• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 6
    Jun.  2020
    Turn off MathJax
    Article Contents
    Xiao Qilin, Liu An, Li Chuxiong, Chen Qi, Jiang Xingchao, Cai Suyang, 2020. Formation and Evolution of Nanopores in Highly Matured Shales at Over-Mature Stage: Insights from the Hydrous Pyrolysis Experiments on Cambrain Shuijintuo Shale from the Middle Yangtze Region. Earth Science, 45(6): 2160-2171. doi: 10.3799/dqkx.2019.248
    Citation: Xiao Qilin, Liu An, Li Chuxiong, Chen Qi, Jiang Xingchao, Cai Suyang, 2020. Formation and Evolution of Nanopores in Highly Matured Shales at Over-Mature Stage: Insights from the Hydrous Pyrolysis Experiments on Cambrain Shuijintuo Shale from the Middle Yangtze Region. Earth Science, 45(6): 2160-2171. doi: 10.3799/dqkx.2019.248

    Formation and Evolution of Nanopores in Highly Matured Shales at Over-Mature Stage: Insights from the Hydrous Pyrolysis Experiments on Cambrain Shuijintuo Shale from the Middle Yangtze Region

    doi: 10.3799/dqkx.2019.248
    • Received Date: 2019-08-12
    • Publish Date: 2020-06-15
    • The Cambrian marine shales are currently over-matured in the Middle-Upper Yangtze region. Several phases of geofluids are detected within these shale reservoirs. However, the impacts and relevant mechanisms of geofluids on the occurrence of nanopores within these shale reservoirs are still unclear. A series of pyrolysis experiments were conducted on the highly matured Cambrian shale from the Shuijingtuo Fm. in the Huangling anticline within a closed hydrous system. The measurements of C-S, XRD, N2 adsorption and FE-SEM were done on these pyrolyzed shale samples with thermal maturity of Ro=2.26%-4.01%. The results demonstrate no obvious change of TOC, continuous decrease of sulfur, inorganic carbon and clays and increase of feldspar throughout the experiments as well as the significant decrease of quartz and increase of diopside at Ro≥2.7% with increasing thermal maturity, which indicates the slight hydrocarbon generation and expulsion, the dissolution of pyrite, carbonate, clays and quartz to varying levels and the formation of feldspar and diopside under the experimental conditions. The nanopore formation within highly matured shale reservoirs is regulated mainly by the mineral dissolution with the addition of geofluids, it is feasible for the occurrence of mesopores and macropores as indicated by the strong negative correlations between the mineral contents versus the total pore and macropore volumes; the formation of feldspar and diopside restricts the occurrence of micropores and promotes the development of mesopores and macropores, further implying the predominant effects of mineral dissolution on nanoporosity under the experimental circumstances; hydrocarbon generation and expulsion have the minor impacts on nanopore development due to the limited capability of petroleum generation and expulsion at the over-mature stage. With increasing mineral dissolution or thermal maturity, the abundance, volumes and specific surface areas of micropores gradually decrease and evolve into mesopores and macropores subsequently as suggested by the negative correlations of pore volumes and specific surface areas of micropores versus those of mesopores and macropores. This study should be helpful in the better understanding of the occurrence mechanisms and relevant controlling factors of nanopores within highly matured shale reservoirs with the presence of geofluids in nature.

       

    • loading
    • Barrett E.P., Joyner L.G., Halenda P.P..1951.The Determination of Pore Volume and Area Distributions in Porous Substances.I.Computations from Nitrogen Isotherms.Journal of the American Chemical Society, 73(1):373-380. https://doi.org/10.1021/ja01145a126
      Brunauer S., Emmett P.H., Teller E..1938.Adsorption of Gases in Multimolecular Layers.Journal of the American Chemical Society, 60(2):309-319. https://doi.org/10.1021/ja01269a023
      Chalmers G.R.L., Ross D.J.K., Bustin R.M..2012.Geological Controls on Matrix Permeability of Devonian Gas Shales in the Horn River and Liard Basins, Northeastern British Columbia, Canada.International Journal of Coal Geology, 103:120-131. https://doi.org/10.1016/j.coal.2012.05.006
      Chen J., Xiao X.M..2014.Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation.Fuel, 129:173-181. https://doi.org/10.1016/j.fuel.2014.03.058.
