Citation: | Li Huawei, Dong Guochen, Dong Pengsheng, Tang Jiahui, Wang Shushu, 2020. Titanite Chemical Compositions and Their Implications for Petrogenesis and Mineralization in Zhongdian Arc, NW Yunnan, China. Earth Science, 45(6): 1999-2010. doi: 10.3799/dqkx.2019.193 |
Aleinikoff, J.N., Wintsch, R.P., Fanning, C.M., et al., 2002.U-Pb Geochronology of Zircon and Polygenetic Titanite from the Glastonbury Complex, Connecticut, USA:An Integrated SEM, EMPA, TIMS, and SHRIMP Study.Chemical Geology, 188(1-2):125-147. https://doi.org/10.1016/s0009-2541(02)00076-1
|
Audétat, A., 2015.Compositional Evolution and Formation Conditions of Magmas and Fluids Related to Porphyry Mo Mineralization at Climax, Colorado.Journal of Petrology, 56(8):1519-1546. https://doi.org/10.1093/petrology/egv044
|
Audétat, A., Dolejš, D., Lowenstern, J.B., 2011.Molybdenite Saturation in Silicic Magmas:Occurrence and Petrological Implications.Journal of Petrology, 52(5):891-904. https://doi.org/10.1093/petrology/egr008
|
Bachmann, O., Dungan, M.A., Lipman, P.W., 2002.The Fish Canyon Magma Body, San Juan Volcanic Field, Colorado:Rejuvenation and Eruption of an Upper-Crustal Batholith.Journal of Petrology, 43(8):1469-1503. https://doi.org/10.1093/petrology/43.8.1469
|
Ballard, J.R., Palin, M.J., Campbell, I.H., 2002.Relative Oxidation States of Magmas Inferred from Ce(Ⅳ)/Ce(Ⅲ) in Zircon:Application to Porphyry Copper Deposits of Northern Chile.Contributions to Mineralogy and Petrology, 144(3):347-364. https://doi.org/10.1007/s00410-002-0402-5
|
Cao, K., Yang, Z.M., Mavrogenes, J., et al., 2019.Geology and Genesis of the Giant Pulang Porphyry Cu-Au District, Yunnan, SW China.Economic Geology, 114(2):275-301. https://doi.org/10.5382/econgeo.2019.4631
|
Cao, K., Yang, Z.M., Xu, J.F., et al., 2018.Origin of Dioritic Magma and Its Contribution to Porphyry Cu-Au Mineralization at Pulang in the Yidun Arc, Eastern Tibet.Lithos, 304-307:436-449. https://doi.org/10.1016/j.lithos.2018.02.018
|
Cao, M.J., Qin, K.Z., Li, G.M., et al., 2015.In Situ LA-(MC)-ICP-MS Trace Element and Nd Isotopic Compositions and Genesis of Polygenetic Titanite from the Baogutu Reduced Porphyry Cu Deposit, Western Junggar, NW China.Ore Geology Reviews, 65:940-954. https://doi.org/10.1016/j.oregeorev.2014.07.014
|
Carlier, G., Lorand, J.P., 2008.Zr-Rich Accessory Minerals (Titanite, Perrierite, Zirconolite, Baddeleyite) Record Strong Oxidation Associated with Magma Mixing in the South Peruvian Potassic Province.Lithos, 104(1-4):54-70. https://doi.org/10.1016/j.lithos.2007.11.008
|
Celis, A., 2015.Titanite as an Indicator Mineral for Alkalic Porphyry Cu-Au Deposits in South-Central British Columbia (Dissertation).University of British Columbia, Columbia.
