• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 12
    Dec.  2019
    Turn off MathJax
    Article Contents
    Xia Qiongxia, 2019. Different Origins of Garnet in High to Ultrahigh Pressure Metamorphic Rocks. Earth Science, 44(12): 4042-4049. doi: 10.3799/dqkx.2019.235
    Citation: Xia Qiongxia, 2019. Different Origins of Garnet in High to Ultrahigh Pressure Metamorphic Rocks. Earth Science, 44(12): 4042-4049. doi: 10.3799/dqkx.2019.235

    Different Origins of Garnet in High to Ultrahigh Pressure Metamorphic Rocks

    doi: 10.3799/dqkx.2019.235
    • Received Date: 2019-08-29
    • Publish Date: 2019-12-15
    • Garnet is one of the most important mineral in high pressure (HP) to ultrahigh pressure (UHP) metamorphic rocks. It is an ideal phase to constrain the P-T-t conditions of metamorphic and anatectic processes during continental subduction zone metamorphism. Garnets from subduction zone metamorphic rocks can be classified into metamorphic,magmatic and peritecitc garnets based on their typical features. Magmatic garnet crystallizes from magmatic melts,shows almandine-spessartine in compositions and contains crystal inclusions such as quartz,feldspar and apatite. Metamorphic garnet forms through metamorphic reactions at subsolidus conditions,shows decreasing spessartine from core to rim,and contains crystal inclusions mainly composed of metamorphic reactants. Peritectic garnet forms through peritectic reactions at supersolidus conditions,and contains crystal inclusions consisting of not only minerals crystallized from peritectic melts but also residual minerals from peritectic reactants. The identification of peritecitc garnet in UHP metamorphic rocks provides unique evidence for partial melting of the deeply subducted continental crust,which is an important progress in crustal anatexis of collisional orogens.

       

