• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 4
    Apr.  2020
    Turn off MathJax
    Article Contents
    Guo Wei, Lin Xian, Hu Shenghong, 2020. Advances in LA-ICP-MS Analysis for Individual Fluid Inclusions and Applications. Earth Science, 45(4): 1362-1374. doi: 10.3799/dqkx.2019.199
    Citation: Guo Wei, Lin Xian, Hu Shenghong, 2020. Advances in LA-ICP-MS Analysis for Individual Fluid Inclusions and Applications. Earth Science, 45(4): 1362-1374. doi: 10.3799/dqkx.2019.199

    Advances in LA-ICP-MS Analysis for Individual Fluid Inclusions and Applications

    doi: 10.3799/dqkx.2019.199
    • Received Date: 2019-08-07
    • Publish Date: 2020-04-15
    • Individual fluid inclusions can accurately indicate the fluid characteristics of the trapped period and avoid the mixed interference of multi-stage inclusions. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an important method for microanalysis of individual fluid inclusions, owing to its analytical superiority of in-situ, timeliness, high spatial resolution and sensitivity, high precision, low detection limits and a large dynamic line range. The technique of LA-ICP-MS for determining the composition of individual fluid inclusions focuses on selection criteria for fluid inclusions suitable for analysis, ablation procedure, aerosol transport and ionization within the ICP, transient signals acquisition efficiency, quantitative calibration and determination of internal standard elements. Meanwhile, the source and distribution of the ore-forming elements, the source and characteristics of the ore-forming fluid, the establishment of the metallogenic model also are widely studied. The results show that it is urgent for LA-ICP-MS analysis technology to improve the success rate of individual ore-forming fluid inclusions, reduce the detection limits of elements for small-sized fluid inclusions, and determine mineral fluid inclusions.

       

    • loading
    • Albrecht, M., Derrey, I. T., Horn, I., et al., 2014. Quantification of Trace Element Contents in Frozen Fluid Inclusions by UV-Fs-LA-ICP-MS Analysis. Journal of Analytical Atomic Spectrometry, 29(6):1034-1041. https://doi.org/10.1039/c4ja00015c doi: 10.1039/C4JA00015C
      Allan, M. M., Yardley, B.W.D., Forbes, L.J. et al., 2005. Validation of LA-ICP-MS Fluid Inclusion Analysis with Synthetic Fluid Inclusions. American Mineralogist, 90(11-12):1767-1775. https://doi.org/10.2138/am.2005.1822
      Audétat, A., Günther, D., Heinrich, C.A., 1998. Formation of a Magmatic-Hydrothermal Ore Deposit:Insights with LA-ICP-MS Analysis of Fluid Inclusions. Science, 279(5359):2091-2094. https://doi.org/10.1126/science.279.5359.2091
      Bleiner, D., Günther, D., 2001. Theoretical Description and Experimental Observation of Aerosol Transport Processes in Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 16(5):449-456. https://doi.org/10.1039/b009729m doi: 10.1039/B009729M
      Bodnar, R. J., 1993. Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions. Geochimica et Cosmochimica Acta, 57(3):683-684. https://doi.org/10.1016/0016-7037(93)90378-a doi: 10.1016/0016-7037(93)90378-A
      Borisova, A. Y., Thomas, R., Salvi, S., et al., 2012. Tin and Associated Metal and Metalloid Geochemistry by Femtosecond LA-ICP-QMS Microanalysis of Pegmatite-Leucogranite Melt and Fluid Inclusions:New Evidence for Melt-Melt-Fluid Immiscibility. Mineralogical Magazine, 76(1):91-113. https://doi.org/10.1180/minmag.2012.076.1.91
