• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 11
    Nov.  2020
    Turn off MathJax
    Article Contents
    Yang Xin, Xu Xuhui, Deng Shang, Zhai Changbo, Kong Qiangfu, Wang Shi, 2020. Proto-Tethys Tectonic Evolution from Ordovician to Devonian in Southwestern Margin of Tarim Block, NW China. Earth Science, 45(11): 4153-4175. doi: 10.3799/dqkx.2019.287
    Citation: Yang Xin, Xu Xuhui, Deng Shang, Zhai Changbo, Kong Qiangfu, Wang Shi, 2020. Proto-Tethys Tectonic Evolution from Ordovician to Devonian in Southwestern Margin of Tarim Block, NW China. Earth Science, 45(11): 4153-4175. doi: 10.3799/dqkx.2019.287

    Proto-Tethys Tectonic Evolution from Ordovician to Devonian in Southwestern Margin of Tarim Block, NW China

    doi: 10.3799/dqkx.2019.287
    • Received Date: 2019-12-15
    • Publish Date: 2020-11-15
    • Geochemistry, zircon U-Pb dating and heavy mineral compositional analysis were carried out for the clastic rocks from Ordovician-Devonian drilling samples, to constrain the tectonic evolution of Proto-Tethys in southwestern Tarim. The zircon grains are divided into three genetic types, i.e. magmatic zircon, metamorphic zircon and trapped or residual zircon, recording the tectonic-thermal events in the periods of the 482-443 Ma, 438-425 Ma and 414-406 Ma since the Cambrian, as well as the Neoproterozoic rift magma events between 840 Ma and 750 Ma. The clastic rocks have high content of SiO2 but relatively low content of Al2O3 and TFe2O3+MgO. They are characterized by right-dip chondrite-normalized REE pattern and flat HREE distribution, with weak to medium Eu negative anomaly. The ratios of trace elements, such as Th/U ratio, Cr/Zr ratio, Rb/Cs ratio, and La/Sc, suggests the terrigenous clastic components were derived from the felsic rocks in upper crust. It is assumed that the tectonic setting of sedimentary basin was characterized by continental island arc and active continental margin in late Ordovician. From the Early Silurian to Middle Devonian, the provenance was then predominated by continental island arc and passive continental margin, and mingled with active continental margin slightly. After the Late Devonian, it gradually changed over to evidential passive continental margin. It is indicated by the heavy minerals that the medium to acid magma activity became frequent while the basic magma activity became quiet during the time from Early Silurian to Middle Devonian, and the mountain uplifted massively since Late Devonian. Thus, the tectonic evolution of Proto-Tethys in south-western margin of Tarim could be divided into three stages, i.e. the northward subduction in Ordovician, the closure of back-arc ocean and folding orogeny in Silurian, and post-collision extension in Devonian.

       

    • loading
    • Bai, C.D., Zhuan, S.P., Wang, J.G., 2018. Geochemical Characteristics and Zircon U-Pb Ages of the Basalt of Yishake Group in Northern Kudi Area, Western Kunlun Mountains and Their Tectonic Significance. Geological Review, 64(2):498-508 (in Chinese with English abstract).
      Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2):181-193. https://doi.org/10.1007/BF00375292
      Boynton, W.V., 1984. Geochemistry of the Rare Earth Elements:Meteorite Study. Development in Geochemistry, 2(2):63-114. http://ci.nii.ac.jp/naid/10003417033
      Ding, M.P., Tang, H.S., Chen, Y.J., et al., 2018. Genesis of the Erik Iron Ore Deposit in the Taxkorgan Area of the West Kunlun, Xinjiang:Constraints from Ore Deposit Geology and in Situ LA-ICP-MS Analysis of Magnetite. Earth Science, 43(9):3169-3185 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201809018.htm
      Guo, X.Z., Jia, Q.Z., Li, J.C., et al., 2018. Zircon U-Pb Geochronology and Geochemistry and Their Geological Significances of Eclogites from East Kunlun High-Pressure Metamorphic Belt. Earth Science, 43(12):4300-4318 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812003.htm
      Han, F.L., Cui, J.T., Ji, W.H., et al., 2002. Discovery of the Qimanyute Ophiolite in the West Kunlun and Its Geological Significance. Geological Bulletin of China, 21(8):573-578 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2002Z2018.htm
      Huang, C.Y., Wang, H., Liu, J.P., et al., 2014. Geological, Geochemical Features and Structure Significance of Kegang Ophiolite, West Kunlun. Geochimica, 43(6):592-601 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201406004.htm
      Kang, L., Jiao, P.X., Gao, X.F., et al., 2015. Geochemical Characteristics, Petrogenesis and Tectonic Setting of Oceanic Plagiogranites Belt in the Northwestern Margin of Western Kunlun. Acta Petrologica Sinica, 31(9):2566-2582 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201509008.htm
      Lambeck, A., Huston, D., Maidment, D., et al., 2008. Sedimentary Geochemistry, Geochronology and Sequence Stratigraphy as Tools to Typecast Stratigraphic Units and Constrain Basin Evolution in the Gold Mineralised Palaeoproterozoic Tanami Region, Northern Australia. Precambrian Research, 166(1/2/3/4):185-203. https://doi.org/10.1016/j.precamres.2007.10.012
      Li, B.Q., Yao, J.X., Ji, W.H., et al., 2006. Characteristics and Zircon SHRIMP U-Pb Ages of the Arc Magmatic Rocks in Mazar, Southern Yecheng, West Kunlun Mountains. Geological Bulletin of China, 25(1):124-132 (in Chinese with English abstract). http://www.researchgate.net/publication/289119930_Characteristics_and_zircon_SHRIMP_U-Pb_ages_of_the_arc_magmatic_rocks_in_Mazar_southern_Yecheng_West_Kunlun_Mountains
      Li, S., Zhao, S., Liu, X., et al., 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic Amalgamation of Microcontinental Blocks in East Asia. Earth-Science Reviews, 186:37-57 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0012825217300363
      Li, S.Z., Zhao, S.J., Yu, S., et al., 2016. Proto-Tehtys Ocean in East Asia (Ⅱ):Affinity and assmbly of Early Paleozoic Micro-Continental Blocks. Acta Petrologica Sinica, 32(9):2628-2644 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201609003.htm
      Li, T.F., Zhang, J.X., et al., 2014. Zircon LA-ICP-MS U-Pb Ages of Websterite and Basalt in Kudi Ophiolite and the Implication, West Kunlun. Acta Petrologica Sinica, 30(8):2393-2401 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201408020.htm
      Li, Z., Wang, D.X., Lin, W., et al., 2004. Mesozoic-Cenozoic Clastic Composition in Kuqa Depression, Northwest China:Implication for Provenance Types and Tectonic Attributes. Acta Petrologica Sinica, 20(3):655-666 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200403029
      Liu, Z., Jiang, Y.H., Jia, R.Y., et al., 2014. Origin of Middle Cambrian and Late Silurian Potassic Granitoids from the Western Kunlun Orogen, Northwest China:A Magmatic Response to the Proto-Tethys Evolution. Mineralogy and Petrology, 108(1):91-110 (in Chinese with English abstract). doi: 10.1007/s00710-013-0288-0