    • loading
    • Carswell, D.A., O'Brien, P.J., Wilson, R.N., et al., 1997.Thermobarometry of Phengite-Bearing Eclogites in the Dabie Mountains of Central China.Journal of Metamorphic Geology, 15(2):239-252. https://doi.org/10.1111/j.1525-1314.1997.00014.x
      Carswell, D.A., Wilson, R.N., Zhai, M.G., 2000.Metamorphic Evolution, Mineral Chemistry and Thermobarometry of Schists and Orthogneisses Hosting Ultra-High Pressure Eclogites in the Dabieshan of Central China.Lithos, 52(1-4): 121-155. https://doi.org/10.1016/s0024-4937(99)00088-2
      Chen, Y.X., Zheng, Y.F., Hu, Z.C., 2013.Synexhumation Anatexis of Ultrahigh-Pressure Metamorphic Rocks: Petrological Evidence from Granitic Gneiss in the Sulu Orogen.Lithos, 156: 69-96. https://doi.org/10.1016/j.lithos.2012.10.008
      Chen, Y.X., Zhou, K., Zheng, Y.F., et al., 2015.Garnet Geochemistry Records the Action of Metamorphic Fluids in Ultrahigh-Pressure Dioritic Gneiss from the Sulu Orogen.Chemical Geology, 398: 46-60. https://doi.org/10.1016/j.chemgeo.2015.01.021
      Cheng, H., Liu, X.C., Vervoort, J.D., et al., 2016.Micro-Sampling Lu-Hf Geochronology Reveals Episodic Garnet Growth and Multiple High-P Metamorphic Events.Journal of Metamorphic Geology, 34(4): 363-377. https://doi.org/10.1111/jmg.12185
      Cheng, H., Vervoort, J.D., Li, X., et al., 2011.The Growth Interval of Garnet in the UHP Eclogites from the Dabie Orogen, China.American Mineralogist, 96(8-9): 1300-1307. https://doi.org/10.2138/am.2011.3737
      Cutts, K.A., Kinny, P.D., Strachan, R.A., et al., 2010.Three Metamorphic Events Recorded in a Single Garnet: Integrated Phase Modelling, In Situ LA-ICPMS and SIMS Geochronology from the Moine Supergroup, NW Scotland.Journal of Metamorphic Geology, 28(3): 249-267. https://doi.org/10.1111/j.1525-1314.2009.00863.x
      Dragovic, B., Samanta, L.M., Baxter, E.F., et al., 2012.Using Garnet to Constrain the Duration and Rate of Water-Releasing Metamorphic Reactions during Subduction: An Example from Sifnos, Greece.Chemical Geology, 314-317: 9-22. https://doi.org/10.1016/j.chemgeo.2012.04.016
      Holdaway, M.J., 2000.Application of New Experimental and Garnet Margules Data to the Garnet-Biotite Geothermometer.American Mineralogist, 85(7-8): 881-892. https://doi.org/10.2138/am-2000-0701
      Holness, M.B., Sawyer, E.W., 2008.On the Pseudomorphing of Melt-Filled Pores during the Crystallization of Migmatites.Journal of Petrology, 49(7): 1343-1363. https://doi.org/10.1093/petrology/egn028
      Kohn, M., Spear, F.S., Valley, J.W., 1997.Dehydration-Melting and Fluid Recycling during Metamorphism: Rangeley Formation, New Hampshire, USA.Journal of Petrology, 38(9): 1255-1277. https://doi.org/10.1093/petrology/38.9.1255
      Konrad-Schmolke, M., Zack, T., O'Brien, P.J., et al., 2008.Combined Thermodynamic and Rare Earth Element Modeling of Garnet Growth During Subduction: Examples from Ultrahigh-Pressure Eclogite of the Western Gneiss Region, Norway.Earth Planet.Science.Letters., 272(1-2): 488-498. https://doi.org/10.1016/j.epsl.2008.05.018
      Liu, P.L., Wu, Y., Liu, Q., et al., 2014.Partial Melting of UHP Calc-Gneiss from the Dabie Mountains.Lithos, 192-195: 86-101. https://doi.org/10.1016/j.lithos.2014.01.012.
      Perchuk, A.L., Burchard, M., Maresch, W.V., et al., 2005.Fluid-Mediated Modification of Garnet Interiors under Ultrahigh-Pressure Conditions.Terra Nova, 17(6): 545-553. https://doi.org/10.1111/j.1365-3121.2005.00647.x
      Perchuk, A.L., Burchard, M., Maresch, W.V., et al., 2008.Melting of Hydrous and Carbonate Mineral Inclusions in Garnet Host during Ultrahigh Pressure Experiments.Lithos, 103(1-2): 25-45. https://doi.org/10.1016/j.lithos.2007.09.008
      Rubatto, D., Hermann, J., 2007.Experimental Zircon/Melt and Zircon/Garnet Trace Element Partitioning and Implications for the Geochronology of Crustal Rocks.Chemical Geology, 241(1-2): 38-61. https://doi.org/10.1016/j.chemgeo.2007.01.027
      Sawyer, E.W., 2010.Migmatites Formed by Water-Fluxed Partial Melting of a Leucogranodiorite Protolith: Microstructures in the Residual Rocks and Source of the Fluid.Lithos, 116(3-4): 273-286. https://doi.org/10.1016/j.lithos.2009.07.003
      Wu, C.M., 2004.Empirical Garnet-Biotite-Plagioclase-Quartz (GBPQ) Geobarometry in Medium- to High-Grade Metapelites.Journal of Petrology, 45(9): 1907-1921. https://doi.org/10.1093/petrology/egh038
      Xia, Q.X., Gao, P., Yang, G., et al., 2019.The Origin of Garnets in Anatectic Rocks from the Eastern Himalayan Syntaxis, Southeast Tibet: Constraints from Major and Trace Element Zoning and Phase Equilibrium Relationships.J. Petrol.(in revision).
      Xia, Q.X., Wang, H.Z., Zhou, L.G., et al., 2016.Growth of Metamorphic and Peritectic Garnets in Ultrahigh-Pressure Metagranite during Continental Subduction and Exhumation in the Dabie Orogen.Lithos, 266-267: 158-181. https://doi.org/10.1016/j.lithos.2016.08.043
      Xia, Q.X., Zheng, Y.F., Lu, X.N., et al., 2012.Formation of Metamorphic and Metamorphosed Garnets in the Low-T/UHP Metagranite during Continental Collision in the Dabie Orogen.Lithos, 136-139: 73-92. https://doi.org/10.1016/j.lithos.2011.10.004
      Xia, Q.X., Zhou, L.G., 2017.Different Origins of Garnet in High Pressure to Ultrahigh Pressure Metamorphic Rocks.Journal of Asian Earth Sciences, 145: 130-148. https://doi.org/10.1016/j.jseaes.2017.03.037
      Zheng, Y.F., Chen, R.X., 2017.Regional Metamorphism at Extreme Conditions: Implications for Orogeny at Convergent Plate Margins.Journal of Asian Earth Sciences, 145: 46-73. https://doi.org/10.1016/j.jseaes.2017.03.009
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)

      Article views (5441) PDF downloads(212) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return