      Burisch, M., Walter, B. F., Gerdes, A., et al., 2018. Late-Stage Anhydrite-Gypsum-Siderite-Dolomite-Calcite Assemblages Record the Transition from a Deep to a Shallow Hydrothermal System in the Schwarzwald Mining District, SW Germany. Geochimica et Cosmochimica Acta, 223:259-278. https://doi.org/10.1016/j.gca.2017.12.002
      Chang, J., Li, J. W., Audétat, A., 2018. Formation and Evolution of Multistage Magmatic-Hydrothermal Fluids at the Yulong Porphyry Cu-Mo Deposit, Eastern Tibet:Insights from LA-ICP-MS Analysis of Fluid Inclusions. Geochimica et Cosmochimica Acta, 232:181-205. https://doi.org/10.1016/j.gca.2018.04.009
      Chen, P. W., Zeng, Q. D., Zhou, T. C., et al., 2019. Evolution of Fluids in the Dasuji Porphyry Mo Deposit on the Northern Margin of the North China Craton:Constraints from Microthermometric and LA-ICP-MS Analyses of Fluid Inclusions. Ore Geology Reviews, 104:26-45. https://doi.org/10.1016/j.oregeorev.2018.10.012 http://cn.bing.com/academic/profile?id=579777ef0f68ee3dc23e9d19438fb34e&encoded=0&v=paper_preview&mkt=zh-cn
      Eggins, S. M., Kinsley, L. P. J., Shelley, J. M. G., 1998. Deposition and Element Fractionation Processes during Atmospheric Pressure Laser Sampling for Analysis by ICP-MS. Applied Surface Science, 127-129:278-286. https://doi.org/10.1016/s0169-4332(97)00643-0 doi: 10.1016/S0169-4332(97)00643-0
      Fernández, B., Claverie, F., Pécheyran, C., et al., 2007. Direct Analysis of Solid Samples by fs-LA-ICP-MS. TrAC Trends in Analytical Chemistry, 26(10):951-966. https://doi.org/10.1016/j.trac.2007.08.008
      Fu, L.B., Wei, J.H., Zhang, D.H., et al., 2015. A Review of LA-ICP-MS Analysis for Individual Fluid Inclusions and Its Applications in Ore Deposits. Journal of Central South University (Science and Technology), 46(10):3832-3840 (in Chinese with English abstract). doi: 10.11817/j.issn.1672-7207.2015.10.037
      Fusswinkel, T., Giehl, C., Beermann, O., et al., 2018. Combined LA-ICP-MS Microanalysis of Iodine, Bromine and Chlorine in Fluid Inclusions. Journal of Analytical Atomic Spectrometry, 33(5):768-783. https://doi.org/10.1039/c7ja00415j doi: 10.1039/C7JA00415J
      Fusswinkel, T., Wagner, T., Sakellaris, G., 2017. Fluid Evolution of the Neoarchean Pampalo Orogenic Gold Deposit (E Finland):Constraints from LA-ICPMS Fluid Inclusion Microanalysis. Chemical Geology, 450:96-121. https://doi.org/10.1016/j.chemgeo.2016.12.022
      Ghazi, A. M., Shuttleworth, S., 2000. Trace Element Determination of Single Fluid Inclusions by Laser Ablation ICP-MS:Applications for Halites from Sedimentary Basins. The Analyst, 125(1):205-210. https://doi.org/10.1039/a908980b http://cn.bing.com/academic/profile?id=2ee7d9d3bed943a49f3aef12a4df4d07&encoded=0&v=paper_preview&mkt=zh-cn
      Gomes, S. D., Berger, S., Figueiredo e Silva, R. C., et al., 2018. Oxide Chemistry and Fluid Inclusion Constraints on the Formation of Itabirite-Hosted Iron Ore Deposits at the Eastern Border of the Southern Espinhaço Range, Brazil. Ore Geology Reviews, 95:821-848. https://doi.org/10.1016/j.oregeorev.2018.03.025
      Guillong, M., Latkoczy, C., Seo, J. H., et al., 2008a. Determination of Sulfur in Fluid Inclusions by Laser Ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 23(12):1581-1589. https://doi.org/10.1039/b807383j
      Guillong, M., Meier, D.L., Allan, M., et al., 2008b. Sills: A Matlab-Based Program for the Reduction of Laser Ablation ICP-MS Data of Homogeneous Materials and Inclusions. In: Sylvester, P., ed., Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series, 328-333.
