• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 6
    Jun.  2020
    Turn off MathJax
    Article Contents
    Li Guomeng, Jiang Wei, Shi Wenjie, Wei Junhao, Zhou Xinqi, Mao Guozheng, Liu Chenglin, 2020. Regularities of Ore-Controlling Structures and Exploration Predictions of Buzhu Au (Sb) Deposit in Kangma County, South Tibet, China. Earth Science, 45(6): 2117-2134. doi: 10.3799/dqkx.2019.271
    Citation: Li Guomeng, Jiang Wei, Shi Wenjie, Wei Junhao, Zhou Xinqi, Mao Guozheng, Liu Chenglin, 2020. Regularities of Ore-Controlling Structures and Exploration Predictions of Buzhu Au (Sb) Deposit in Kangma County, South Tibet, China. Earth Science, 45(6): 2117-2134. doi: 10.3799/dqkx.2019.271

    Regularities of Ore-Controlling Structures and Exploration Predictions of Buzhu Au (Sb) Deposit in Kangma County, South Tibet, China

    doi: 10.3799/dqkx.2019.271
    • Received Date: 2019-05-15
    • Publish Date: 2020-06-15
    • The Au-Sb-Pb-Zn-Ag Polymetallogenic Metallogenic belt in South Tibet, also known as the North Himalayan Metallogenic belt, is an important part of the Tethyan Himalayan Metallogenic Region. Although Kangma area is in an advantageous metallogenic location where the SN-trending faults cross the EW- trending faults, few breakthroughs have been made in exploration prediction for a long time due to the lack of clear ore-controlling regularities, feasible prospection methods, and effective prediction examples for reference, which caused by high altitude and thick coverage. In recent years, the discovery of a group of deposits such as Buzhu gold (antimony) deposit has filled the gap of exploration in this area. However, due to the lack of in-depth understanding of the internal architecture and ore-controlling styles of the fault zones, the exploration of Buzhu deposit is seriously restricted. Based on detailed geological survey, the internal architectures of NW- (and EW-) and SN- trending fault zones in this deposit have been systematically dissected here. It is identified that both sets of fault zones were composed of the fault core in the central part and the damage zone in the peripheral. In the NW- (and EW-) trending fault zones, the crumpled pyrite-bearing quartz veins were controlled by the fault core and the straight and steep quartz veins bearing multiple sulfide phases and quartz veins bearing abundant arsenopyrite filled in the joints of the damage zone. In the SN-trending fault zones, the fault core consisting of cleavage zone and breccia zone is barren. While, the bedding tension fractures in the damage zone were filled by high grade veins characterized by obvious limonite and clay alteration. Combined with regional tectonic evolution, a three-stage evolution model depicting the formation, development and ore-controlling of the major fault zones in Buzhu deposit is established in this paper. Under the guidance of this model, 6 prospecting targets were delineated according to the geological facts combined with the prospecting information such as synthetic anomalies of 1:10 000 soil geochemical exploration, wall rock alteration and ore outcrops. And each of the 2 targets was finally selected in the 3 levels of A, B and C, comprehensively considering various factors. Through the above studies on the internal architecture, ore-controlling regularities and evolution model of the fault zones, as well as the delineation of the targets combined with synthetic anomalies, the authors hope to provide useful reference for the ore genesis research and prospection in the Buzhu deposit and Kangma areas.