      Chen X.H., Wang C.S., Liu A., et al.2017.The Discovery of the Shale Gas in the Cambrian Shuijingtuo Formation of Yichang Area, Hubei Province.Geology in China, 44 (1):188-189 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201701013
      Chen X.H., Wang X.F..2000.Biota and Organic Matter in Late Sinian and Early Cambrian Black Rock Series of West Hunan and Their Significance to Metallization.Geology and Mineral Resources of South China, 16(1):16-23(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200000723592
      Chen X.H., Wei K., Zhang B.M., et al.2018.Main Geological Factors Controlling Shale Gas Reservior in the Cambrian Shuijingtuo Formation in Yichang of Hubei Province as Well as Its and Enrichment Patterns.Geology in China, 45(2):207-226(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201802001
      Chirită P., Schlegel M.L..2017.Pyrite Oxidation in Air-Equilibrated Solutions:An Electrochemical Study.Chemical Geology, 470:67-74. https://doi.org/10.1016/j.chemgeo.2017.08.023
      Cui J.W., Zhu R.K., Cui J.G..2013.Relationship of Porous Evolution and Residual Hydrocarbon:Evidence from Modeling Experiment with Geological Constrains.Acta Geologica Sinica, 87(5):730-736(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201305010.htm
      Curtis M.E., Cardott B.J., Sondergeld C.H., et al.2012.Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity.International Journal of Coal Geology, 103:26-31. https://doi.org/10.1016/j.coal.2012.08.004
      Guo H.J., Jia W.L., Peng P.A., et al.2017.Evolution of Organic Matter and Nanometer-Scale Pores in an Artificially Matured Shale Undergoing Two Distinct Types of Pyrolysis:A Study of the Yanchang Shale with Type II Kerogen.Organic Geochemistry, 105:56-66. https://doi.org/10.1016/j.orggeochem.2017.01.004
      Hao F., Zou H.Y., Lu Y.C..2013.Mechanisms of Shale Gas Storage:Implications for Shale Gas Exploration in China.AAPG Bulletin, 97(8):1325-1346. https://doi.org/10.1306/02141312091
      Hu M.Y., Deng Q.J., Hu, Z.G.2014.Shale Gas Accumulation Conditions of the Lower Cambrian Niutitang Formation in Upper Yangtze Region.Oil & Gas Geology, 35(2):272-279(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201402017
      Hu Z.G., Qin P., Hu M.Y., et al.2018.The Distribution and Heterogeneity Characteristics of Shale Reservoirs in Lower Cambrain Shuijingtuo Formation in Western Hunan-Hubei Region.China Petroleum Exploration, 23(4):39-50(in Chinese with English abstract).
      Hunt J.M..1996.Petroleum Geochemistry and Geology.W. H. Freeman and Company, New York.
      Jarvie D.M., Hill R.J., Ruble T.E., et al.2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499. https://doi.org/10.1306/12190606068
      Ko L.T., Loucks R.G., Zhang T.W., et al.2016.Pore and Pore Network Evolution of Upper Cretaceous Boquillas (Eagle Ford-Equivalent) Mudrocks:Results from Gold Tube Pyrolysis Experiments.AAPG Bulletin, 100(11):1693-1722. https://doi.org/10.1306/04151615092
      Li H., Liu A., Luo S.Y., et al.2018.Pore Structure Characteristics and Development Control Factors of Cambrian Shale in the Yichang Area, Western Hubei.Petroleum Geology and Recovery Efficiency, 25(6):16-23(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl201806003
      Liang M.L., Wang Z.X., Gao L., et al.2017.Evolution of Pore Structure in Gas Shale Related to Structural Deformation.Fuel, 197:310-319.https://doi.org/10.1016/j.fuel.2017.02.035 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=11aa0e9c43b3e20de0495da1c21adcb0
      Liu A., Wei K., Li X.B., et al.2015.Paleo-Fluid Characteristics and Preservation of Hydrocarbons in the Sangzhi-Shimen Synclinorium and Adjacent Areas.Petroleum Geology & Experiment, 37(6):742-750(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201506010