      Guillong, M., Pettke, T., 2012. Depth Dependent Element Ratios in Fluid Inclusion Analysis by Laser Ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 27(3):505-508. https://doi.org/10.1039/c2ja10147e
      Günther, D., Audétat, A., Frischknecht, R., et al., 1998. Quantitative Analysis of Major, Minor and Trace Elements in Fluid Inclusions Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 13(4):263-270. https://doi.org/10.1039/a707372k doi: 10.1039/A707372K
      Günther, D., Frischknecht, R., Müschenborn, H. J., et al., 1997. Direct Liquid Ablation:A New Calibration Strategy for Laser Ablation-ICP-MS Microanalysis of Solids and Liquids. Fresenius' Journal of Analytical Chemistry, 359(4-5):390-393. https://doi.org/10.1007/s002160050594
      Günther, D., Hattendorf, B., 2005. Solid Sample Analysis Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. TrAC Trends in Analytical Chemistry, 24(3):255-265. https://doi.org/10.1016/j.trac.2004.11.017 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026541946/
      Günther, D., Heinrich, C. A., 1999. Enhanced Sensitivity in Laser Ablation-ICP Mass Spectrometry Using Helium-Argon Mixtures as Aerosol Carrier. Journal of Analytical Atomic Spectrometry, 14(9):1363-1368. https://doi.org/10.1039/a901648a doi: 10.1039/A901648A
      Guo, H. H., Audétat, A., 2018. Gold Diffusion into and out of Quartz-Hosted Fluid Inclusions during Re-Equilibration Experiments at 600-800℃ and 2 kbar. Chemical Geology, 476:1-10. https://doi.org/10.1016/j.chemgeo.2017.09.031
      Guo, H. H., Audétat, A., Dolejš, D., 2018. Solubility of Gold in Oxidized, Sulfur-Bearing Fluids at 500-850℃ and 200-230 MPa:A Synthetic Fluid Inclusion Study. Geochimica et Cosmochimica Acta, 222:655-670. https://doi.org/10.1016/j.gca.2017.11.019
      Halter, W. E., Pettke, T., Heinrich, C.A., 2002. The Origin of Cu/Au Ratios in Porphyry-Type Ore Deposits. Science, 296(5574):1844-1846. https://doi.org/10.1126/science.1070139 http://cn.bing.com/academic/profile?id=ea08911094a92ac7a0cdfc2ce62ba552&encoded=0&v=paper_preview&mkt=zh-cn
      Harlaux, M., Borovinskaya, O., Frick, D.A., et al., 2015. Capabilities of Sequential and Quasi-Simultaneous LA-ICPMS for the Multi-Element Analysis of Small Quantity of Liquids (Pl to Nl):Insights from Fluid Inclusion Analysis. Journal of Analytical Atomic Spectrometry, 30(9):1945-1969. https://doi.org/10.1039/c5ja00111k doi: 10.1039/C5JA00111K
      Heinrich, C. A., Günther, D., Audétat, A., et al., 1999. Metal Fractionation between Magmatic Brine and Vapor, Determined by Microanalysis of Fluid Inclusions. Geology, 27(8):755-758. https://doi.org/10.1130/0091-7613(1999)027 < 0755:mfbmba>2.3.co; 2 doi: 10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2
      Heinrich, C. A., Pettke, T., Halter, W. E., et al., 2003. Quantitative Multi-Element Analysis of Minerals, Fluid and Melt Inclusions by Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry. Geochimica et Cosmochimica Acta, 67(18):3473-3497. https://doi.org/10.1016/s0016-7037(03)00084-x http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0fd5986e3babe0790d5455e8b15751fb
      Horn, I., Günther, D., 2003. The Influence of Ablation Carrier Gasses Ar, He and Ne on the Particle Size Distribution and Transport Efficiencies of Laser Ablation-Induced Aerosols:Implications for LA-ICP-MS. Applied Surface Science, 207(1-4):144-157. https://doi.org/10.1016/s0169-4332(02)01324-7 doi: 10.1016/S0169-4332(02)01324-7
