• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 6
    Jun.  2020
    Turn off MathJax
    Article Contents
    Li Huawei, Dong Guochen, Dong Pengsheng, Tang Jiahui, Wang Shushu, 2020. Titanite Chemical Compositions and Their Implications for Petrogenesis and Mineralization in Zhongdian Arc, NW Yunnan, China. Earth Science, 45(6): 1999-2010. doi: 10.3799/dqkx.2019.193
    Citation: Li Huawei, Dong Guochen, Dong Pengsheng, Tang Jiahui, Wang Shushu, 2020. Titanite Chemical Compositions and Their Implications for Petrogenesis and Mineralization in Zhongdian Arc, NW Yunnan, China. Earth Science, 45(6): 1999-2010. doi: 10.3799/dqkx.2019.193

    Titanite Chemical Compositions and Their Implications for Petrogenesis and Mineralization in Zhongdian Arc, NW Yunnan, China

    doi: 10.3799/dqkx.2019.193
    • Received Date: 2019-04-01
    • Publish Date: 2020-06-15
    • Zhongdian arc is located in the southern section of the Yidun arc at the Sanjiang Tethys, Southwest China. It is known as the Indosinian porphyry copper deposits and the Yanshanian skarn-hydrothermal quartz vein Mo-W-Cu deposits. In this paper, it was measured the titanite chemical compositions from ore-forming rocks of Pulang, Disuga and Xiuwacu with EMPA and LA-ICP-MS to discuss their implications for petrogenesis and mineralization. The titanites from Pulang, Disuga and Xiuwacu are all of magmatic origin. The titanite formation temperature from Pulang pluton is 743-754 ℃, and 702-753 ℃ from Xiuwacu pluton. Based on the δCe, δEu from titanites, it can be inferred that the order of oxygen fugacity of these plutons is: Pulang > Disuga > Xiuwacu. It requires high magma oxygen fugacity for Cu mineralization, but the Cu contents in titanite are insensitive to the content variations of Cu in magma, which can not be used as an indication of the Cu contents in magma. Mo mineralization does not require high magma oxygen fugacity, and the magma oxygen fugacity and crystalization of molybdenite need to be thought when we use the Mo contents of titanite to determine the Mo fertility in magma. The F contents in magma can reduce magma viscosity and promote Mo mineralization which can be an indication for Mo mineralization. The W and Sn contents in the titanite is a good indication of the Mo-W mineralization, and the W and Sn contents in the Xiuwacu Mo-W deposit are higher than those in the Pulang and Disuga.

       

    • loading
    • Aleinikoff, J.N., Wintsch, R.P., Fanning, C.M., et al., 2002.U-Pb Geochronology of Zircon and Polygenetic Titanite from the Glastonbury Complex, Connecticut, USA:An Integrated SEM, EMPA, TIMS, and SHRIMP Study.Chemical Geology, 188(1-2):125-147. https://doi.org/10.1016/s0009-2541(02)00076-1
      Audétat, A., 2015.Compositional Evolution and Formation Conditions of Magmas and Fluids Related to Porphyry Mo Mineralization at Climax, Colorado.Journal of Petrology, 56(8):1519-1546. https://doi.org/10.1093/petrology/egv044
      Audétat, A., Dolejš, D., Lowenstern, J.B., 2011.Molybdenite Saturation in Silicic Magmas:Occurrence and Petrological Implications.Journal of Petrology, 52(5):891-904. https://doi.org/10.1093/petrology/egr008