|
Che, X.D., Linnen, R.L., Wang, R.C., et al., 2013.Distribution of Trace and Rare Earth Elements in Titanite from Tungsten and Molybdenum Deposits in Yukon and British Columbia, Canada.The Canadian Mineralogist, 51(3):415-438. https://doi.org/10.3749/canmin.51.3.415
|
Frost, B.R., Chamberlain, K.R., Schumacher, J.C., 2001.Sphene (Titanite):Phase Relations and Role as a Geochronometer.Chemical Geology, 172(1/2):131-148. https://doi.org/10.1016/s0009-2541(00)00240-0
|
Gao, X., 2018.The Late Cretaceous Polymetallic Mineralization Related to Granitoid Systems in the Yidun Terrane, East Tibet (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract)
|
Giordano, D., Russell, J.K., Dingwell, D.B., 2008.Viscosity of Magmatic Liquids:A Model.Earth and Planetary Science Letters, 271(1-4):123-134. https://doi.org/10.1016/j.epsl.2008.03.038
|
Graham, A.L., Ringwood, A.E., 1971.Lunar Basalt Genesis:The Origin of the Europium Anomaly.Earth and Planetary Science Letters, 13(1):105-115. https://doi.org/10.1016/0012-821x(71)90111-7
|
Hayden, L.A., Watson, E.B., Wark, D.A., 2007.A Thermobarometer for Sphene (Titanite).Contributions to Mineralogy and Petrology, 155(4):529-540. https://doi.org/10.1007/s00410-007-0256-y
|
Henderson, P., 1980.Rare Earth Element Partition between Sphene, Apatite and Other Coexisting Minerals of the Kangerdlugssuaq Intrusion, E.Greenland.Contributions to Mineralogy and Petrology, 72(1):81-85. doi: 10.1007/BF00375570
|
Higgins, J.B., Ribbe, P.H., 1976.The Crystal Chemistry and Space Groups of Natural and Synthetic Titanites.American Mineralogist, 61:878-888. http://www.researchgate.net/publication/237619745_The_crystal_chemistry_and_space_groups_of_natural_and_synthetic_titanites
|
Hou, Z.Q., Zaw, K., Pan, G.T., et al., 2007.Sanjiang Tethyan Metallogenesis in S.W.China:Tectonic Setting, Metallogenic Epochs and Deposit Types.Ore Geology Reviews, 31(1-4):48-87. https://doi.org/10.1016/j.oregeorev.2004.12.007
|
Icenhower, J., London, D., 1996.Experimental Partitioning of Rb, Cs, Sr, and Ba between Alkali Feldspar and Peraluminous Melt.American Mineralogist, 81(5-6):719-734. https://doi.org/10.2138/am-1996-5-619
|
Ismail, R., Ciobanu, C.L., Cook, N.J., et al., 2014.Rare Earths and Other Trace Elements in Minerals from Skarn Assemblages, Hillside Iron Oxide-Copper-Gold Deposit, Yorke Peninsula, South Australia.Lithos, 184-187:456-477. https://doi.org/10.1016/j.lithos.2013.07.023
|
Kong, D.X., Xu, J.F., Chen, J.L., 2016.Oxygen Isotope and Trace Element Geochemistry of Zircons from Porphyry Copper System:Implications for Late Triassic Metallogenesis within the Yidun Terrane, Southeastern Tibetan Plateau.Chemical Geology, 441:148-161. https://doi.org/10.1016/j.chemgeo.2016.08.012
|
Li, W.K., Yang, Z.M., Cao, K., et al., 2019.Redox-Controlled Generation of the Giant Porphyry Cu-Au Deposit at Pulang, Southwest China.Contributions to Mineralogy and Petrology, 174(2):1-34. https://doi.org/10.1007/s00410-019-1546-x
|
Liu, X.L., Li, W.C., Yin, G.H., 2013.Zircon U-Pb Age of Disuga Metallogenic Porphyries in Geza Island Arc, Yunnan Province, and Its Geological Significance.Geological Bulletin of China, 32(4):573-579(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201304005
|
Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
Pan, L.C., Hu, R.Z., Bi, X.W., et al., 2018.Titanite Major and Trace Element Compositions as Petrogenetic and Metallogenic Indicators of Mo Ore Deposits:Examples from Four Granite Plutons in the Southern Yidun Arc, SW China.American Mineralogist, 103(9):1417-1434. https://doi.org/10.2138/am-2018-6224
|
Pan, Y.N., 2017.Mineral Chemistry and Their Implications for Petrogenesis and Mineralization of the Ore-Bearing Porphyry in Zhongdian Arc in Northwestern Yunnan, China (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract).
