Citation: | Zhao Meiling, Zhang Yiming, Zhang Zhiqi, Huang Xianyu, 2020. Comparison of Microbial Community in Topsoil among Different Habitats in Dajiuhu, Hubei Province: Evidence from Phospholipid Fatty Acids. Earth Science, 45(6): 1877-1886. doi: 10.3799/dqkx.2019.272 |
Andersen, R., Grasset, L., Thormann, M.N., et al., 2010.Changes in Microbial Community Structure and Function Following Sphagnum Peatland Restoration.Soil Biology and Biochemistry, 42(2):291-301. https://doi.org/10.1016/j.soilbio.2009.11.006
|
Anderson, J.P.E., Domsch, K.H., 1973.Quantification of Bacterial and Fungal Contributions to Soil Respiration.Archives of Microbiology, 93:113-127. doi: 10.1007-BF00424942/
|
Borga, P., Nilsson, M., Tunlid, A., 1994.Bacterial Communities in Peat in Relation to Botanical Composition as Revealed by Phospholipid Fatty Acid Analysis.Soil Biology and Biochemistry, 26(7):841-848. https://doi.org/10.1016/0038-0717(94)90300-x
|
Börjesson, J., Menichetti, L., Thornton, B., et al., 2016.Seasonal Dynamics of the Soil Microbial Community:Assimilation of Old and Young Carbon Sources in a Long-Term Field Experiment as Revealed by Natural 13C Abundance.European Journal of Soil Science, 67:79-89. https://doi.org/10.1111/ejss.12309
|
Ding, X., Chen, S., Zhang, B., et al., 2019.Warming Increases Microbial Residue Contribution to Soil Organic Carbon in an Alpine Meadow.Soil Biology and Biochemistry, 15:13-19. https://doi.org/10.1016/j.soilbio.2019.04.004
|
Eberlein, C., Baumgarten, T., Starke, S., et al., 2018.Immediate Response Mechanisms of Gram-Negative Solvent-Tolerant Bacteria to Cope with Environmental Stress:Cis-Trans Isomerization of Unsaturated Fatty Acids and Outer Membrane Vesicle Secretion.Applied Microbiology and Biotechnology, 102:2583-2593. https://doi.org/10.1007/s00253-018-8832-9
|
Fanina, N., Kardola, P., Farrellc, M., et al., 2019.The Ratio of Gram-Positive to Gram-Negative Bacterial PLFA Markers as an Indicator of Carbon Availability in Organic Soils.Soil Biology and Biochemistry, 128:111-114. https://doi.org/10.1016/j.soilbio.2018.10.010
|
Findlay, R.H., King, G.M., Watling, L., 1989.Efficacy of Phospholipid Analysis Determining Microbial Biomass in Sediments.Applied and Environmental Microbiology, 55(11):2888-2893. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_203186
|
Frostegård, A., Tunlid, A., Bååth, E., 1991.Microbial Biomass Measured as Total Lipid Phosphate in Soils of Different Organic Content.Journal of Microbiological Methods, 14(3):151-163. doi: 10.1016-0167-7012(91)90018-L/
|
Hooper, D.U., Bignell, D.E., Brown, V.K., et al., 2000.Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems.Bioscience, 50(12):1049-1061. doi: 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2
|
Huang, X., Wang, C., Xue, J., et al., 2010.Occurrence of Diploptene in Moss Species from the Dajiuhu Peatland in Southern China.Organic Geochemistry, 41:321-324. https://doi.org/10.1016/j.orggeochem.2009.09.008
|
Huang, X.Y., Zhang, Z.Q., Wang, H.M., et al., 2017.Overview on Critical Zone Observatory at Dajiuhu Peatland, Shennongjia.Earth Science, 42(6):1026-1038(in Chinese with English abstract). https://doi.org/10.3799/dpkx.2017.081
|
Jaatinen, K., Tuittila, E.S., Laine, J., et al., 2005.Methane-Oxidizing Bacteria in a Finnish Raised Mire Complex:Effects of Site Fertility and Drainage.Microbial Ecology, 50(3):429-439. https://doi.org/10.1007/s00248-005-0219-7
|
Kourtev, P.S., Ehrenfeld, J.G., Häggblom, M.H., 2003.Experimental Analysis of the Effect of Exotic and Native Plant Species on the Structure and Function of Soil Microbial Communities.Soil Biology and Biochemistry, 35(7):895-905. https://doi.org/10.1016/S0038-0717(03)00120-2
