• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 5
    May  2020
    Turn off MathJax
    Article Contents
    Zhang Xin, Chen Honghan, Kong Lingtao, Long Zhao, 2020. The Coupling Relationship between Paleofluid Pressure Evolution and Hydrocarbon-Charging Events in the Deep of Biyang Depression, Central China. Earth Science, 45(5): 1769-1781. doi: 10.3799/dqkx.2019.187
    Citation: Zhang Xin, Chen Honghan, Kong Lingtao, Long Zhao, 2020. The Coupling Relationship between Paleofluid Pressure Evolution and Hydrocarbon-Charging Events in the Deep of Biyang Depression, Central China. Earth Science, 45(5): 1769-1781. doi: 10.3799/dqkx.2019.187

    The Coupling Relationship between Paleofluid Pressure Evolution and Hydrocarbon-Charging Events in the Deep of Biyang Depression, Central China

    doi: 10.3799/dqkx.2019.187
    • Received Date: 2019-05-22
    • Publish Date: 2020-05-15
    • The deep area of Biyang depression contains considerable lithologic hydrocarbon reservoirs, and the present pressure is mostly shown as normal-weak overpressure system. In this study, the paleopressure evolution history of the deep depression has been revealed combining with the numerical simulation and thermodynamics of fluid inclusion. The hydrocarbon generation history shows that the Biyang depression reached the peak of hydrocarbon generation when it reached the maximum burial depth at the end of the sedimentation of the Liaozhuang Formation (about 23.03 Ma). After the formation uplift, the hydrocarbon generation weakened and approached to a stop. Two different oil inclusions were detected in the deep sandstone reservoir, which were the orange-yellow fluorescent oil inclusion with low maturity and the blue-green fluorescent oil inclusion with relatively high maturity. The homogenization temperature of the inclusion combined with the burial history chart shows that the hydrocarbon charging time is 35.4-30.3 Ma and 27.8-26.5 Ma respectively. The numerical simulation results show that the pressure in the deep continued to increase from 39.3 Ma, and reached an obviously overpressure at about 23.03 Ma at the deepest burial. The pressure coefficient reached to about 1.5, and then the overpressure weakened and evolved into the present normal-weak overpressure system. The paleo-pressure of the thermodynamic simulation of the inclusions also shows a similar evolutionary trend. In conclusion, the coupling of the hydrocarbon generation period, the charging event and the overpressure period indicate that the present lithologic reservoir in deep is attributed to two-stage hydrocarbon charging driven by overpressure caused by hydrocarbon generation.

       