|
Patten, C., Barnes, S.J., Mathez, E.A., et al., 2013.Partition Coefficients of Chalcophile Elements between Sulfide and Silicate Melts and the Early Crystallization History of Sulfide Liquid:LA-ICP-MS Analysis of MORB Sulfide Droplets.Chemical Geology, 358:170-188. https://doi.org/10.1016/j.chemgeo.2013.08.040
|
Richards, J.P., 2003.Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation.Economic Geology, 98(8):1515-1533. https://doi.org/10.2113/98.8.1515
|
Shi, H.Z., Fan, W.Y., Hu, Z.Z., et al., 2018.Geochronology and Geological Significance of the Pulang High-K Intermediate Acid Intrusive Rocks in the Zhongdian Area, Northwest Yunnan Province.Earth Science, 43(8):2600-2613(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808005
|
Smith, M.P., Storey, C.D., Jeffries, T.E., et al., 2009.In Situ U-Pb and Trace Element Analysis of Accessory Minerals in the Kiruna District, Norrbotten, Sweden:New Constraints on the Timing and Origin of Mineralization.Journal of Petrology, 50(11):2063-2094. https://doi.org/10.1093/petrology/egp069
|
Song, S.W., Mao, J.W., Xie, G.Q., et al., 2018.In Situ LA-ICP-MS U-Pb Geochronology and Trace Element Analysis of Hydrothermal Titanite from the Giant Zhuxi W (Cu) Skarn Deposit, South China.Mineralium Deposita, 54(4):569-590. https://doi.org/10.1007/s00126-018-0831-3
|
Tiepolo, M., Oberti, R., Vannucci, R., 2002.Trace-Element Incorporation in Titanite:Constraints from Experimentally Determined Solid/Liquid Partition Coefficients.Chemical Geology, 191(1-3):105-119. https://doi.org/10.1016/s0009-2541(02)00151-1
|
Wang, X.S., Bi, X.W., Leng, C.B., et al., 2014.Geochronology and Geochemistry of Late Cretaceous Igneous Intrusions and Mo-Cu-(W) Mineralization in the Southern Yidun Arc, SW China:Implications for Metallogenesis and Geodynamic Setting.Ore Geology Reviews, 61:73-95. https://doi.org/10.1016/j.oregeorev.2014.01.006
|
Xie, L., Wang, R.C., Chen, J., et al., 2008.Primary Sn-Rich Titianite in the Qitianling Granite, Hunan Province, Southern China:An Important Type of Tin-Bearing Mineral and Its Implications for Tin Exploration.Chinese Science Bulletin, 54(5):798-805. https://doi.org/10.1007/s11434-008-0557-1
|
Xu, L.L., Bi, X.W., Hu, R.Z., et al., 2014.LA-ICP-MS Mineral Chemistry of Titanite and the Geological Implications for Exploration of Porphyry Cu Deposits in the Jinshajiang:Red River Alkaline Igneous Belt, SW China.Mineralogy and Petrology, 109(2):181-200. https://doi.org/10.1007/s00710-014-0359-x
|
Yang, L.Q., Gao, X., Shu, Q.H., 2017.Multiple Mesozoic Porphyry-Skarn Cu (Mo-W) Systems in Yidun Terrane, East Tethys:Constraints from Zircon U-Pb and Molybdenite Re-Os Geochronology.Ore Geology Reviews, 90:813-826. https://doi.org/10.1016/j.oregeorev.2017.01.030
|
Yang, X.M., 2017.Estimation of Crystallization Pressure of Granite iIntrusions.Lithos, 286-287:324-329. https://doi.org/10.1016/j.lithos.2017.06.018
|
Yu, H.J., Li, W.C., 2016.Geochronology and Geochemistry of Xiuwacu Intrusions, NW Yunnan:Evidences for Two-Period Magmatic Activity and Mineralization.Acta Petrologica Sinica, 32(8):2265-2280(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201608003
|
Zhou, F., Wang, B.D., Liu, H., et al., 2018.Zircon U-Pb Dating, Geochemistry and Petrogenesis of Intrusive Rocks from A're Area, Zhongdian Arc.Earth Science, 43(8):2614-2627 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808006
|
高雪, 2018.义敦地体晚白垩世与侵入岩有关的多金属成矿作用(博士学位论文).北京: 中国地质大学.
|
刘学龙, 李文昌, 尹光侯, 2013.云南格咱岛弧地苏嘎成矿岩体LA-ICP-MS锆石U-Pb年龄及地质意义.地质通报, 32(4):573-579. doi: 10.3969/j.issn.1671-2552.2013.04.005
|
潘彦宁, 2017.滇西北中甸弧含矿斑岩中矿物化学特征及其成岩成矿标识(硕士学位论文).北京: 中国地质大学.
|
石洪召, 范文玉, 胡志中, 等, 2018.滇西北普朗铜矿床高钾中-酸性侵入岩年代学及其地质意义.地球科学, 43(8):2600-2613. doi: 10.3799/dqkx.2018.308
|
余海军, 李文昌, 2016.滇西北休瓦促Mo-W矿区印支晚期和燕山晚期岩浆活动与成矿作用:来自锆石U-Pb年代学和地球化学的证据.岩石学报, 32(8):2265-2280. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201608003.htm
|
周放, 王保弟, 刘函, 等, 2018.中甸弧阿热岩体锆石U-Pb年龄、地球化学特征及岩石成因.地球科学, 43(8):2614-2627. doi: 10.3799/dqkx.2018.126
|
![]() |
![]() |