• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 12
    Dec.  2020
    Turn off MathJax
    Article Contents
    Huang Yang, Deng Hao, 2020. FIB-TEM Study of Mineral Inclusions in Chromite. Earth Science, 45(12): 4604-4616. doi: 10.3799/dqkx.2019.290
    Citation: Huang Yang, Deng Hao, 2020. FIB-TEM Study of Mineral Inclusions in Chromite. Earth Science, 45(12): 4604-4616. doi: 10.3799/dqkx.2019.290

    FIB-TEM Study of Mineral Inclusions in Chromite

    doi: 10.3799/dqkx.2019.290
    • Received Date: 2019-09-15
    • Publish Date: 2020-12-15
    • Mineral inclusions in chromite can record key information of physicochemical conditions (pressure, temperature, etc.), evolution of chemical composition, mechanics of fluid enrichment activities when chromite and its host rock form. However, traditional two-dimensional analytical methods cannot fully reveal the information in tiny and complex inclusions. In this paper, mineral inclusions in the Zunhua podiform chromite from the North China craton were observed and tested by the focused ion beam combined with transmission electron microscopy (FIB-TEM). The mineral types of inclusions are various and mainly include silicate, platinum group mineral, carbonate, and so on. The morphology of these mineral inclusions is also various and complex. Many microstructures and ultra-microstructures are developed in these mineral inclusions such as dislocations, partially open grain/phase boundaries, fluid- or melt-present marks. Therefore, it can be inferred that the Zunhua chromite has complex formation conditions and evolution processes based on the information of mineral types, morphology, and microstructures.

       

    • loading
    • Ahmed, A.H., Arai, S., Attia, A.K., 2001.Petrological Characteristics of Podiform Chromitites and Associated Peridotites of the Pan African Proterozoic Ophiolite Complexes of Egypt.Mineralium Deposita, 36(1):72-84. https://doi.org/10.1007/s001260050287
      Al-Boghdady, A., Economou-Eliopoulos, M., 2005.Fluid Inclusions in Chromite from a Pyroxenite Dike of the Pindos Ophiolite Complex.Geochemistry, 65(2):191-202. https://doi.org/10.1016/j.chemer.2003.07.001
      Arai, S., 1997.Origin of Podiform Chromitites.Journal of Asian Earth Sciences, 15(2-3):303-310. https://doi.org/10.1016/s0743-9547(97)00015-9
      Arai, S., Ahmed, A.H., 2018.Secular Change of Chromite Concentration Processes from the Archean to the Phanerozoic.Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time.Elsevier, Amsterdam, 139-157. https://doi.org/10.1016/b978-0-12-811159-8.00006-8
      Bai, W.J., Shi, N.C., Yang, J.S., et al., 2007.An Assemblage of Simple Oxide Minerals from Ophiolitic Podiform Chromitites in Tibet and Their Ultrahigh Pressure Origin.Acta Geologica Sinica, 81(11):1538-1549(in Chinese with English abstract).
      Bai, W.J., Yang, J.S., Fang, Q.S., et al., 2001.Study on a Storehouse of Ultrahigh Pressure Mantle Minerals-Podiform Chromite Deposits.Earth Science Frontiers, 8(3):111-121(in Chinese with English abstract).
      Bukovská, Z., Wirth, R., Morales, L.F.G., 2015.Pressure Solution in Rocks:Focused Ion Beam/Transmission Electron Microscopy Study on Orthogneiss from South Armorican Shear Zone, France.Contributions to Mineralogy & Petrology, 170(3):31. https://doi.org/10.1007/s00410-015-1186-8
      Chen, J., Xu, J., Chen, W.X., 2003.A New Technology for Micron-Nanometer Mineral Research:FIB.Geological Bulletin of China, 22(5):371-373(in Chinese with English abstract).
      Chen, Y.H., Yang, J.S., 2018.Formation of Podiform Chromitite Deposits:Review and Prospects.Earth Science, 43(4):991-1010(in Chinese with English abstract).