      Liu, X., Zhu, Z.X., Guo, R.Q., et al., 2016. LA-ICP-MS U-Pb Zircon Dating and Its Geological Significance for the Late Paleozoic Diabase from the West Part of Tiekelike Area, South Tarim. Chinese Journal of Geology, 51(3):794-805 (in Chinese with English abstract). doi: 10.12017/dzkx.2016.030
      McLennan, S. M., Taylor, S. R., 1991. Sedimentary Rocks and Crustal Evolution:Tectonic Setting and Secular Trends. The Journal of Geology, 99(1):1-21. https://doi.org/10.1086/629470
      Morton, A. C., Hallsworth, C. R., 1999. Processes Controlling the Composition of Heavy Mineral Assemblages in Sandstones. Sedimentary Geology, 124(1/2/3/4):3-29. https://doi.org/10.1016/s0037-0738(98)00118-3
      Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Model of Archipelagic Arc-Basin Systems:The Key to the Continental Geology. Sedimentary Geology and Tethyan Geology, 32(3):1-20 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/yxgdl201203001
      Pan, Y.S., Fang, A.M., 2010.Formation and Evolution of the Tethys in the Tibetan Plateau. Chinese Journal of Geology, 45(1):92-101 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY2000S1210.htm
      Qiao, G.B., Wu, Y.Z., 2018. Geochronology, Petrogenesis and Tectonic Significance of Quanshuigou Pluton from Southeastern West Kunlun Mountain in Xinjiang, China. Earth Science, 43(12):4283-4299 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812002.htm
      Roddaz, M., Viers, J., Brusset, S., et al., 2006. Controls on Weathering and Provenance in the Amazonian Foreland Basin:Insights from Major and Trace Element Geochemistry of Neogene Amazonian Sediments. Chemical Geology, 226(1/2):31-65. https://doi.org/10.1016/j.chemgeo.2005.08.010
      Shields, G., Stille, P., 2001. Diagenetic Constraints on the Use of Cerium Anomalies as Palaeoseawater Redox Proxies:An Isotopic and REE Study of Cambrian Phosphorites. Chemical Geology, 175(1/2):29-48. https://doi.org/10.1016/s0009-2541(00)00362-4
      Shu, L.S., Deng, X.L., Ma, X.X., 2019.Tectonic Affinity between Central Tianshan Basement and Tarim Block Craton. Earth Science, 44(5):1584-1601 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905015.htm
      Tang, L.J., Qiu, H.J., Yun, L., et al., 2014.Poly-Phase Reform Late-Stage Finalization Composite Tectonics and Strategic Area Selection of Oil and Gas Resources in Tarim Basin, NW China. Journal of Jilin University (Earth Science Edition), 44(1):1-14 (in Chinese with English abstract). http://www.researchgate.net/publication/285630889_Poly-phase_reform-late-stage_finalization_composite_tectonics_and_strategic_area_selection_of_oil_and_gas_resources_in_Tarim_Basin_NW_China
      Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Blackwell, London, 312-313. http://doc63.dhjkbooks.com/the-continental-crust-its-composition-and-evolution-_P_1503m.pdf
      Wang, C., Liu, L., He, S.P., et al., 2013.Early Paleozoic Magmatism in West Kunlun:Constraints from Geochemical and Zircon U-Pb-Hf Isotopic Studies of the Bulong Granite. Chinese Journal of Geology, 48(4):997-1014 (in Chinese with English abstract). http://www.researchgate.net/publication/286462005_Early_Paleozoic_magmatism_in_west_Kunlun_Constraints_from_geochemical_and_zircon_U-Pb-Hf_isotopic_studies_of_the_Bulong_granite
      Wang, C., Zhang, J. H., Li, M., et al., 2015. Generation of Ca. 900-870 Ma Bimodal Rifting Volcanism along the Southwestern Margin of the Tarim Craton and Its Implications for the Tarim-North China Connection in the Early Neoproterozoic. Journal of Asian Earth Sciences, 113:610-625. https://doi.org/10.1016/j.jseaes.2015.08.002
      Xiao, W.J., Wind, B.F., 2000. Analysis for Geotectonic Facies and Accretion Process of Multi-Island System in West Kunlun. Science in China (Series D:Earth Sciences), 30(S1):22-28 (in Chinese with English abstract).