       

    • loading
    • Agosta, F., Alessandroni, M., Tondi, E., et al., 2009.Oblique Normal Faulting along the Northern Edge of the Majella Anticline, Central Italy:Inferences on Hydrocarbon Migration and Accumulation.Journal of Structural Geology, 31(7):674-690. https://doi.org/10.1016/j.jsg.2009.03.012
      Billi, A., 2010.Microtectonics of Low-P Low-T Carbonate Fault Rocks.Journal of Structural Geology, 32(9):1392-1402. https://doi.org/10.1016/j.jsg.2009.05.007
      Billi, A., Salvini, F., Storti, F., 2003.The Damage Zone-Fault Core Transition in Carbonate Rocks:Implications for Fault Growth, Structure and Permeability.Journal of Structural Geology, 25(11):1779-1794.https://doi.org/10.1016/s0191-8141(03)00037-3 doi: 10.1016-S0191-8141(03)00037-3/
      Blisniuk, P.M., Hacker, B.R., Glodny, J., et al., 2001.Normal Faulting in Central Tibet since at Least 13.5 Myr Ago.Nature, 412(6847):628-632. https://doi.org/10.1038/35088045
      Burg, J.P., Brunel, M., Gapais, D., et al., 1984.Deformation of Leucogranites of the Crystalline Main Central Sheet in Southern Tibet (China).Journal of Structural Geology, 6(5):535-542. https://doi.org/10.1016/0191-8141(84)90063-4
      Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., et al., 2010.A Review of Recent Developments Concerning the Structure, Mechanics and Fluid Flow Properties of Fault Zones.Journal of Structural Geology, 32(11):1557-1575. https://doi.org/10.1016/j.jsg.2010.06.009
      Fu, J.G., Li, G.M., Wang, G.H., et al., 2018.Timing of E-W Extension Deformation in North Himalaya:Evidences from Ar-Ar Age in the Cuonadong Dome, South Tibet.Earth Science, 43(8):2638-2650(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808008
      Guillot, S., LeFort, P., 1995.Geochemical Constraints on the Bimodal Origin of High Himalayan Leucogranites.Lithos, 35 (3-4):221-234. https://doi.org/10.1016/0024-4937(94)00052-4
      Harrison, T.M., Grove, M., Lovera, O.M., et al., 1998.A Model for the Origin of Himalayan Anatexis and Inverted Metamorphism.Journal of Geophysical Research:Solid Earth, 103(B11):27017-27032. https://doi.org/10.1029/98jb02468
      Hou, Z.Q., Pan, G.T., Wang, A.J., et al., 2006a.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅱ.Mineralization in Late Collisional Transformation Setting.Mineral Deposits, 25(5):521-543(in Chinese with English abstract). doi: 10.1016/S1872-2040(06)60004-2
      Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006b.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ.Mineralization in Post-Collisional Extension Setting.Mineral Deposits, 25(6):629-651(in Chinese with English abstract).
      Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006c.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ.Mineralization in Main Collisional Orogenic Setting.Mineral Deposits, 25(4):337-358(in Chinese with English abstract). https://www.researchgate.net/publication/284229523_Metallogenesis_in_Tibetan_collisional_orogenic_belt_I_Mineralization_in_main_collisional_orogenic_setting
      Hou, Z.Q., Zhang, H.R., 2015.Geodynamics and Metallogeny of the Eastern Tethyan Metallogenic Domain.Ore Geology Reviews, 70:346-384. https://doi.org/10.1016/j.oregeorev.2014.10.026.
      Li, G.M., Zhang, L.K., Jiao, Y.J., et al., 2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet.Mineral Deposits, 36(4):1003-1008(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014
      Li, J.G., Wang, Q.H., Chen, J.K., et al., 2002.Study of Metallogenic and Prospecting Models for the Shalagang Antimony Deposit, Gyangze, Tibet.Journal of Chengdu University of Technology, 29(5):533-538(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200205011
      Liang, W., Zheng, Y.C., 2019.Hydrothermal Sericite Ar-Ar Dating of Jisong Pb-Zn Deposit, Southern Tibet.Geology in China, 46(1):126-139(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201901009
      Mulch, A., Chamberlain, C.P., 2006.The Rise and Growth of Tibet.Nature, 439(7077):670-671. doi: 10.1126-science.105978/
      Nelson, K.D., Zhao, W., Brown, L.D., et al., 1996.Partially Molten Middle Crust beneath Southern Tibet:Synthesis of Project INDEPTH Results.Science, 274(5293):1684-1688. https://doi.org/10.1126/science.274.5293.1684.