      Chen, Z., Li, J.H., Huang, X.N., et al., 2004.Research on the Formation Mechanism of the Nodular Texture of Archean Podiform Chromitite:Evidence from Podiform Chromitite in Zunhua, North China.Earth Science Frontiers, 11(1):215-223(in Chinese with English abstract).
      Coleman, R.G., 1977.Ophiolites:Ancient Oceanic Lithosphere? Springer, Heidelberg.
      El Ghorfi, M., Melcher, F., Oberthür, T., et al., 2008.Platinum Group Minerals in Podiform Chromitites of the Bou Azzer Ophiolite, Anti Atlas, Central Morocco.Mineralogy and Petrology, 92(1-2):59-80. https://doi.org/10.1007/s00710-007-0208-2
      Fang, Q.S., Bai, W.J., Yang, J.S., et al., 2013.Titanium, Ti, a New Mineral Species from Luobusha, Tibet, China.Acta Geologica Sinica (English Edition), 87(5):1275-1280. https://doi.org/10.1111/1755-6724.12128
      Godel, B., Barnes, S.J., Barnes, S.J., et al., 2010.Platinum Ore in Three Dimensions:Insights from High-Resolution X-Ray Computed Tomography.Geology, 38(12):1127-1130. https://doi.org/10.1130/g31265.1
      Han, W., Xiao, S.Q., 2013.Focused Ion Beam (FIB) and Its Applications.Materials China, 32(12):716-727(in Chinese with English abstract).
      Huang, X.N., Li, J.H., Niu, X.L., et al., 2002.Structural Characteristics of Podiform Chromites in Zunhua Archaean Ophiolite Melange Belt.Mineral Deposits, 21(Suppl.1):330-333(in Chinese with English abstract)..
      Huang, Y., 2018.Fingerprinting and Geodynamical Significance of Precambrian Podiform Chromite in Zunhua and Miaowan Areas (Dissertation).China University of Geoscieneces, Wuhan(in Chinese with English abstract).
      Huang, Y., Wang, L., Kusky, T.M., et al., 2017.High-Cr Chromites from the Late Proterozoic Miaowan Ophiolite Complex, South China:Implications for Its Tectonic Environment of Formation.Lithos, 288-289:35-54. https://doi.org/10.1016/j.lithos.2017.07.014
      Hull, D., Bacon, D.J., 2011.Introduction to Dislocations.Elsevier, Amsterdam.
      Institute of Geology, Chinese Academy of Geological Sciences, 1981.The Discovery of Alpine-Type Diamond Bearing Ultrabasic Intrusions in Xizang (Tibet).Geological Review, 27(5):455-475(in Chinese with English abstract).
      Kiseleva, O.N., Zhmodik, S.M., Damdinov, B.B., et al., 2014.Composition and Evolution of PGE Mineralization in Chromite Ores from the Il'chir Ophiolite Complex (Ospa-Kitoi and Khara-Nur Areas, East Sayan).Russian Geology and Geophysics, 55(2):259-272. https://doi.org/10.1016/j.rgg.2014.01.010
      Kruhl, J.H., Wirth, R., Morales, L.F.G., 2013.Quartz Grain Boundaries as Fluid Pathways in Metamorphic Rocks.Journal of Geophysical Research:Solid Earth, 118(5):1957-1967. https://doi.org/10.1002/jgrb.50099
      Kusky, T.M., Polat, A., Windley, B.F., et al., 2016.Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis:A Record of Outward Growth of Precambrian Continents.Earth-Science Reviews, 162:387-432. https://doi.org/10.1016/j.earscirev.2016.09.002
      Li, J.H., Kusky, T.M., Huang, X.N., 2002.Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Mélange, North China Craton:A Record of Early Oceanic Mantle Processes.GSA Today, 12(7):4-11. doi: 10.1130/1052-5173(2002)012<0004:APCAMT>2.0.CO;2
      Li, J.H., Niu, X.L., Huang, X.N., et al., 2002.Podiform Chromitites:A Key to Identify the Ancient Oceanic Lithospheric Relicts.Earth Science Frontiers, 9(4):235-246(in Chinese with English abstract).
