• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 7
    Jul.  2019
    Turn off MathJax
    Article Contents
    Zhang Bochuan, Fan Jianjun, Luo Anbo, Yu Yunpeng, Hao Yujie, 2019. Characteristics and Tectonic Significance of the Miocene Strata in the Milashan Area, Eastern Lhasa Terrane. Earth Science, 44(7): 2392-2407. doi: 10.3799/dqkx.2019.149
    Citation: Zhang Bochuan, Fan Jianjun, Luo Anbo, Yu Yunpeng, Hao Yujie, 2019. Characteristics and Tectonic Significance of the Miocene Strata in the Milashan Area, Eastern Lhasa Terrane. Earth Science, 44(7): 2392-2407. doi: 10.3799/dqkx.2019.149

    Characteristics and Tectonic Significance of the Miocene Strata in the Milashan Area, Eastern Lhasa Terrane

    doi: 10.3799/dqkx.2019.149
    • Received Date: 2018-11-30
    • Publish Date: 2019-07-15
    • Miocene is an important period for the thickening and uplifting of the Lhasa terrane. A set of Miocene strata were recently identified in the eastern Lhasa terrane. It can be divided into three eruption cycles, and consists of rhyolite, dacite, pyroclastic rock, obsidian and lithic sandstone. Zircon U-Pb dating shows that the strata formed during 17.2-18.2 Ma. Whole-rock major and trace element analysis and zircon Hf isotope analysis show that the rhyolite has the geochemical characteristics of potassic volcanic rocks, and is derived from the partial melting of a middle-lower crust. The dacite has the geochemical characteristics of adakite related with A-type granite, and is derived from the partial melting of a new thickened lower crust. The coexistence of the potassic and adakitic rocks enriches the research of the Miocene volcanic rocks, and provides new evidence for the Miocene lithospheric detachment model in the Tibetan Plateau.

       