      Liu D.H., Xiao X.M., Tian H., et al.2013.Sample Maturation Calculated Using Raman Spectroscopic Parameters for Solid Organics:Methodology and Geological Applications.Chinese Science Bulletin, 58(11):1285-1298. https://doi.org/10.1007/s11434-012-5535-y
      Löhr S.C., Baruch E.T., Hall P.A., et al.2015.Is Organic Pore Development in Gas Shales Influenced by the Primary Porosity and Structure of Thermally Immature Organic Matter? Organic Geochemistry, 87:119-132. https://doi.org/10.1016/j.orggeochem.2015.07.010
      Loucks R.G., Reed R.M., Ruppel S.C., et al.2009.Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale.Journal of Sedimentary Research, 79(12):848-861. https://doi.org/10.2110/jsr.2009.092
      Loucks R.G., Reed R.M., Ruppel S.C., et al.2012.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores.AAPG Bulletin, 96(6):1071-1098.https://doi.org/10.1306/08171111061 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2b7b6b4b569bed90a064cbc2a6673a7c
      Ma Z.L., Zheng L.J., Xu X.H., et al.2017.Thermal Simulation Experiment on the Formation and Evolution of Organic Pores in Organic-Rich Shale.Acta Petrolei Sinica, 38(1):23-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201701003
      Milliken K.L..2003.Late Diagenesis and Mass Transfer in Sandstone-Shale Sequences.Treatise on Geochemistry, 7:159-190. https://www.researchgate.net/publication/234489605_late_diagenesis_and_mass_transfer_in_sandstone_shale_sequences
      Peng N.J., He S., Hao F., et al.2017.The Pore Structure and Difference between Wufeng and Longmaxi Shales in Pengshui Area, Southeastern Sichuan.Earth Science, 42(7):1134-1146 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707010
      Shen C.B., Mei L.F., Peng L., et al.2012.LA-ICPMS U-Pb Zircon Age Constraints on the Provenance of Cretaceous Sediments in the Yichang Area of the Jianghan Basin, Central China.Cretaceous Research, 34:172-183. https://doi.org/10.1016/j.cretres.2011.10.016.
      Sing K.S.W..1985.Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984).Pure and Applied Chemistry, 57(4):603-619. https://doi.org/10.1351/pac198557040603
      Sun L.N., Tuo J.C., Zhang M.F., et al.2015.Formation and Development of the Pore Structure in Chang 7 Member Oil-Shale from Ordos Basin during Organic Matter Evolution Induced by Hydrous Pyrolysis.Fuel, 158:549-557. https://doi.org/10.1016/j.fuel.2015.05.061
      Thommes M., Kaneko K., Neimark A.V., et al.2015.Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report).Pure and Applied Chemistry, 87(9-10):1051-1069. doi: 10.1515/pac-2014-1117
      Tian H., Pan L., Xiao X.M., et al.2013.A Preliminary Study on the Pore Characterization of Lower Silurian Black Shales in the Chuandong Thrust Fold Belt, Southwestern China Using Low Pressure N2 Adsorption and FE-SEM Methods.Marine and Petroleum Geology, 48:8-19. https://doi.org/10.1016/j.marpetgeo.2013.07.008
      Wang C., Zhang B.Q., Shu Z.G., et al.2019.Shale Lamination and Its Influence on Shale Reservoir Quality of Wufeng Formation-Longmaxi Formation in Jiaoshiba Area.Earth Science, 44(3):972-982(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201903023
      Wang D.F., Wang Y.M., Dong D.Z., et al.2013.Quantitative Characterization of Reservoir Space in the Lower Cambrian Qiongzhusi Shale, Southern Sichuan Basin.Natural Gas Industry, 33(7):1-10(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201307001
      Yan J.F., Men Y.P., Sun Y.Y., et al.2016.Geochemical and Geological Characteristics of the Lower Cambrian Shales in the Middle-Upper Yangtze Area of South China and Their Implication for the Shale Gas Exploration.Marine and Petroleum Geology, 70:1-13. https://doi.org/10.1016/j.marpetgeo.2015.11.010