      Bachmann, O., Dungan, M.A., Lipman, P.W., 2002.The Fish Canyon Magma Body, San Juan Volcanic Field, Colorado:Rejuvenation and Eruption of an Upper-Crustal Batholith.Journal of Petrology, 43(8):1469-1503. https://doi.org/10.1093/petrology/43.8.1469
      Ballard, J.R., Palin, M.J., Campbell, I.H., 2002.Relative Oxidation States of Magmas Inferred from Ce(Ⅳ)/Ce(Ⅲ) in Zircon:Application to Porphyry Copper Deposits of Northern Chile.Contributions to Mineralogy and Petrology, 144(3):347-364. https://doi.org/10.1007/s00410-002-0402-5
      Cao, K., Yang, Z.M., Mavrogenes, J., et al., 2019.Geology and Genesis of the Giant Pulang Porphyry Cu-Au District, Yunnan, SW China.Economic Geology, 114(2):275-301. https://doi.org/10.5382/econgeo.2019.4631
      Cao, K., Yang, Z.M., Xu, J.F., et al., 2018.Origin of Dioritic Magma and Its Contribution to Porphyry Cu-Au Mineralization at Pulang in the Yidun Arc, Eastern Tibet.Lithos, 304-307:436-449. https://doi.org/10.1016/j.lithos.2018.02.018
      Cao, M.J., Qin, K.Z., Li, G.M., et al., 2015.In Situ LA-(MC)-ICP-MS Trace Element and Nd Isotopic Compositions and Genesis of Polygenetic Titanite from the Baogutu Reduced Porphyry Cu Deposit, Western Junggar, NW China.Ore Geology Reviews, 65:940-954. https://doi.org/10.1016/j.oregeorev.2014.07.014
      Carlier, G., Lorand, J.P., 2008.Zr-Rich Accessory Minerals (Titanite, Perrierite, Zirconolite, Baddeleyite) Record Strong Oxidation Associated with Magma Mixing in the South Peruvian Potassic Province.Lithos, 104(1-4):54-70. https://doi.org/10.1016/j.lithos.2007.11.008
      Celis, A., 2015.Titanite as an Indicator Mineral for Alkalic Porphyry Cu-Au Deposits in South-Central British Columbia (Dissertation).University of British Columbia, Columbia.
      Che, X.D., Linnen, R.L., Wang, R.C., et al., 2013.Distribution of Trace and Rare Earth Elements in Titanite from Tungsten and Molybdenum Deposits in Yukon and British Columbia, Canada.The Canadian Mineralogist, 51(3):415-438. https://doi.org/10.3749/canmin.51.3.415
      Frost, B.R., Chamberlain, K.R., Schumacher, J.C., 2001.Sphene (Titanite):Phase Relations and Role as a Geochronometer.Chemical Geology, 172(1/2):131-148. https://doi.org/10.1016/s0009-2541(00)00240-0
      Gao, X., 2018.The Late Cretaceous Polymetallic Mineralization Related to Granitoid Systems in the Yidun Terrane, East Tibet (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract)
      Giordano, D., Russell, J.K., Dingwell, D.B., 2008.Viscosity of Magmatic Liquids:A Model.Earth and Planetary Science Letters, 271(1-4):123-134. https://doi.org/10.1016/j.epsl.2008.03.038
      Graham, A.L., Ringwood, A.E., 1971.Lunar Basalt Genesis:The Origin of the Europium Anomaly.Earth and Planetary Science Letters, 13(1):105-115. https://doi.org/10.1016/0012-821x(71)90111-7
      Hayden, L.A., Watson, E.B., Wark, D.A., 2007.A Thermobarometer for Sphene (Titanite).Contributions to Mineralogy and Petrology, 155(4):529-540. https://doi.org/10.1007/s00410-007-0256-y
      Henderson, P., 1980.Rare Earth Element Partition between Sphene, Apatite and Other Coexisting Minerals of the Kangerdlugssuaq Intrusion, E.Greenland.Contributions to Mineralogy and Petrology, 72(1):81-85. doi: 10.1007/BF00375570