      Nie, F.J., Hu, P., Jiang, S.H., et al., 2005.Type and Temporal-Spatial Distribution of Gold and Antimony Deposits (Prospects) in Southern Tibet, China.Acta Geologica Sinica, 79(3):373-385(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200503009
      Pan, G.T., Li, X.Z., Wang, L.Q., et al., 2002.Preliminary Division of Tectonic Units of the Qinghai-Tibet Plateau and Its Adjacent Regions.Geological Bulletin of China, 21(11):701-707(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200211002
      Qi, X.X., Li, T.F., Meng, X.J., et al., 2008.Cenozoic Tectonic Evolution of the Tethyan Himalayan Foreland Fault-Fold Belt in Southern Tibet, and Its Constraint on Antimony-Gold Polymetallic Minerogenesis.Acta Petrologica Sinica, 24(7):1638-1648(in Chinese with English abstract). http://www.researchgate.net/publication/282673782_Cenozoic_tectonic_evolution_of_the_Tethyan_Himalayan_foreland_fault-fold_belt_in_Southern_Tibet_and_its_constraint_on_antimony-gold_polymetallic_minerogenesis
      Sun, X., Zheng, Y.Y., Pirajno, F., et al., 2018.Geology, S-Pb Isotopes, and 40Ar/39Ar Geochronology of the Zhaxikang Sb-Pb-Zn-Ag Deposit in Southern Tibet:Implications for Multiple Mineralization Events at Zhaxikang.Mineralium Deposita, 53(3):435-458. https://doi.org/10.1007/s00126-017-0752-6
      Sun, X.M., Wei, X.H., Zhai, W., et al., 2010.Ore-Forming Fluid Geochemistry and Metallogenic Mechanism of Bangbu Large-Scale Orogenic Gold Deposit in Southern Tibet, China.Acta Petrologica Sinica, 26(6):1672-1684(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201006004
      Wang, D., Zheng, Y.Y., Mathur, R., et al., 2019.Multiple Mineralization Events in the Zhaxikang Sb-Pb-Zn-Ag Deposit and Their Relationship with the Geodynamic Evolution in the North Himalayan Metallogenic Belt, South Tibet.Ore Geology Reviews, 105:201-215. https://doi.org/10.1016/j.oregeorev.2018.12.024.
      Wang, X.X., Zhang, J.J., Yan, S.Y., et al., 2015.Structural Characteristics and Active Time of the Kangmar Detachment, Southern Tibet.Geotectonica et Metallogenia, 39(2):250-259(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201502005
      Wang, Y.Y., Gao, L.E., Zeng, L.S., et al., 2016.Multiple Phases of Cretaceous Mafic Magmatism in the Gyangze-Kangma Area, Tethyan Himalaya, Southern Tibet.Acta Petrologica Sinica, 32(12):3572-3596(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201612002.htm
      Xia, Q.L., Cheng, Q.M., Zuo, R.G., et al., 2009.GIS Technique of Optimum Target Areas in Mineral Resource Prospecting.Earth Science, 34(2):287-293(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx200902010
      Xie, Y.L., Yang, K.J., Li, Y.X., et al., 2019.Mazhala Gold-Antimony Deposit in Southern Tibet:The Characteristics of Ore-Forming Fluids and the Origin of Gold and Antimony.Earth Science, 44(6):1998-2016(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201906018
      Yang, Z.S., Hou, Z.Q., Meng, X.J., et al., 2009.Post-Collisional Sb and Au Mineralization Related to the South Tibetan Detachment System, Himalayan Orogen.Ore Geology Reviews, 36(1-3):194-212. doi: 10.1016-j.oregeorev.2009.04.004/
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zha, X., Basang, C.R., Dunzhu, C.R., et al., 2018.A Brief Analysis of the Geological Characteristics and Metallogenic Regularity of the Sexiu Deposit in Tibet.World Nonferrous Metals, (19):253-254(in Chinese with English abstract)).