      Yang J.Z., Xia J., Wang S.B., et al.2016.Quartz-Tube Thermal Simulation Study on the Pore Structure Transformation in Over-Matured Shales.Geochimica, 45(4):407-418(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201604006
      Yang R., He S., Yi J.Z., et al.2016.Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin:Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry.Marine and Petroleum Geology, 70:27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019
      Zhang H., Wu J., Jin X.L., et al.2018.The Genetic Type and Its Geological Indication Significance of Shale Minerals in Niutitang Formation.Coal Geology & Exploration, 46(2):61-67. http://d.old.wanfangdata.com.cn/Periodical/mtdzykt201802010
      Zhao M.S., Wang Y., Tian J.C., et al.2013.A Sedimentary Environment Analysis of Black Shales Based on Fossil Assemblage Characteristics:A Case Study of Cambrian Niutitang Formation in Changyang Area, Western Hubei.Geology in China, 40(5):1484-1492(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201305013
      Zhu H.J., Ju Y.W., Qi Y., et al.2018.Impact of Tectonism on Pore Type and Pore Structure Evolution in Organic-Rich Shale:Implications for Gas Storage and Migration Pathways in Naturally Deformed Rocks.Fuel, 228:272-289. https://doi.org/10.1016/j.fuel.2018.04.137
      Zou C.N., Dong D.Z., Wang Y.M., et al.2015.Shale Gas in China:Characteristics, Challenges and Prospects (I).Petroleum Exploration and Development, 42(6):689-701(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK201602003.htm
      陈孝红, 王传尚, 刘安, 等.2017.湖北宜昌地区寒武系水井沱组探获页岩气.中国地质, 44(1):188-189. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201701013
      陈孝红, 汪啸风.2000.湘西地区晚震旦世:早寒武世黑色岩系的生物和有机质及其成矿作用.华南地质与矿产, 16(1):16-23. http://d.old.wanfangdata.com.cn/Periodical/dqxb199901012
      陈孝红, 危凯, 张保民, 等.2018.湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式.中国地质, 45(2):207-226. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201802001
      崔景伟, 朱如凯, 崔京钢.2013.页岩孔隙演化及其与残留烃量的关系:来自地质过程约束下模拟实验的证据.地质学报, 87(5):730-736 http://d.old.wanfangdata.com.cn/Periodical/dizhixb201305010
      胡明毅, 邓庆杰, 胡忠贵.2014.上扬子地区下寒武统牛蹄塘组页岩气成藏条件.石油与天然气地质, 35(2):272-279. doi: 10.11743/ogg20140215
      胡忠贵, 秦鹏, 胡明毅, 等.2018.湘鄂西地区下寒武统水井沱组页岩储层分布及非均质性特征.中国石油勘探, 23(4):39-50. doi: 10.3969/j.issn.1672-7703.2018.04.005
      李海, 刘安, 罗胜元, 等.2018.鄂西宜昌地区寒武系页岩孔隙结构特征及发育主控因素.油气地质与采收率, 25(6):16-23. http://d.old.wanfangdata.com.cn/Periodical/yqdzycsl201806003
      刘安, 危凯, 李旭兵, 等.2015.桑植-石门复向斜及邻区古流体特征与油气保存意义.石油实验地质, 37(6):742-750. http://d.old.wanfangdata.com.cn/Periodical/sysydz201506010
      马中良, 郑伦举, 徐旭辉, 等.2017.富有机质页岩有机孔隙形成与演化的热模拟实验.石油学报, 38(1):23-30. http://d.old.wanfangdata.com.cn/Periodical/syxb201701003
      彭女佳, 何生, 郝芳, 等.2017.川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性.地球科学, 42(7):1134-1146. doi: 10.3799/dqkx.2017.092
      王超, 张柏桥, 舒志国, 等.2019.焦石坝地区五峰组-龙马溪组页岩纹层发育特征及其储集意义.地球科学, 44(3):972-982. doi: 10.3799/dqkx.2019.018
      王道富, 王玉满, 董大忠, 等.2013.川南下寒武统筇竹寺组页岩储集空间定量表征.天然气工业, 33(7):1-10. http://d.old.wanfangdata.com.cn/Periodical/trqgy201307001
      杨金朝, 夏嘉, 王思波, 等.2016.过成熟页岩孔隙结构变化的石英管热模拟研究.地球化学, 45(4):407-418. doi: 10.3969/j.issn.0379-1726.2016.04.006
      张慧, 吴静, 晋香兰, 等.2018.牛蹄塘组页岩矿物的成因类型及其地质指示意义.煤田地质与勘探, 46(2):61-67. doi: 10.3969/j.issn.1001-1986.2018.02.010
      赵明胜, 王约, 田景春, 等.2013.从生物化石组合特征剖析黑色页岩的沉积环境:以鄂西长阳地区寒武系牛蹄塘组为例.中国地质, 40(5):1484-1492. doi: 10.3969/j.issn.1000-3657.2013.05.013
      邹才能, 董大忠, 王玉满, 等.2015.中国页岩气特征、挑战及前景(一).石油勘探与开发, 42(6):689-701. doi: 10.11698/PED.2015.06.01
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(3)

      Article views (2144) PDF downloads(76) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return