      Xiao, W. J., Windley, B. F., Liu, D. Y., et al., 2005. Accretionary Tectonics of the Western Kunlun Orogen, China:A Paleozoic-Early Mesozoic, Long-Lived Active Continental Margin with Implications for the Growth of Southern Eurasia. The Journal of Geology, 113(6):687-705. https://doi.org/10.1086/449326
      Xu, Z.Q., Yang, J.S., Li, W.C., et al., 2013.Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6):1847-1860 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ysxb98201306001
      Yang, S., Lv, H.W., Qu, X.X., et al., 2016.The Discovery of Early-Middle Silurian Adakite in West Kunlun Mountains and Its Geological Implications. Acta Petrologica et Mineralogica, 35(4):563-578 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201604001.htm
      Yin, D.G., Zheng, Y.Z., Gong, X.P., et al., 2013.The Geological Characteristics and Formation Epoch of West Kunlun Kudi Petrofabric. Xinjiang Geology, 31(4):281-286 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI201304003.htm
      Yu, X.F., Sun, F.Y., Li, B.L., et al., 2011. Caledonian Diagenetic and Metallogenicevents in Datong District in the Western Kunlun:Evidences from LA-ICP-MS Zircon U-Pb Dating and Molybdenite Re-Os Dating. Acta Petrologica Sinica, 27(6):1770-1778 (in Chinese with English abstract). http://www.oalib.com/paper/1475178
      Zha, X.F., Gao, X.F., Li, P., et al., 2018. Origin of Diabase Dykes in Mazar Area in West Kunlun Orogenic Belt:Evidences from Zircon U-Pb Dating and Geochemistry. Earth Science, 43(12):4269-4282 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812001.htm
      Zhang, Y., Niu, Y. L., Hu, Y., et al., 2016. The Syncollisional Granitoid Magmatism and Continental Crust Growth in the West Kunlun Orogen, China-Evidence from Geochronology and Geochemistry of the Arkarz Pluton. Lithos, 245:191-204. https://doi.org/10.1016/j.lithos.2015.05.007
      Zheng, M.T., Zhang, L.C., Zhu, M.T., et al., 2016.Geological Characteristics, Formation Age and Genesis of the Kalaizi Ba-Fe Deposit in West Kunlun. Earth Science Frontiers, 23(5):252-265 (in Chinese with English abstract).
      Zhu, D.C., Wang, Q., Zhao, Z.D., et al., 2018. Magmatic Origin of Continental Arcs and Continental Crust Formation. Earth Science Frontiers, 25(6):67-77 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DXQY201806007.htm
      白春东, 专少鹏, 王金贵, 等, 2018.西昆仑库地北依莎克群玄武岩锆石U-Pb年龄、地球化学特征及构造意义.地质论评, 64(2):498-508. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201802016
      丁明朋, 汤好书, 陈衍景, 等, 2018.西昆仑塔什库尔干叶里克铁矿成因:矿床地质与磁铁矿LA-ICP-MS原位分析约束.地球科学, 43(9):3169-3185. doi: 10.3799/dqkx.2018.239
      国显正, 贾群子, 李金超, 等, 2018.东昆仑高压变质带榴辉岩年代学、地球化学及其地质意义.地球科学, 43(12):4300-4318. doi: 10.3799/dqkx.2018.142
      韩芳林, 崔建堂, 计文化, 等, 2002.西昆仑其曼于特蛇绿混杂岩的发现及其地质意义.地质通报, 21(8):573-578. http://www.cqvip.com/QK/95894A/200209/1000428210.html