      Higgins, J.B., Ribbe, P.H., 1976.The Crystal Chemistry and Space Groups of Natural and Synthetic Titanites.American Mineralogist, 61:878-888. http://www.researchgate.net/publication/237619745_The_crystal_chemistry_and_space_groups_of_natural_and_synthetic_titanites
      Hou, Z.Q., Zaw, K., Pan, G.T., et al., 2007.Sanjiang Tethyan Metallogenesis in S.W.China:Tectonic Setting, Metallogenic Epochs and Deposit Types.Ore Geology Reviews, 31(1-4):48-87. https://doi.org/10.1016/j.oregeorev.2004.12.007
      Icenhower, J., London, D., 1996.Experimental Partitioning of Rb, Cs, Sr, and Ba between Alkali Feldspar and Peraluminous Melt.American Mineralogist, 81(5-6):719-734. https://doi.org/10.2138/am-1996-5-619
      Ismail, R., Ciobanu, C.L., Cook, N.J., et al., 2014.Rare Earths and Other Trace Elements in Minerals from Skarn Assemblages, Hillside Iron Oxide-Copper-Gold Deposit, Yorke Peninsula, South Australia.Lithos, 184-187:456-477. https://doi.org/10.1016/j.lithos.2013.07.023
      Kong, D.X., Xu, J.F., Chen, J.L., 2016.Oxygen Isotope and Trace Element Geochemistry of Zircons from Porphyry Copper System:Implications for Late Triassic Metallogenesis within the Yidun Terrane, Southeastern Tibetan Plateau.Chemical Geology, 441:148-161. https://doi.org/10.1016/j.chemgeo.2016.08.012
      Li, W.K., Yang, Z.M., Cao, K., et al., 2019.Redox-Controlled Generation of the Giant Porphyry Cu-Au Deposit at Pulang, Southwest China.Contributions to Mineralogy and Petrology, 174(2):1-34. https://doi.org/10.1007/s00410-019-1546-x
      Liu, X.L., Li, W.C., Yin, G.H., 2013.Zircon U-Pb Age of Disuga Metallogenic Porphyries in Geza Island Arc, Yunnan Province, and Its Geological Significance.Geological Bulletin of China, 32(4):573-579(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201304005
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Pan, L.C., Hu, R.Z., Bi, X.W., et al., 2018.Titanite Major and Trace Element Compositions as Petrogenetic and Metallogenic Indicators of Mo Ore Deposits:Examples from Four Granite Plutons in the Southern Yidun Arc, SW China.American Mineralogist, 103(9):1417-1434. https://doi.org/10.2138/am-2018-6224
      Pan, Y.N., 2017.Mineral Chemistry and Their Implications for Petrogenesis and Mineralization of the Ore-Bearing Porphyry in Zhongdian Arc in Northwestern Yunnan, China (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract).
      Patten, C., Barnes, S.J., Mathez, E.A., et al., 2013.Partition Coefficients of Chalcophile Elements between Sulfide and Silicate Melts and the Early Crystallization History of Sulfide Liquid:LA-ICP-MS Analysis of MORB Sulfide Droplets.Chemical Geology, 358:170-188. https://doi.org/10.1016/j.chemgeo.2013.08.040
      Richards, J.P., 2003.Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation.Economic Geology, 98(8):1515-1533. https://doi.org/10.2113/98.8.1515
      Shi, H.Z., Fan, W.Y., Hu, Z.Z., et al., 2018.Geochronology and Geological Significance of the Pulang High-K Intermediate Acid Intrusive Rocks in the Zhongdian Area, Northwest Yunnan Province.Earth Science, 43(8):2600-2613(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808005
      Smith, M.P., Storey, C.D., Jeffries, T.E., et al., 2009.In Situ U-Pb and Trace Element Analysis of Accessory Minerals in the Kiruna District, Norrbotten, Sweden:New Constraints on the Timing and Origin of Mineralization.Journal of Petrology, 50(11):2063-2094. https://doi.org/10.1093/petrology/egp069