      Li, J.H., Pan, Y.X., 2015.Applications of Transmission Electron Microscopy in the Earth Science.Scientia Sinica Terrae, 45(9):1359-1382(in Chinese). doi: 10.1360/zd2015-45-9-1359
      Liu, X., Su, B.X., Bai, Y., et al., 2018.Ca-Enrichment Characteristics of Parental Magmas of Chromitite in Ophiolite:Inference from Mineral Inclusions.Earth Science, 43(4):1038-1050(in Chinese with English abstract).
      Polat, A., Herzberg, C., Munker, C., et al., 2006.Geochemical and Petrological Evidence for a Suprasubduction Zone Origin of Neoarchean (ca.2.5 Ga) Peridotites, Central Orogenic Belt, North China Craton.Geological Society of America Bulletin, 118(7-8):771-784. https://doi.org/10.1130/b25845.1
      Robinson, P.T., Trumbull, R.B., Schmitt, A., et al., 2015.The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites.Gondwana Research, 27(2):486-506. https://doi.org/10.1016/j.gr.2014.06.003
      Talkington, R.W., Watkinson, D.H., Whittaker, P.J., et al., 1984.Platinum-Group Minerals and Other Solid Inclusions in Chromite of Ophiolitic Complexes:Occurrence and Petrological Significance.Tschermaks Mineralogische und Petrographische Mitteilungen, 32(4):285-301.
      Thayer, T.P., 1964.Principal Features and Origin of Podiform Chromite Deposits, and Some Observations on the Guelman-Soridag District, Turkey.Economic Geology, 59(8):1497-1524. https://doi.org/10.2113/gsecongeo.59.8.1497
      Tian, Y.Z., Yang, J.S., 2016.Study on the Mineral Inclusions in Sartohay Chromitites.Acta Geologica Sinica, 90(11):3114-3128(in Chinese with English abstract).
      Wirth, R., 2009.Focused Ion Beam (FIB) Combined with SEM and TEM:Advanced Analytical Tools for Studies of Chemical Composition, Microstructure and Crystal Structure in Geomaterials on a Nanometre Scale.Chemical Geology, 261(3-4):217-229. https://doi.org/10.1016/j.chemgeo.2008.05.019
      Wirth, R., Dobrzhinetskaya, L., Harte, B., et al., 2014.High-Fe (Mg, Fe) O Inclusion in Diamond Apparently from the Lowermost Mantle.Earth and Planetary Science Letters, 404:365-375. https://doi.org/10.1016/j.epsl.2014.08.010
      Wirth, R., Vollmer, C., Brenker, F., et al., 2007.Inclusions of Nanocrystalline Hydrous Aluminium Silicate "Phase Egg" in Superdeep Diamonds from Juina (Mato Grosso State, Brazil).Earth and Planetary Science Letters, 259(3-4):384-399. https://doi.org/10.1016/j.epsl.2007.04.041
      Xiong, F.H., Yang, J.S., Robinson, P.T., et al., 2015.Petrology and Geochemistry of High Cr# Podiform Chromitites of Bulqiza, Eastern Mirdita Ophiolite (EMO), Albania.Ore Geology Reviews, 70:188-207. https://doi.org/10.1016/j.oregeorev.2015.04.011
      Xu, X.Z., Yang, J.S., Robinson, P.T., et al., 2015.Origin of Ultrahigh Pressure and Highly Reduced Minerals in Podiform Chromitites and Associated Mantle Peridotites of the Luobusa Ophiolite, Tibet.Gondwana Research, 27(2):686-700. https://doi.org/10.1016/j.gr.2014.05.010
      Yamamoto, S., Komiya, T., Yamamoto, H., et al., 2013.Recycled Crustal Zircons from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet.Island Arc, 22(1):89-103. https://doi.org/10.1111/iar.12011
      Yang, J.S., Bai, W.J., Fang, Q.S., et al., 2008.Ultrahigh-Pressure Minerals and New Minerals from the Luobusa Ophiolitic Chromitites in Tibet:A Review.Acta Geoscientica Sinica, 29(3):263-274(in Chinese with English abstract).