      Zhai, W., Sun, X.M., Yi, J.Z., et al., 2014.Geology, Geochemistry, and Genesis of Orogenic Gold-Antimony Mineralization in the Himalayan Orogen, South Tibet, China.Ore Geology Reviews, 58:68-90. https://doi.org/10.1016/j.oregeorev.2013.11.001
      Zhang, G.Y., Zheng, Y.Y., Zhang, J.F., et al., 2011.Ore-Control Structural and Geochronologic Constrain in Shalagang Antimony Deposit in Southern Tibet, China.Acta Petrologica Sinica, 27(7):2143-2149(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107021
      Zhang, H.R., Yang, T.N., Hou, Z.Q., et al., 2017.Structural Controls on Carbonate-Hosted Pb-Zn Mineralization in the Dongmozhazhua Deposit, Central Tibet.Ore Geology Reviews, 90:863-876. https://doi.org/10.1016/j.oregeorev.2017.02.008
      Zhang, J.F., Zheng, Y.Y., Zhang, G.Y., et al., 2010.Genesis of Zhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya:Constraints from Multi-Isotope Geochemistry.Earth Science, 35(6):1000-1010(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201006010
      Zhang, L.K., Zhang, Z., Li, G.M., et al., 2018.Rock Assemblage, Structural Characteristics and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya.Earth Science, 43(8):2664-2683(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808010
      Zheng, Y.Y., Sun, X., Tian, L.M., et al., 2014.Mineralization, Deposit Type and Metallogenic Age of the Gold Antimony Polymetallic Belt in the Eastern Part of North Himalayan.Geotectonica et Metallogenia, 38(1):108-118(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201401011
      Zheng, Y.Y., Zhang, L.X., Sun, X., 2012.Mineralization and Deposit Types of the North Himalayan Au-Sb Polymetallic Metallogenic Belt and Controlling Factors.Mineral Deposits, 31(Suppl.1):1081-1082(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201401010.htm
      付建刚, 李光明, 王根厚, 等, 2018.北喜马拉雅E-W向伸展变形时限:来自藏南错那洞穹隆Ar-Ar年代学证据.地球科学, 43(8):2638-2650. doi: 10.3799/dqkx.2018.530
      侯增谦, 潘桂棠, 王安建, 等, 2006a.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质, 25(5):521-543. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      侯增谦, 曲晓明, 杨竹森, 等, 2006b.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      侯增谦, 杨竹森, 徐文艺, 等, 2006c.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014
      李金高, 王全海, 陈健坤, 等, 2002.西藏江孜县沙拉岗锑矿床成矿与找矿模式的初步研究.成都理工学院学报, 29(5):533-538. http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb200205011
      梁维, 郑远川, 2019.藏南吉松铅锌矿成矿时代的厘定:热液绢云母Ar-Ar年龄.中国地质, 46(1):126-139. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201901009
      聂凤军, 胡朋, 江思宏, 等, 2005.藏南地区金和锑矿床(点)类型及其时空分布特征.地质学报, 79(3):373-385. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200503009
      潘桂棠, 李兴振, 王立全, 等, 2002.青藏高原及邻区大地构造单元初步划分.地质通报, 21(11):701-707. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200211002
      戚学祥, 李天福, 孟祥金, 等, 2008.藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用.岩石学报, 24(7):1638-1648. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807020
      孙晓明, 韦慧晓, 翟伟, 等, 2010.藏南邦布大型造山型金矿成矿流体地球化学和成矿机制.岩石学报, 26(6):1672-1684. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006004
      王晓先, 张进江, 闫淑玉等, 2015.藏南康马拆离断层的构造特征及其活动时代.大地构造与成矿学, 39(2):250-259. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201502005
      王亚莹, 高利娥, 曾令森, 等, 2016.藏南特提斯喜马拉雅带内江孜-康马地区白垩纪多期基性岩浆作用.岩石学报, 32(12):3572-3596. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201612002.htm
      夏庆霖, 成秋明, 左仁广, 等, 2009.基于GIS矿产勘查靶区优选技术.地球科学, 34(2):287-293. http://www.earth-science.net/article/id/1827
      谢玉玲, 杨科君, 李应栩, 等, 2019.藏南马扎拉金-锑矿床:成矿流体性质和成矿物质来源.地球科学, 44(6):1998-2016. doi: 10.3799/dqkx.2019.122
      扎西, 巴桑次仁, 顿珠次仁, 等, 2018.浅析西藏布主色秀地区矿床地质特征及成矿规律.世界有色金属, (19):253-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjysjs201819150
      张刚阳, 郑有业, 张建芳, 等, 2011.西藏沙拉岗锑矿控矿构造及成矿时代约束.岩石学报, 27(7):2143-2149. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107021
      张建芳, 郑有业, 张刚阳, 等, 2010.北喜马拉雅扎西康铅锌锑银矿床成因的多元同位素制约.地球科学, 35(6):1000-1010. doi: 10.3799/dqkx.2010.113
      张林奎, 张志, 李光明, 等, 2018.特提斯喜马拉雅错那洞穹隆的岩石组合、构造特征与成因.地球科学, 43(8):2664-2683. doi: 10.3799/dqkx.2018.141
      郑有业, 孙祥, 田立明, 等, 2014.北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代.大地构造与成矿学, 38(1):108-118. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201401011
      郑有业, 张立雪, 孙祥, 2012.北喜马拉雅金锑多金属成矿带成矿作用、矿床类型与控矿因素.矿床地质, 31(增刊1):1081-1082. http://d.old.wanfangdata.com.cn/Conference/7864773
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(1)

      Article views (2069) PDF downloads(98) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return