      Hu, S.H., Hu, Z.C., Liu, Y.C., et al., 2001. New Techniques of Major and Minor Elemental Analysis in Individual Fluid Inclusion-Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Earth Science Frontiers, (4):434-440 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200104026
      Jian, W., Albrecht, M., Lehmann, B., et al., 2018. UV-fs-LA-ICP-MS Analysis of CO2-Rich Fluid Inclusions in a Frozen State:Example from the Dahu Au-Mo Deposit, Xiaoqinling Region, Central China. Geofluids, (1):1-17. https://doi.org/10.1155/2018/3692180
      Lan, T.G., Hu, R.Z., Fan, H.R., et al., 2017. In-Situ Analysis of Major and Trace Elements in Fluid Inclusion and Quartz:LA-ICP-MS Method and Applications to Ore Deposits. Acta Petrologica Sinica, 33(10):3239-3262(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201710017.htm
      Leisen, M., Boiron, M. C., Richard, A., et al., 2012a. Determination of Cl and Br Concentrations in Individual Fluid Inclusions by Combining Microthermometry and LA-ICPMS Analysis:Implications for the Origin of Salinity in Crustal Fluids. Chemical Geology, 330-331:197-206. https://doi.org/10.1016/j.chemgeo.2012.09.003
      Leisen, M., Dubessy, J., Boiron, M. C., et al., 2012b. Improvement of the Determination of Element Concentrations in Quartz-Hosted Fluid Inclusions by LA-ICP-MS and Pitzer Thermodynamic Modeling of Ice Melting Temperature. Geochimica et Cosmochimica Acta, 90:110-125. https://doi.org/10.1016/j.gca.2012.04.040
      Li, C. Y., Jiang, Y. H., Zhao, Y., et al., 2018. Trace Element Analyses of Fluid Inclusions Using Laser Ablation ICP-MS. Solid Earth Sciences, 3(1):8-15. https://doi.org/10.1016/j.sesci.2017.12.001 http://cn.bing.com/academic/profile?id=290178fbd6e420468cb6959e275485d7&encoded=0&v=paper_preview&mkt=zh-cn
      Li, X.C., Fan, H.R., Hu, F.F., et al., 2010. An Analysis of the Individual Fluid Inclusion by LA-ICP-MS and Its Application to Ore Deposits. Mineral Deposits, 29(6):1017-1028 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201006006
      Lindner, H., Autrique, D., Pisonero, J., et al., 2010. Numerical Simulation Analysis of Flow Patterns and Particle Transport in the HEAD Laser Ablation Cell with Respect to Inductively Coupled Plasma Spectrometry. Journal of Analytical Atomic Spectrometry, 25(3):295. https://doi.org/10.1039/b920905k http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6aa337b5fff9e5ebb8e4dfbc9b3a0939
      Liu, C., Mao, X. L., Mao, S. S., et al., 2004. Nanosecond and Femtosecond Laser Ablation of Brass:Particulate and ICPMS Measurements. Analytical Chemistry, 76(2):379-383. https://doi.org/10.1021/ac035040a
      Liu, H., Bi, X., Lu, H. et al., 2018. Nature and Evolution of Fluid Inclusions in the Cenozoic Beiya Gold Deposit, Sw China Genesis of the Wulong Gold Deposit, Northeastern North China Craton:Constraints from Fluid Inclusions, H-O-S-Pb Isotopes, and Pyrite Trace Element Concentrations. Journal of Asian Earth Sciences, 161:35-56. https://doi.org/10.1016/j.jseaes.2018.04.034
      Liu, Y. S., Hu, Z. C., Yuan, H. L., et al., 2007. Volume-Optional and Low-Memory (VOLM) Chamber for Laser Ablation-ICP-MS:Application to Fiber Analyses. Journal of Analytical Atomic Spectrometry, 22(5):582. https://doi.org/10.1039/b701718a
      Loucks, R. R., Mavrogenes, J.A., 1999. Gold Solubility in Supercritical Hydrothermal Brines Measured in Synthetic Fluid Inclusions. Science, 284(5423):2159-2163. https://doi.org/10.1126/science.284.5423.2159 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e2798df058b1fad5e166b0d4b9945fbe
      Lu, H.Z., Fan, H.R., Ni, P., et al., 2004. Fluid Inclusion. Science Press, Beijing(in Chinese).