|
Lauber, C.L., Strickland, M.S., Bradford, M.A., et al., 2008.The Influence of Soil Properties on the Structure of Bacterial and Fungal Communities across Land-Use Types.Soil Biology and Biochemistry, 40(9):2407-2415. https://doi.org/10.1016/j.soilbio.2008.05.021
|
Li, J.X., Li, J., Dang, H.S., et al., 2007.Vegetation and Conservation Strategy of Dajiuhu Wetland Park in Shennongjia Region.Journal of Wuhan Botanical Research, 25(6):605-611(in Chinese with English abstract). http://www.cabdirect.org/abstracts/20083053494.html
|
Li, X.Y., Sun, J., Wang, H.H., et al., 2017.Changes in the Soil Microbial Phospholipid Fatty Acid Profile with Depth in Three Soil Types of Paddy Fields in China.Geoderma, 290:69-74. https://doi.org/10.1016/j.geoderma.2016.11.006
|
Li, Y.Y., Ge, J.W., Peng, F.J., et al., 2017.Characteristics of Methane Flux and Their Effect Factor on Dajiuhu Peatland of Shennongjia.Earth Science, 42(5):832-842(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.071
|
Liang, C., Schimel, J.P., Jastrow, J.D., 2017.The Importance of Anabolism in Microbial Control over Soil Carbon Storage.Nature Microbiology, 2:17105. https://doi.org/10.1038/nmicrobiol.2017.105
|
Lipson, D.A., Schmidt, S.K., Monson, R.K., 2000.Carbon Availability and Temperature Control the Post-Snowmelt Decline of Microbial Biomass in an Alpine Soil.Soil Biology and Biochemistry, 32:441-448. https://doi.org/10.1016/s0038-0717(99)00068-1
|
Liu, H.Y, Gu, Y.S., Lun, Z.J., et al., 2018.Phytolith-Inferred Transfer Function for Paleohydrological Reconstruction of Dajiuhu Peatland, Central China.The Holocene, 28:1623-1630. https://doi.org/10.1177/0959683618782590
|
Luo, T., Lun, Z.J., Gu, Y.S., et al., 2015.Plant Community Survey and Ecological Protection of Dajiuhu Wetlands in Shengnongjia Area.Wetland Science, 13(2):153-160(in Chinese with English abstract).
|
Miltner, A., Bombach, P., Schmidt-Brücken, B., et al., 2012.SOM Genesis:Microbial Biomass as a Significant Source.Biogeochemistry, 111(1-3):41-55. https://doi.org/10.1007/s10533-011-9658-z
|
Miura, T., Makotoa, K., Niwab, S., et al., 2017.Comparison of Fatty Acid Methyl Ester Methods for Characterization of Microbial Communities in Forest and Arable Soil:Phospholipid Fraction (PLFA) versus Total Ester Linked Fatty Acids (EL-FAME).Pedobiologia Journal of Soil Ecology, 63:14-18. https://doi.org/10.1016/j.pedobi.2017.04.002
|
Moore-Kucera, J., Dick, R.P., 2008.PLFA Profiling of Microbial Community Structure and Seasonal Shifts in Soils of a Douglas-Fir Chronosequence.Microbial Ecology, 55(3):500-511. https://doi.org/10.1007/s00248-007-9295-1
|
Mutabaruka, R., Hairiah, K., Cadisch, G., 2007.Microbial Degradation of Hydrolysable and Condensed Tannin Polyphenol-Protein Complexes in Soils from Different Land-Use Histories.Soil Biology and Biochemistry, 39:1479-1492. https://doi.org/10.1016/j.soilbio.2006.12.036
|
Olsson, S., Alström, S., 2000.Characterisation of Bacteria in Soils under Barley Monoculture and Crop Rotation.Soil Biology and Biochemistry, 32(10):1443-1451. https://doi.org/10.1016/s0038-0717(00)00062-6
|
Qin, Y.M., Gong, J., Gu, Y.S., et al., 2018.Ecological Monitoring and Environmental Significance of Testate Amoebae in Subalpine Peatlands in West Hubei Province, China.Earth Science, 43(11):4036-4045(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.599
|