      黄朝阳, 王核, 刘建平, 等, 2014.西昆仑柯岗蛇绿岩地质地球化学特征及构造意义.地球化学, 43(6):592-601. http://d.wanfangdata.com.cn/Periodical/dqhx201406004
      康磊, 校培喜, 高晓峰, 等, 2015.西昆仑西北缘大洋斜长花岗岩带的岩石地球化学特征、成因及其构造环境.岩石学报, 31(9):2566-2582. http://qikan.cqvip.com/Qikan/Article/Detail?id=666265966
      李博秦, 姚建新, 计文化, 等, 2006.西昆仑叶城南部麻扎地区弧火成岩的特征及其锆石SHRIMP U-Pb测年.地质通报, 25(1):124-132. http://d.wanfangdata.com.cn/Conference/7044538
      李三忠, 赵淑娟, 余珊, 等, 2016.东亚原特提斯洋(Ⅱ):早古生代微陆块亲缘性与聚合.岩石学报, 32(9):2628-2644. http://qikan.cqvip.com/Qikan/Article/Detail?id=670214037
      李天福, 张建新, 2014.西昆仑库地蛇绿岩的二辉辉石岩和玄武岩锆石LA-ICP-MS U-Pb年龄及其意义.岩石学报, 30(8):2393-2401. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201408020.htm
      李忠, 王道轩, 林伟, 等, 2004.库车坳陷中-新生界碎屑组分对物源类型及其构造属性的指示.岩石学报, 20(3):655-666. http://d.wanfangdata.com.cn/Periodical/ysxb98200403029
      刘鑫, 朱志新, 郭瑞清, 等, 2016.塔里木南缘铁克里克地区西段晚古生代辉绿岩LA-ICP-MS锆石U-Pb定年及其地质意义.地质科学, 51(3):794-805. http://d.wanfangdata.com.cn/Periodical/dzkx201603009
      潘桂棠, 王立全, 李荣社, 等, 2012.多岛弧盆系构造模式:认识大陆地质的关键.沉积与特提斯地质, 32(3):1-20. http://d.wanfangdata.com.cn/Periodical/yxgdl201203001
      潘裕生, 方爱民, 2010.中国青藏高原特提斯的形成与演化.地质科学, 45(1):92-101. http://www.cnki.com.cn/Article/CJFDTotal-DZKX201001010.htm
      乔耿彪, 伍跃中, 2018.新疆西昆仑东南部泉水沟岩体的年龄、成因及构造意义.地球科学, 43(12):4283-4299. doi: 10.3799/dqkx.2018.588
      舒良树, 邓兴梁, 马绪宣, 2019.中天山基底与塔里木克拉通的构造亲缘性.地球科学, 44(5):1584-1601. doi: 10.3799/dqkx.2019.977
      汤良杰, 邱海峻, 云露, 等, 2014.塔里木盆地多期改造晚期定型复合构造与油气战略选区.吉林大学学报(地球科学版), 44(1):1-14. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201401001.htm
      王超, 刘良, 何世平, 等, 2013.西昆仑早古生代岩浆作用过程:布隆花岗岩地球化学和锆石U-Pb-Hf同位素组成研究.地质科学, 48(4):997-1014. http://d.wanfangdata.com.cn/Periodical/dzkx201304004
      肖文交, Wind, B.F., 2000.西昆仑大地构造相解剖及其多岛增生过程.中国科学(D辑:地球科学), 30(S1):22-28. http://www.cqvip.com/QK/98491X/2000B12/4859268.html
      许志琴, 杨经绥, 李文昌, 等, 2013.青藏高原中的古特提斯体制与增生造山作用.岩石学报, 29(6):1847-1860. http://d.wanfangdata.com.cn/Periodical/ysxb98201306001
      杨绍, 吕宏伟, 屈小相, 等, 2016.西昆仑早中志留世埃达克岩的发现及地质意义.岩石矿物学杂志, 35(4):563-578. http://qikan.cqvip.com/Qikan/Article/Detail?id=669576424
      尹得功, 郑玉壮, 弓小平, 等, 2013.西昆仑库地岩组地质特征及形成时代.新疆地质, 31(4):281-286. http://www.cqvip.com/QK/82738X/20134/48065798.html
      于晓飞, 孙丰月, 李碧乐, 等, 2011.西昆仑大同地区加里东期成岩、成矿事件:来自LA-ICP-MS锆石U-Pb定年和辉钼矿Re-Os定年的证据.岩石学报, 27(6):1770-1778. http://d.wanfangdata.com.cn/Periodical/ysxb98201106016
      查显锋, 高晓峰, 李平, 等, 2018.西昆仑麻扎达坂辉绿岩墙的成因:来自年代学和地球化学证据.地球科学, 43(12):4269-4282. doi: 10.3799/dqkx.2018.327
      郑梦天, 张连昌, 朱明田, 等, 2016.西昆仑喀来子钡-铁矿床地质特征、时代及成因探讨.地学前缘, 23(5):252-265. http://www.cqvip.com/QK/98600X/20165/669439062.html
      朱弟成, 王青, 赵志丹, 等, 2018.大陆边缘弧岩浆成因与大陆地壳形成.地学前缘, 25(6):67-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201806007
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(7)

      Article views (2720) PDF downloads(127) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return