      Ma, L., Li, Y.K., Wang, A.J., et al., 2014. An Analysis of the Individual Fluid Inclusion by LA-ICP-MS and SRXRF. Mineral Deposits, 33(S1):547-548 (in Chinese with English abstract).
      Ni, P., Fan, H.R., Ding, J.Y., 2014. Progress in Fluid Inclusion. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1):1-5 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201201005
      Pettke, T., 2008. Analytical Protocols for Element Concentration and Isotope Ratlo Measurements in Fluid Inclusions by LA-(MC-)ICP-MS. Mineralogical Association on Canada, 40:189-217
      Pettke, T., Oberli, F., Audétat, A., et al., 2012. Recent Developments in Element Concentration and Isotope Ratio Analysis of Individual Fluid Inclusions by Laser Ablation Single and Multiple Collector ICP-MS. Ore Geology Reviews, 44:10-38. https://doi.org/10.1016/j.oregeorev.2011.11.001
      Pokrovski, G. S., Akinfiev, N. N., Borisova, A. Y., et al., 2014. Gold Speciation and Transport in Geological Fluids:Insights from Experiments and Physical-Chemical Modelling. Geological Society, London, Special Publications, 402(1):9-70. https://doi.org/10.1144/sp402.4 doi: 10.1144/SP402.4
      Pokrovski, G. S., Borisova, A. Y., Bychkov, A. Y., 2013. Speciation and Transport of Metals and Metalloids in Geological Vapors. Reviews in Mineralogy and Geochemistry, 76(1):165-218. https://doi.org/10.2138/rmg.2013.76.6
      Schlegel, T. U., Wälle, M., Steele-MacInnis, M., et al., 2012. Accurate and Precise Quantification of Major and Trace Element Compositions of Calcic-Sodic Fluid Inclusions by Combined Microthermometry and LA-ICPMS Analysis. Chemical Geology, 334:144-153. https://doi.org/10.1016/j.chemgeo.2012.10.001
      Schlöglova, K., Walle, M., Heinrich, C.A., et al., 2017a. LA-ICP-MS Analysis of Fluid Inclusions:Contamination Effects Challenging Micro-Analysis of Elements Close to Their Detection Limit. Journal of Analytical Atomic Spectrometry, 32(5):1052-1063. https://doi.org/10.1039/c7ja00022g doi: 10.1039/C7JA00022G
      Schlöglova, K., Walle, M., Heinrich, C.A. et al., 2017b. Copper, Gold and Bismuth Behavior in Magmatichydrothermal Systems:Fluid-Inclusion LA-ICP-MS Study. Mineral Resources to Discover, 1-4:95-98. http://cn.bing.com/academic/profile?id=55f783df21b5dab0e710d1aebf52b784&encoded=0&v=paper_preview&mkt=zh-cn
      Seo, J. H., Guillong, M., Aerts, M., et al., 2011. Microanalysis of S, Cl, and Br in Fluid Inclusions by LA-ICP-MS. Chemical Geology, 284(1-2):35-44. https://doi.org/10.1016/j.chemgeo.2011.02.003 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=592b1121e8b29d934455f0402211895e
      Seo, J. H., Guillong, M., Heinrich, C. A., 2009. The Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits. Earth and Planetary Science Letters, 282(1-4):323-328. https://doi.org/10.1016/j.epsl.2009.03.036
      Seo, J. H., Zajacz, Z., 2016. Fractionation of Cl/Br during Fluid Phase Separation in Magmatic-Hydrothermal Fluids. Geochimica et Cosmochimica Acta, 183:125-137. https://doi.org/10.1016/j.gca.2016.04.009
      Shepherd, T. J., Chenery, S. R., 1995. Laser Ablation ICP-MS Elemental Analysis of Individual Fluid Inclusions:An Evaluation Study. Geochimica et Cosmochimica Acta, 59(19):3997-4007. https://doi.org/10.1016/0016-7037(95)00294-a doi: 10.1016/0016-7037(95)00294-A