      Song, S.W., Mao, J.W., Xie, G.Q., et al., 2018.In Situ LA-ICP-MS U-Pb Geochronology and Trace Element Analysis of Hydrothermal Titanite from the Giant Zhuxi W (Cu) Skarn Deposit, South China.Mineralium Deposita, 54(4):569-590. https://doi.org/10.1007/s00126-018-0831-3
      Tiepolo, M., Oberti, R., Vannucci, R., 2002.Trace-Element Incorporation in Titanite:Constraints from Experimentally Determined Solid/Liquid Partition Coefficients.Chemical Geology, 191(1-3):105-119. https://doi.org/10.1016/s0009-2541(02)00151-1
      Wang, X.S., Bi, X.W., Leng, C.B., et al., 2014.Geochronology and Geochemistry of Late Cretaceous Igneous Intrusions and Mo-Cu-(W) Mineralization in the Southern Yidun Arc, SW China:Implications for Metallogenesis and Geodynamic Setting.Ore Geology Reviews, 61:73-95. https://doi.org/10.1016/j.oregeorev.2014.01.006
      Xie, L., Wang, R.C., Chen, J., et al., 2008.Primary Sn-Rich Titianite in the Qitianling Granite, Hunan Province, Southern China:An Important Type of Tin-Bearing Mineral and Its Implications for Tin Exploration.Chinese Science Bulletin, 54(5):798-805. https://doi.org/10.1007/s11434-008-0557-1
      Xu, L.L., Bi, X.W., Hu, R.Z., et al., 2014.LA-ICP-MS Mineral Chemistry of Titanite and the Geological Implications for Exploration of Porphyry Cu Deposits in the Jinshajiang:Red River Alkaline Igneous Belt, SW China.Mineralogy and Petrology, 109(2):181-200. https://doi.org/10.1007/s00710-014-0359-x
      Yang, L.Q., Gao, X., Shu, Q.H., 2017.Multiple Mesozoic Porphyry-Skarn Cu (Mo-W) Systems in Yidun Terrane, East Tethys:Constraints from Zircon U-Pb and Molybdenite Re-Os Geochronology.Ore Geology Reviews, 90:813-826. https://doi.org/10.1016/j.oregeorev.2017.01.030
      Yang, X.M., 2017.Estimation of Crystallization Pressure of Granite iIntrusions.Lithos, 286-287:324-329. https://doi.org/10.1016/j.lithos.2017.06.018
      Yu, H.J., Li, W.C., 2016.Geochronology and Geochemistry of Xiuwacu Intrusions, NW Yunnan:Evidences for Two-Period Magmatic Activity and Mineralization.Acta Petrologica Sinica, 32(8):2265-2280(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201608003
      Zhou, F., Wang, B.D., Liu, H., et al., 2018.Zircon U-Pb Dating, Geochemistry and Petrogenesis of Intrusive Rocks from A're Area, Zhongdian Arc.Earth Science, 43(8):2614-2627 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808006
      高雪, 2018.义敦地体晚白垩世与侵入岩有关的多金属成矿作用(博士学位论文).北京: 中国地质大学.
      刘学龙, 李文昌, 尹光侯, 2013.云南格咱岛弧地苏嘎成矿岩体LA-ICP-MS锆石U-Pb年龄及地质意义.地质通报, 32(4):573-579. doi: 10.3969/j.issn.1671-2552.2013.04.005
      潘彦宁, 2017.滇西北中甸弧含矿斑岩中矿物化学特征及其成岩成矿标识(硕士学位论文).北京: 中国地质大学.
      石洪召, 范文玉, 胡志中, 等, 2018.滇西北普朗铜矿床高钾中-酸性侵入岩年代学及其地质意义.地球科学, 43(8):2600-2613. doi: 10.3799/dqkx.2018.308
      余海军, 李文昌, 2016.滇西北休瓦促Mo-W矿区印支晚期和燕山晚期岩浆活动与成矿作用:来自锆石U-Pb年代学和地球化学的证据.岩石学报, 32(8):2265-2280. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201608003.htm
      周放, 王保弟, 刘函, 等, 2018.中甸弧阿热岩体锆石U-Pb年龄、地球化学特征及岩石成因.地球科学, 43(8):2614-2627. doi: 10.3799/dqkx.2018.126
    • dqkx-45-6-1999-Table1.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(2)

      Article views (1809) PDF downloads(89) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return