    • loading
    • Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0
      Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
      Chen, J. L., Xu, J. F., Kang, Z. Q., et al., 2007. Geochemistry and Origin of Miocene Volcanic Rocks in Cazé Area, South-Western Qinghai-Xizang Plateau. Geochimica, 36(5): 437-447 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200705002
      Chen, J. L., Xu, J. F., Wang, B. D., et al., 2010. Origin of Cenozoic Alkaline Potassic Volcanic Rocks at KonglongXiang, Lhasa Terrane, Tibetan Plateau: Products of Partial Melting of a Mafic Lower-Crustal Source?. Chemical Geology, 273(3-4): 286-299. https://doi.org/10.1016/j.chemgeo.2010.03.003
      Chen, X. J., Xu, Z. Q., Meng, Y. K., et al., 2014. Petrogenesis of Miocene Adakitic Diorite-Porphyrite in Middle Gangdese Batholith, Southern Tibet: Constraints from Geochemistry, Geochronology and Sr-Nd-Hf Isotopes. Acta Petrologica Sinica, 30(8): 2253-2268 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408010
      Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet. Geology, 31(11): 1021. https://doi.org/10.1130/g19796.1
      Chung, S. L., Chu, M. F., Ji, J. Q., et al., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites. Tectonophysics, 477(1-2): 36-48. https://doi.org/10.1016/j.tecto.2009.08.008
      Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
      Foley, S. F., Venturelli, G., Green, D. H., et al., 1987. The Ultrapotassic Rocks: Characteristics, Classification, and Constraints for Petrogenetic Models. Earth-Science Reviews, 24(2): 81-134. https://doi.org/10.1016/0012-8252(87)90001-8
      Guo, Z. F., Wilson, M., Liu, J. Q., 2007. Post-Collisional Adakites in South Tibet: Products of Partial Melting of Subduction-Modified Lower Crust. Lithos, 96(1-2): 205-224. https://doi.org/10.1016/j.lithos.2006.09.011
      Guo, Z. F., Wilson, M., Zhang, M. L., et al., 2015. Post-Collisional Ultrapotassic Mafic Magmatism in South Tibet: Products of Partial Melting of Pyroxenite in the Mantle Wedge Induced by Roll-Back and Delamination of the Subducted Indian Continental Lithosphere Slab. Journal of Petrology, 56(7): 1365-1406. https://doi.org/10.1093/petrology/egv040
      Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h
      Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East–west Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. https://doi.org/10.1016/s0012-821x(04)00007-x
      Kadioglu, Y. K., Dilek, Y., 2010. Structure and Geochemistry of the Adakitic Horoz Granitoid, Bolkar Mountains, South-Central Turkey, and Its Tectonomagmatic Evolution. International Geology Review, 52(4-6): 505-535. https://doi.org/10.1080/09507110902954847
      Kay, R. W., Kay, S.M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1-3): 177-189. https://doi.org/10.1016/0040-1951(93)90295-u
      Liu, D., 2017. Geochemistry and Petrogenesis of Post-collisional Potassic and Utrapotassic Rocks in Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Liu, D., Zhao, Z. D., Zhu, D. C., et al., 2014a. Zircon Xenocrysts in Tibetan Ultrapotassic Magmas: Imaging the Deep Crust through Time. Geology, 42(1): 43-46. https://doi.org/10.1130/g34902.1
      Liu, D., Zhao, Z. D., Zhu, D. C., et al., 2014b. Postcollisional Potassic and Ultrapotassic Rocks in Southern Tibet: Mantle and Crustal Origins in Response to India-Asia Collision and Convergence. Geochimica et Cosmochimica Acta, 143: 207-231. https://doi.org/10.1016/j.gca.2014.03.031
      Ma, X. X., Xu, Z. Q., Chen, X. J., et al., 2017. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 28(2): 265-282. https://doi.org/10.1007/s12583-016-0925-8
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      Meng, Y. K., Ma, S. W., Xu, Z. Q., et al., 2018. Geochronology, Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt. Earth Science, 43(4): 1142-1171 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.713
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Miller, C., Schuster, R., Klotzli, U., et al., 1999. Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 40(9): 1399-1424. https://doi.org/10.1093/petroj/40.9.1399
      Nomade, S., Renne, P. R., Mo, X. X., et al., 2004. Miocene Volcanism in the Lhasa Block, Tibet: Spatial Trends and Geodynamic Implications. Earth and Planetary Science Letters, 221(1-4): 227-243. https://doi.org/10.1016/s0012-821x(04)00072-x
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      Qu, X. M., Hou, Z. Q., Li, Y., 2004. Melt Components Derived from a Subducted Slab in Late Orogenic Ore-Bearing Porphyries in the Gangdese Copper Belt, Southern Tibetan Plateau. Lithos, 74(3-4): 131-148. https://doi.org/10.1016/s0024-4937(04)00027-1
      Sun, C. G., Zhao, Z. D., Mo, X. X., et al., 2008. Enriched Mantle Source and Petrogenesis of Sailipu Ultrapotassic Rocks in Southwestern Tibetan Plateau:Constraints from Zircon U-Pb Geochronology and Hf Isotopic Compositions. Acta Petrologica Sinica, 24(2): 249-264 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b1f3203436d0914bd26209ce17d4feac&encoded=0&v=paper_preview&mkt=zh-cn