      Steele-MacInnis, M., Bodnar, R. J., Naden, J., 2011. Numerical Model to Determine the Composition of H2O-NaCl-CaCl2 Fluid Inclusions Based on Microthermometric and Microanalytical Data. Geochimica et Cosmochimica Acta, 75(1):21-40. https://doi.org/10.1016/j.gca.2010.10.002
      Steele-MacInnis, M., Ridley, J., Lecumberri-Sanchez, P., et al., 2016. Application of Low-Temperature Microthermometric Data for Interpreting Multicomponent Fluid Inclusion Compositions. Earth-Science Reviews, 159:14-35. https://doi.org/10.1016/j.earscirev.2016.04.011
      Stoffell, B., Appold, M. S., Wilkinson, J. J., et al., 2008. Geochemistry and Evolution of Mississippi Valley-Type Mineralizing Brines from the Tri-State and Northern Arkansas Districts Determined by LA-ICP-MS Microanalysis of Fluid Inclusions. Economic Geology, 103(7):1411-1435. https://doi.org/10.2113/gsecongeo.103.7.1411
      Su, W., Heinrich, C. A., Pettke, T., et al., 2009. Sediment-Hosted Gold Deposits in Guizhou, China:Products of Wall-Rock Sulfidation by Deep Crustal Fluids. Economic Geology, 104(1):73-93. https://doi.org/10.2113/gsecongeo.104.1.73
      Sun, H., Xiao, Y.L., 2009. Fluid Inclusion:Latest Development, Geological Applications and Prospect. Advances in Earth Science, 24(10):1105-21 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200910005
      Sun, W.L., Peng, S.X., Bai, J.K., et al., 2018.Fluid Inclusions and Geochronology of Wulunbulake Copper Deposit in Xinjiang. Earth Science, 43(12):4475-4489(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201812016
      Sun, X.H., Hu, M.Y., Liu, C.L., et al., 2013. Composition Determination of Single Fluid Inclusions in Salt Minerals by Laser Ablation ICP-MS. Chinese Journal of Analytical Chemistry, 41(2):235-241(in Chinese with English abstract). doi: 10.1016/S1872-2040(13)60631-3
      Tsui, T. F., Holland, H. D., 1979. The Analysis of Fluid Inclusions by Laser Microprobe. Economic Geology, 74(7):1647-1653. https://doi.org/10.2113/gsecongeo.74.7.1647
      Ulrich, T., Günther, D., Heinrich, C. A., 1999. Gold Concentrations of Magmatic Brines and the Metal Budget of Porphyry Copper Deposits. Nature, 399(6737):676-679. https://doi.org/10.1038/21406
      Wagner, T., Fusswinkel, T., Wälle, M., et al., 2016. Microanalysis of Fluid Inclusions in Crustal Hydrothermal Systems Using Laser Ablation Methods. Elements, 12(5):323-328. https://doi.org/10.2113/gselements.12.5.323
      Wälle, M., Heinrich, C.A., 2014. Fluid Inclusion Measurements by Laser Ablation Sector-Field ICP-MS. Journal of Analytical Atomic Spectrometry, 29(6):1052-1057. https://doi.org/10.1039/c4ja00010b doi: 10.1039/C4JA00010B
      Wang, L.J., Wang, Y.W., Wang, J.B., et al., 2006. Fluid-Forming of a Dajing Tin-Polymetallic Deposit in Inner Mongolia:Evidence of a Individual Fluid Inclusion Component of LA-ICP-MS. Chinese Science Bulletin, (10):1203-1210 (in Chinese).
      Wei, N., Huang, F., Wang, Y., et al., 2018.Genesis of Yuanlingzhai Large Porphyry Molybdenum Deposits in East Section of Nanling:Evidence from Fluid Inclusions and Stable Isotope. Earth Science, 43(S2):135-148(in Chinese with English abstract.