    • loading
    • Bao, Y. S., Zhang, L. Y., Zhang, S. C., et al., 2008. The Deep Abnormal Pressure and the Formation of Lithologic Reservoir in Dongying Sag. Xinjiang Petroleum Geology, 29(5):585-587 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjsydz200805013
      Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 53(10):2649-2657. doi: 10.1016/0016-7037(89)90136-1
      Chen, H. H., 2007. Advances in Geochronology of Hydrocarbon Accumulation. Oil & Gas Geology, 28(2):143-150 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201412007
      Chen, H. H., 2014. Microspectrofluorimetric Characterization and Thermal Maturity Assessment of Individual Oil Inclusion. Acta Petrolei Sinica, (3):584-590 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201403023
      Dong, T., He, S., Ling, D. Q., 2013. Organic Geochemical Characteristics and Thermal Evolution Maturity History Modeling of Source Rocks in Eocene Hetaoyuan Formation of Biyang Sag, Nanxiang Basin. Petroleum Geology & Experiment, 35(2):187-194 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201302016
      Fu, Y., Zhang, Y. A., Wang, W. X., 2008. The Controlling Factors and Abnormal Forming Mechanisms of Geothermal Field in Biyang Depression. Journal of Henan Polytechnic University (Natural Science), 27(2):177-181 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzgxyxb200802010
      Galamay, A. R., Bukowski, K., Czapowski, G., 2003. Chemical Composition of Brine Inclusions in Halite from Clayey Salt (Zuber) Facies from the Upper Teritary (Miocene) Evaporate Basin (Poland). Journal of Geochemical Exploration, 78-79:509-511. doi: 10.1016/S0375-6742(03)00080-3
      Grimmer, J. O. W., Pironon, J., Teinturier, S., et al., 2003. Recognition and Differentiation of Gas Condensates and Other Oil Types Using Microthermometry of Petroleum Inclusions. Journal of Geochemical Exploration, 78-79:367-371. doi: 10.1016/S0375-6742(03)00137-7
      Hu, M., Wei, C. P., Wang, C. F., et al., 2009. Reconstruction of Paleogene Palaeogeomorphology of the Southern Steep Slope in Biyang Sag of Nanxiang Basin. Complex Hydrocarbon Reservoirs, 2(4):12-16 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200902390353
      Jia, Q. S., Yin, W., 2006. Discussion on Pool-Forming and Its Exploration Potential in Gucheng Oilfield, Biyang Sag. China Petroleum Exploration, 11(3):30-34 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt200603006
      Li, H., 2009. Tcetonic Characters and Their Dominancy in Hydrocarbon Accumulation at Complicated Faulted Area: A Case at Gucheng- Gaozhuang Block, Biyang Depression. China University of Geoscience, Beijing (in Chinese with English abstract).
      Li, S. F., Hu, S. Z., He, S., et al., 2010. Oil-Source Correlation for Biodegraded Oils in the North Slope of the Biyang Depression. Acta Petrolei Sinica, 31(6):946-951(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201006012
      Liu, K. Y., Eadington, P., 2003. A New Method for Identifying Secondary Oil Migration Pathways. Journal of Geochemical Exploration, 78-79:389-394. doi: 10.1016/S0375-6742(03)00078-5
      Liu, W. B., Yao, S. P., Hu, W. X., et al., 2003. Research Method and Application of Fluid Inclusion. Xinjiang Petroleum Geology, 24(3):264-267 (in Chinese with English abstract). http://www.researchgate.net/publication/285464155_Research_methods_and_application_of_fluid_inclusions?_sg=4sZPwvGlpjqyTeceHSzbyg7OdoohBic3TrrnEBNsXVvQ_kXnz5vKHX3Agc-c335y6GIyyDKXdmSdknm1q2zahA
      Lu, Z. Y., Chen, H. H., Yun, L., et al., 2016. The Coupling Relationship between Hydrothermal Fluids and the Hydrocarbon Gas Accumulation in Ordovician of Shunnan Gentle Slope, Northern Slope of Tazhong Uplift. Earth Science, 41(3):487-498 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201603016
