical Modeling of Carbonate Crust Formation at Cold Vent Sites:Significance for Fluid and Methane Budgets and Chemosynthetic Biological Communities. Earth and Planetary Science Letters, 221(1-4):337-353. https://doi.org/10.1016/s0012-821x(04)00107-4 doi: 10.1016/S0012-821X(04)00107-4
      Mángano, M. G., Buatois, L. A., 2014. Decoupling of Body-Plan Diversification and Ecological Structuring during the Ediacaran-Cambrian Transition:Evolutionary and Geobiological Feedbacks. Proceedings of the Royal Society B:Biological Sciences, 281(1780):20140038. https://doi.org/10.1098/rspb.2014.0038
      Mángano, M.G., Buatois, L.A., 2004. Reconstructing Early Phanerozoic Intertidal Ecosystems:Ichnology of the Cambrian Campanario Formation in Northwest Argentina. Fossils and Strata, 51:17-38.
      Myrow, P. M., 1995. Thalassinoides and the Enigma of Early Paleozoic Open-Framework Burrow Systems. Palaios, 10(1):58. https://doi.org/10.2307/3515007
      Pei, F., Zhang, H.Q., Yan, G.S., et al., 2008. Research on Stratigraphic Paleontology in Henan Province, Volume 3, Early Paleozoic (North China). Yellow River Water Conservancy Press, Zhengzhou(in Chinese).
      Peng, S.P., He, H., Shao, L.Y., et al., 2002.Carbon Isotopic Compositions of the Cambrian-Ordovician Carbonates in Tarim Basin. Journal of China University of Mining & Technology, 31(4):353-357(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb200204006
      Qi, Y.A., 1999.The Description and Analysis of Bioturbation and Ichnofabric.Henan Geology, (4): 273-277(in Chinese with English abstract).
      Qi, Y.A., Meng, Y., Dai, M.Y., et al., 2014.Biogenic Leopard Patch Structures from the Zhushadong Formation (Cambrian Series 2), Dengfeng Area, Western Henan. Geological Science and Technology Information, 33(5):1-8(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201405001
      Repetto, M., Griffen, B. D., 2012. Physiological Consequences of Parasite Infection in the Burrowing Mud Shrimp, Upogebia Pugettensis, a Widespread Ecosystem Engineer. Marine and Freshwater Research, 63(1):60. https://doi.org/10.1071/mf11158 doi: 10.1071/MF11158
      Sang, S.X., Zheng, Y.F., Zhang, H., et al., 2004.Researches on Carbon and Oxygen Stable Isotopes of Lower Paleozoic Carbonates in Xuzhou Area. Acta Petrologica Sinica, 20(3):707-716(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200403035
      Sigman, D.M., Karsh, K.L., Casciotti, K.L., 2009. Nitrogen Isotopes in the Ocean. Encyclopedia of Ocean Sciences, 40-54. http://cn.bing.com/academic/profile?id=22f6390b73e0cf67d51b2d02a58d7457&encoded=0&v=paper_preview&mkt=zh-cn
      Solan, M., Wigham, B.D., 2005. Biogenic Particle Reworking and Bacterial-Invertebrate Interactions in Marine Sediments. Bioturbation and the Microbial Community, 105-124. https://doi.org/10.1029/60CE07. http://cn.bing.com/academic/profile?id=5a34faaf1f33c0d37be4b486d99ee1ed&encoded=0&v=paper_preview&mkt=zh-cn
      Stamhuis, E. J., Schreurs, C. E., Videler, J.J., 1997. Burrow Architecture and Turbative Activity of the Thalassinid Shrimp Callianassa Subterranea from the Central North Sea. Marine Ecology Progress Series, 151:155-163. https://doi.org/10.3354/meps151155
      Tarhan, L.G., 2018. The Early Paleozoic Development of Bioturbation-Evolutionary and Geobiological Consequences. Earth-Science Reviews, 178:177-207. https://doi.org/10.1016/j.earscirev.2018.01.011
      Taylor, A. M., Goldring, R., 1993. Description and Analysis of Bioturbation and Ichnofabric. Journal of the Geological Society London, 150(1):141-148. https://doi.org/10.1144/gsjgs.150.1.0141
      Wang, D., Zhu, X. K., Ling, H. F., 2015. Application of Nitrogen Biogeochemical Cycle and Nitrogen Isotope Index in Ancient Marine Environment Research. Acta Geologica Sinica, 89(S1):74-76(in Chinese with English abstract).