      Wilkinson, J. J., 2001. Fluid Inclusions in Hydrothermal Ore Deposits. Lithos, 55(1-4):229-272. https://doi.org/10.1016/s0024-4937(00)00047-5 doi: 10.1016/S0024-4937(00)00047-5
      Wilkinson, J. J., Stoffell, B., Wilkinson, C. C., et al., 2009. Anomalously Metal-Rich Fluids Form Hydrothermal Ore Deposits. Science, 323(5915):764-767. https://doi.org/10.1126/science.1164436
      Yuan, H.L., Gao, S., Dai, M.N., et al., 2009.In Situ Strontium Isotope Analysis of Fluid Inclusion Using LA-MC-ICPMS. Bulletin of Mineralogy, Petrology and Geochemistry, 28(4):313-317(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200904001
      Zhang, W.D., Wu, X.B., Deng, X.H., et al., 2018.Fluid Inclusions Constraints on the Origin of the Xiaorequanzi Deposit in Eastern Tianshan. Earth Science, 43(9):3036-3048(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201809009
      Zhou, H., Xi, A.H., Xiong, Y.X., et al., 2013.Progress in the Research on Fluid Inclusions. Acta Mineralogica Sinica, 33(1):92-100(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201301014
      付乐兵, 魏俊浩, 张道涵, 等, 2015.单个流体包裹体成分LA-ICP-MS分析与矿床学应用进展.中南大学学报(自然科学版), 46(10):3832-3840. doi: 10.11817/j.issn.1672-7207.2015.10.037
      胡圣虹, 胡兆初, 刘勇胜, 等, 2001.单个流体包裹体元素化学组成分析新技术——激光剥蚀电感耦合等离子体质谱(LA-ICP-MS).地学前缘, (4):434-440. doi: 10.3321/j.issn:1005-2321.2001.04.026
      蓝廷广, 胡瑞忠, 范宏瑞, 等, 2017.流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用.岩石学报, 33(10):3239-3262. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201710017
      李晓春, 范宏瑞, 胡芳芳, 等, 2010.单个流体包裹体LA-ICP-MS成分分析及在矿床学中的应用.矿床地质, 29(6):1017-1028. doi: 10.3969/j.issn.0258-7106.2010.06.006
      卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体.北京:科学出版社.
      马莉, 李以科, 王安建, 等, 2014. LA-ICP-MS与SRXRF测试流体包裹体的应用研究.矿床地质, 33(S1):547-548. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=8451027
      倪培, 范宏瑞, 丁俊英, 2014.流体包裹体研究进展.矿物岩石地球化学通报, 33(1):1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001
      孙贺, 肖益林, 2009.流体包裹体研究:进展、地质应用及展望.地球科学进展, 24(10):1105-1121. doi: 10.3321/j.issn:1001-8166.2009.10.005
      孙万龙, 彭素霞, 白建科, 等, 2018.新疆乌伦布拉克铜矿流体包裹体特征及含矿岩体年代学.地球科学, 43(12):4475-4489. doi: 10.3799/dqkx.2018.166
      孙小虹, 胡明月, 刘成林, 等, 2013.激光剥蚀ICP-MS法测定盐类矿物单个流体包裹体的成分.分析化学, 41(2):235-241. http://d.old.wanfangdata.com.cn/Periodical/fxhx201302013
      王莉娟, 王玉往, 王京彬, 等, 2006.内蒙古大井锡多金属矿床流体成矿作用研究:单个流体包裹体组分LA-ICP-MS分析证据.科学通报, (10):1203-1210. doi: 10.3321/j.issn:0023-074X.2006.10.012
      魏娜, 黄凡, 王岩, 等, 2018.南岭东段园岭寨斑岩型钼矿成因——流体包裹体和稳定同位素证据.地球科学, 43(S2):135-148. doi: 10.3799/dqkx.2018.194
      袁洪林, 高山, 戴梦宁, 等, 2009.流体包裹体中Sr同位素的激光剥蚀多接收等离子体质谱原位微区分析.矿物岩石地球化学通报, 28(4):313-317. doi: 10.3969/j.issn.1007-2802.2009.04.001
      张文东, 吴湘滨, 邓小华, 等, 2018.东天山小热泉子矿床流体包裹体及矿床成因.地球科学, 43(9):3036-3048. doi: 10.3799/dqkx.2018.150
      周慧, 郗爱华, 熊益学, 等, 2013.流体包裹体的研究进展.矿物学报, 33(1):92-100. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200001015
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)

      Article views (4557) PDF downloads(304) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return