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, J. X., Wang, Q., Yang, H. H., et al., 2017. Mineralization, Exploration and Resource Potential of Porphyry-Skarn-Epithermal Copper Polymetallic Deposits in Tibet. Acta Geoscientia Sinica, 38(5): 571-613 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201705002
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      Wang, B., Xie, C. M., Li, C., et al., 2017. The Discovery of Wenmulang Ophiolite in Songduo Area of the Tibetan Plateau and Its Geological Significance. Geological Bulletin of China, 36(11): 2076-2081 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201711017
      Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070
      Wang, Q., Zhu, D. C., Cawood, P. A., et al., 2015. Eocene Magmatic Processes and Crustal Thickening in Southern Tibet: Insights from Strongly Fractionated Ca. 43Ma Granites in the Western Gangdese Batholith. Lithos, 239: 128-141. https://doi.org/10.1016/j.lithos.2015.10.003
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
      Wei, Y. Q., 2017. Mesozoic Volcanic and Sedimentary Rocks on the Southern Margin of Lhasa Terrane, Southern Tibet: Geochronology, Geochemistry and Tectonic Implications (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Williams, H. M., 2004. Nature of the Source Regions for Post-Collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling. Journal of Petrology, 45(3): 555-607. https://doi.org/10.1093/petrology/egg094
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science in China (Series D), 47(7): 745-765 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201708010
      Xu, W. C., Zhang, H. F., Guo, L., et al., 2010. Miocene High Sr/Y Magmatism, South Tibet: Product of Partial Melting of Subducted Indian Continental Crust and Its Tectonic Implication. Lithos, 114(3-4): 293-306. https://doi.org/10.1016/j.lithos.2009.09.005
      Yang, D. M., He, Z. H., Huang, Y. C., et al., 2005. Metamorphism Characteristics of Songduo Group in Menba Township Mozhugongka County, Tibet and the Discussion on Its Age. Journal of Jilin University (Earth Science Edition), 35(4): 430-435 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200504004
      Zheng, Y. C., Hou, Z. Q., Li, Q. Y., et al., 2012. Origin of Late Oligocene Adakitic Intrusives in the Southeastern Lhasa Terrane: Evidence from in Situ Zircon U-Pb Dating, Hf-O Isotopes, and Whole-Rock Geochemistry. Lithos, 148: 296-311. https://doi.org/10.1016/j.lithos.2012.05.026
      Zhang, Q., Ran, H., Li, C. D., 2012. A-Type Granite: What is the Essence?. Acta Petrologica et Mineralogica, 31(4):621-626 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_8c2890609571b9a5f39733c2b59b003c
      Zhao, Z. D., Mo, X. X., Nomade, S., et al., 2006. Post-Collisional Ultrapotassic Rocks in Lhasa Block, Tibetan Plateau: Spatial and Temporal Distribution and Its' Implications. Acta Petrologica Sinica, 22(4): 787-794 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=5b842cb5c28cd916ca619e87f192869d&encoded=0&v=paper_preview&mkt=zh-cn
      陈建林, 许继峰, 康志强, 等, 2007.青藏高原西南部查孜地区中新世钾质火山岩地球化学及其成因.地球化学, 36(5): 437-447. doi: 10.3321/j.issn:0379-1726.2007.05.002
      陈希节, 许志琴, 孟元库, 等, 2014.冈底斯带中段中新世埃达克质岩浆作用的年代学、地球化学及Sr-Nd-Hf同位素制约.岩石学报, 30(8): 2253-2268. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408010
      刘栋, 2017.青藏高原后碰撞钾质-超钾质岩石的地球化学特征与岩石成因(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017126687.htm
      孟元库, 马士委, 许志琴, 等, 2018.冈底斯带甲玛矿区花岗斑岩类年代学、地球化学及岩石成因.地球科学, 43(4): 1142-1171. http://earth-science.net/WebPage/Article.aspx?id=3787
      孙晨光, 赵志丹, 莫宣学, 等, 2008.青藏高原西南部赛利普超钾质火山岩富集地幔源区和岩石成因: 锆石U-Pb年代学和Hf同位素制约.岩石学报, 24(2): 249-264. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200802008.htm
      唐菊兴, 王勤, 杨欢欢, 等, 2017.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力.地球学报, 38(5): 571-613. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705002
      王斌, 解超明, 李才, 等, 2017.青藏高原松多地区温木朗蛇绿岩的发现及其地质意义.地质通报, 36(11): 2076-2081. doi: 10.3969/j.issn.1671-2552.2017.11.017
      魏友卿, 2017.西藏拉萨地体南缘中生代火山岩与碎屑沉积岩的年代学、地球化学及构造意意义(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017126688.htm
      吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学(D辑), 47(7): 745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001
      杨德明, 和钟铧, 黄映聪, 等, 2005.西藏墨竹工卡县门巴地区松多岩群变质作用特征及时代讨论.吉林大学学报(地球科学版), 35(4):430-435. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200504004
      张旗, 冉皞, 李承东, 2012. A型花岗岩的实质是什么.岩石矿物学杂志, 31(4):621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014
      赵志丹, 莫宣学, Nomade, S., 等, 2006.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义.岩石学报, 22(4): 787-794. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604003
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(3)

      Article views (4934) PDF downloads(59) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return