      Wang, D., Ling, H.F., Struck Ulrich, et al., 2016.Organic Carbon Isotope Stratigraphy of the Early Cambrian Huitong Section in Hunan Province, Southeastern Yangtze, China. Geological Journal of China Universities, 22(2):274-288(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201602007
      Wang, Q.C., Yan, Z., Ning, B., et al., 2016.Characteristics and Genesis of Leopard Limestone of the Ordovician Majiagou Formation in Ordos Basin. Journal of Palaeogeography (Chinese Edition), 18(1):39-48(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gdlxb201601003
      Witbaard, R., Duineveld, G.C.A., 1989. Some Aspects of the Biology and Ecology of the Burrowing Shrimp Callianassa Subterranea (Montagu) (Thalassinidea) from the Southern North Sea. Sarsia, 74(3):209-219. https://doi.org/10.1080/00364827.1989.10413430
      Zhang, L. J., Qi, Y. A., Buatois, L. A., et al., 2017. The Impact of Deep-Tier Burrow Systems in Sediment Mixing and Ecosystem Engineering in Early Cambrian Carbonate Settings. Scientific Reports, 7(1):1-9. https://doi.org/10.1038/srep45773 doi: 10.1038/s41598-016-0028-x
      Ziebis, W., Forster, S., Huettel, M., et al., 1996. Complex Burrows of the Mud Shrimp Callianassa Truncata and their Geochemical Impact in the Sea Bed. Nature, 382(6592):619-622. https://doi.org/10.1038/382619a0
      曹长群, 王伟, 金玉, 等, 2002.浙江煤山二叠-三叠系界线附近碳同位素变化.科学通报, 47(4):302-306. doi: 10.3321/j.issn:0023-074X.2002.04.014
      冯东, 陈多福, 苏正, 等, 2006.海底甲烷缺氧氧化与冷泉碳酸盐岩沉淀动力学研究进展.海洋地质与第四纪地质, 26(3):125-131. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200603018
      李玉成, 1998.华南晚二叠世碳酸盐岩碳同位素旋回对海平面变化的响应.沉积学报, 16(3):52-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800006551
      裴放, 张海青, 闫国顺, 等, 2008.河南省地层古生物研究, 第3分册, 早古生代(华北型).郑州:黄河水利出版社.
      彭苏萍, 何宏, 邵龙义, 等, 2002.塔里木盆地C-O碳酸盐岩碳同位素组成特征.中国矿业大学学报, 31(4):353-357. doi: 10.3321/j.issn:1000-1964.2002.04.006
      齐永安, 1999.生物扰动和遗迹组构的描述与分析.河南地质, (4):273-277.
      齐永安, 孟瑶, 代明月, 等, 2014.豫西登封地区寒武系第二统朱砂洞组生物成因的豹斑构造.地质科技情报, 33(5):1-8. http://d.old.wanfangdata.com.cn/Thesis/D739739
      桑树勋, 郑永飞, 张华, 等, 2004.徐州地区下古生界碳酸盐岩的碳、氧同位素研究.岩石学报, 20(3):707-716. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200403035
      王丹, 凌洪飞, Struck, U., 等, 2016.湖南会同寒武纪早期有机碳同位素地层学研究.高校地质学报, 22(2):274-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201602007
      王丹, 朱祥坤, 凌洪飞, 等, 2015.氮的生物地球化学循环及氮同位素指标在古海洋环境研究中的应用.地质学报, 89(S1):74-76. http://d.old.wanfangdata.com.cn/Conference/8771783
      王起琮, 闫佐, 宁博, 等, 2016.鄂尔多斯盆地奥陶系马家沟组豹皮灰岩特征及其成因.古地理学报, 18(1):39-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201601003
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(3)

      Article views (2479) PDF downloads(67) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return