Rousk, J., Brookes, P.C., Bååth, E., 2010a.Investigating the Mechanisms for the Opposing pH Relationships of Fungal and Bacterial Growth in Soil.Soil Biology and Biochemistry, 42:926-934. https://doi.org/10.1016/j.soilbio.2010.02.009
|
Rousk, J., Brookes, P.C., Bååth, E., 2010b.The Microbial PLFA Composition as Affected by pH in an Arable Soil.Soil Biology and Biochemistry, 42:516-520. https://doi.org/10.1016/j.soilbio.2009.11.026
|
Sundh, I., Borgå, P., Nilsson, M., et al., 1995.Estimation of Cell Numbers of Methanotrophic Bacteria in Boreal Peatlands Based on Analysis of Specific Phospholipid Fatty Acids.FEMS Microbiology Ecology, 18:103-112. https://doi.org/10.1016/0168-6496(95)00046-d
|
Wagner, D., Eisenhauer, N., Cesarz, S., 2015.Plant Species Richness does not Attenuate Responses of Soil Microbial and Nematode Communities to a Flood Event.Soil Biology and Biochemistry, 89:135-149. https://doi.org/10.1016/j.soilbio.2015.07.001
|
Wickland, K.P., Striegl, R.G., Mast, M.A., et al., 2001.Carbon Gas Exchange at a Southern Rocky Mountain Wetland, 1996-1998.Global Biogeochemical Cycle, 15:321-335. https://doi.org/10.1029/2000GB001325
|
Wu, Y., Ma, B., Zhou, L., et al., 2009.Changes in the Soil Microbial Community Structure with Latitude in Eastern China, Based on Phospholipid Fatty Acid Analysis.Applied Soil Ecology, 43(1-2):234-240. https://doi.org/10.1016/j.apsoil.2009.08.002
|
Xie, S.C., Evershed, R.P., Huang, X.Y., et al., 2013.Concordant Monsoon-Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China.The Geological Society of America, 41(8):827-830. https://doi.org/10.1130/g34318.1
|
Yu, S.F., She, G.H., Ye, S.M., et al., 2018.Characteristics of Soil Microbial Biomass and Community Composition in Pinus Yunnanensis var.Tenuifolia Secondary Forests.Journal of Sustainable Forestry, 20:1-19. https://doi.org/10.1080/10549811.2018.1483250
|
Zelles, L., 1997.Phospholipid Fatty Acid Profiles in Selected Members of Soil Microbial Communities.Chemosphere, 35:275-294. https://doi.org/10.1016/s0045-6535(97)00155-0
|
Zelles, L., 1999.Fatty Acid Patterns of Phospholipids and Lipopolysaccharides in the Characterisation of Microbial Communities in Soil:A Review.Biology and Fertility of Soils, 29(2):111-129. http://www.bioone.org/servlet/linkout?suffix=i0277-5212-29-1-353-Zelles2&dbid=16&doi=10.1672%2F08-114.1&key=10.1007%2Fs003740050533
|
Zhang, G., Zheng, C.Y., Wang, Y., et al., 2015.Soil Organic Carbon and Microbial Community Structure Exhibit Different Responses to Three Land Use Types in the North China Plain.Acta Agriculture Scandinavica, 65(4):341-349. https://doi.org/10.1080/09064710.2015.1011223
|
Zhang, Y.Y., Zheng, N.G., Wang, J., et al., 2019.High Turnover Rate of Free Phospholipids in Soil Confirms the Classic Hypothesis of PLFA Methodology.Soil Biology and Biochemistry, 135:323-330. https://doi.org/10.1016/j.soilbio.2019.05.023
|
Zogg, P.G., Zak, D.R., Ringelberg, D.B., et al., 1997.Compositional and Functional Shifts in Microbial Communities Due to Soil Warming.Soil Science Society of America Journal, 61(2):475-481. https://doi.org/10.2136/sssaj1997.03615995006100020015x
|
黄咸雨, 张志麒, 王红梅, 等, 2017.神农架大九湖泥炭湿地关键带监测进展.地球科学, 42(6):1026-1038. doi: 10.3799/dqkx.2017.081
|
李静霞, 李佳, 党海山, 等, 2007.神农架大九湖湿地公园的植被现状与保护对策.武汉植物学研究, 25(6):605 -611. http://d.old.wanfangdata.com.cn/Periodical/whzwxyj200706016
|
李艳元, 葛继稳, 彭凤娇, 等, 2017.神农架大九湖泥炭湿地CH4通量特征及影响因子.地球科学, 42(5):832-842. doi: 10.3799/dqkx.2017.071
|
罗涛, 伦子健, 顾延生, 等, 2015.神农架大九湖湿地植物群落调查与生态保护研究.湿地科学, 13(2):153-160. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201502003
|
秦养民, 巩静, 顾延生, 等, 2018.鄂西亚高山泥炭地有壳变形虫生态监测及对水位的指示意义.地球科学, 43(11):4036-4045. doi: 10.3799/dqkx.2018.599
|