      Okubo, S., 2005. Effects of Thermal Cracking of Hydrocarbon on the Homogenization Temperature of Fluid Inclusions from Niigata Oil and Gas Fields, Japan. Applied Geochemistry, 20:255-260. doi: 10.1016/j.apgeochem.2004.09.001
      Qin, W. J., Ling, D. Q., Cheng, Z., 2005. Hydrocarbon Accumulation and Reservoiring Pattern in Biyang Depression, Nangxiang Basin. Oil & Gas Geology, 26(5):668-673 (in Chinese with English abstract). doi: 10.1016/j.molcatb.2005.02.001
      Qiu, N. S., Liu, W., Xu, Q. C., et al., 2018. Temperature-Pressure Field and Hydrocarbon Accumulation in Deep-Ancient Marine Strata. Earth Science, 43(10):181-195(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201810014
      Tseng, H. S., Pottorf, R. J., 2002. Fluid Inclusion Constraints on Petroleum PVT and Compositional History of the Greater Alwyn-South Brent Petroleum System, Northern North Sea. Marine and Petroleum Geology, 19:797-809. doi: 10.1016/S0264-8172(02)00088-0
      Wang, M., Qing, W. J., Zhao, Z., 2001. Pool-Forming Condition and Accumulation Regularity of Oils and Gases in Biyang Depression, Nanxiang Basin. Oil & Gas Geology, 22(2):169-172 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200102019
      Wang, Z. Y., Qi, J. F., Zhang, Y. F., et al., 2004. Cenozoic Structural Characteristics and Mechanism and Their Relationship with Oil and Gas Reservoir in the Biyang Depression. Acta Petrolei Sinica, 78(3):332-344 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200403006
      Xia, D. L., Yin, W., Li, Z., 2010. Hydrocarbon Accumulation Process in South Steep Slope, Biyang Sag, Nanxiang Basin. Petroleum Geology & Experiment, 32(3):247-251 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201003009
      包友书, 张林晔, 张守春, 等, 2008.东营凹陷深部异常高压与岩性油气藏的形成.新疆石油地质, 29(5):585-587. http://d.old.wanfangdata.com.cn/Periodical/xjsydz200805013
      陈红汉, 2007.油气成藏年代学研究进展.石油与天然气地质, 28(2):143-150. doi: 10.3321/j.issn:0253-9985.2007.02.003
      陈红汉, 2014.单个油包裹体显微荧光特性与热成熟度评价.石油学报, (3):584-590. http://d.old.wanfangdata.com.cn/Periodical/syxb201403023
      董田, 何生, 林社卿, 2013.泌阳凹陷核桃园组烃源岩有机地化特征及热演化成熟史.石油实验地质, 35(2):187-194. http://d.old.wanfangdata.com.cn/Periodical/sysydz201302016
      符勇, 张友安, 王万新, 2008.泌阳凹陷地温场控制因素与地温异常形成机制.河南理工大学学报(自然科学版), 27(2):177-181. doi: 10.3969/j.issn.1673-9787.2008.02.010
      胡敏, 魏迟鹏, 王朝锋, 等, 2009.南襄盆地泌阳凹陷南部陡坡带古近系古地貌恢复.复杂油气藏, 2(4):12-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200902390353
      贾庆素, 尹伟, 2006.泌阳凹陷古城油田油气成藏过程分析及勘探方向.中国石油勘探, 11(3):30-34. doi: 10.3969/j.issn.1672-7703.2006.03.006
      李辉, 2009.泌阳凹陷古城-高庄复杂断裂带构造特征及控油作用.北京:中国地质大学.
      李水福, 胡守志, 何生, 等, 2010.泌阳凹陷北部斜坡带生物降解油的油源对比.石油学报, 31(6):946-951. doi: 10.3969/j.issn.1001-8719.2010.06.019
      刘文斌, 姚素平, 胡文暄, 等, 2003.流体包裹体的研究方法及应用.新疆石油地质, 24(3):264-267. doi: 10.3969/j.issn.1001-3873.2003.03.027
      鲁子野, 陈红汉, 云露, 等, 2016.塔中顺南缓坡奥陶系热流体活动与天然气成藏的耦合关系.地球科学, 41(3):487-498. doi: 10.3799/dqkx.2016.040
      秦伟军, 林社卿, 程哲, 2005.南襄盆地泌阳凹陷油气成藏作用及成藏模式.石油与天然气地质, 26(5):668-673. doi: 10.3321/j.issn:0253-9985.2005.05.018
      邱楠生, 刘雯, 徐秋晨, 等, 2018.深层-古老海相层系温压场与油气成藏.地球科学, 43(10):181-195. doi: 10.3799/dqkx.2018.286
      王敏, 秦伟军, 赵追, 2001.南襄盆地泌阳凹陷油气藏形成条件及聚集规律.石油与天然气地质, 22(2):169-172. doi: 10.3321/j.issn:0253-9985.2001.02.019
      王子煜, 漆家福, 张永华, 等, 2004.泌阳凹陷新生代构造特征与形成机制及其与油气成藏的关系.地质学报, 78(3):332-344. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200403006
      夏东领, 尹伟, 李治, 2010.南襄盆地泌阳凹陷南部陡坡带油气成藏过程分析.石油实验地质, 32(3):247-251. doi: 10.3969/j.issn.1001-6112.2010.03.009
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(1)

      Article views (1914) PDF downloads(59) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return