      Yang, J.S., Dobrzhinetskaya, L., Bai, W.J., et al., 2007.Diamond-and Coesite-Bearing Chromitites from the Luobusa Ophiolite, Tibet.Geology, 35(10):875-878. https://doi.org/10.1130/g23766a.1
      Yang, J.S., Meng, F.C., Xu, X.Z., et al., 2015.Diamonds, Native Elements and Metal Alloys from Chromitites of the Ray-Iz Ophiolite of the Polar Urals.Gondwana Research, 27(2):459-485. https://doi.org/10.1016/j.gr.2014.07.004
      Zhou, M.F., Robinson, P.T., Su, B.X., et al., 2014.Compositions of Chromite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits:The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments.Gondwana Research, 26(1):262-283. https://doi.org/10.1016/j.gr.2013.12.011
      Zhu, Y.F., 2017.Study on Podiform Chromitite and Related Platinum Group Mineral (PGM):Progress and Prospection.Mineral Deposits, 36(4):775-794(in Chinese with English abstract).
      白文吉, 施倪承, 杨经绥, 等, 2007.西藏蛇绿岩豆荚状铬铁矿中简单氧化物矿物组合及其超高压成因.地质学报, 81(11):1538-1549. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200711010.htm
      白文吉, 杨经绥, 方青松, 等, 2001.寻找超高压地幔矿物的储存库:豆荚状铬铁矿.地学前缘, 8(3):111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200103017.htm
      陈晶, 徐军, 陈文雄, 2003.一种可用于微米-纳米级矿物研究的新技术:FIB.地质通报, 22(5):371-373. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200305013.htm
      陈艳虹, 杨经绥, 2018.豆荚状铬铁矿床研究回顾与展望.地球科学, 43(4):991-1010. doi: 10.3799/dqkx.2018.704
      陈征, 李江海, 黄雄南, 等, 2004.豆荚状铬铁矿豆状结构成因机制探讨:以遵化地区豆荚状铬铁矿为例.地学前缘, 11(1):215-223. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401027.htm
      韩伟, 肖思群, 2013.聚焦离子束(FIB)及其应用.中国材料进展, 32(12):716-727. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201312004.htm
      黄雄南, 李江海, 牛向龙, 等, 2002.遵化蛇绿混杂岩带中豆荚状铬铁矿的构造特征.矿床地质, 21(增刊1):330-333. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2002S1092.htm
      黄阳, 2018.冀东遵化和鄂西庙湾前寒武纪豆荚状铬铁矿的指示特征及地球动力学意义(博士学位论文).武汉: 中国地质大学.
      李江海, 牛向龙, 黄雄南, 等, 2002.豆荚状铬铁矿:古大洋岩石圈残片的重要证据.地学前缘, 9(4):235-246. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200204003.htm
      李金华, 潘永信, 2015.透射电子显微镜在地球科学研究中的应用.中国科学:地球科学, 45(9):1359-1382. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509010.htm
      刘霞, 苏本勋, 白洋, 等, 2018.蛇绿岩中铬铁岩母岩浆的富Ca特征:矿物包裹体证据.地球科学, 43(4):1038-1050. doi: 10.3799/dqkx.2018.707
      田亚洲, 杨经绥, 2016.萨尔托海铬铁矿中的矿物包体研究.地质学报, 90(11):3114-3128. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201611010.htm
      杨经绥, 白文吉, 方青松, 等, 2008.西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物.地球学报, 29(3):263-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200803003.htm
      中国地质科学院地质研究所金刚石组, 1981.西藏首次发现含金刚石的阿尔卑斯型岩体.地质论评, 27(5):455-457. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198105012.htm
      朱永峰, 2017.豆荚状铬铁矿以及其中铂族元素矿物的成因问题:进展与展望.矿床地质, 36(4):775-794. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704001.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (1554) PDF downloads(59) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return