• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 3
    Mar.  2020
    Turn off MathJax
    Article Contents
    Jiang Yiming, Zou Wei, Liu Jinshui, Tang Xianjun, He Xinjian, 2020. Genetic Mechanism of Inversion Anticline Structure at the End of Miocene in Xihu Sag, East China Sea: A New Understanding of Basement Structure Difference. Earth Science, 45(3): 968-979. doi: 10.3799/dqkx.2019.292
    Citation: Jiang Yiming, Zou Wei, Liu Jinshui, Tang Xianjun, He Xinjian, 2020. Genetic Mechanism of Inversion Anticline Structure at the End of Miocene in Xihu Sag, East China Sea: A New Understanding of Basement Structure Difference. Earth Science, 45(3): 968-979. doi: 10.3799/dqkx.2019.292

    Genetic Mechanism of Inversion Anticline Structure at the End of Miocene in Xihu Sag, East China Sea: A New Understanding of Basement Structure Difference

    doi: 10.3799/dqkx.2019.292
    • Received Date: 2019-08-09
    • Publish Date: 2020-03-15
    • Large inversion anticlines formed at the end of the Miocene are widely developed in Xihu Sag in the East China Sea,which have generally attributed to external forces,ignoring the influence of the internal structure of the sag. Based on the comprehensive interpretation and analysis of gravity and magnetic seismic data,this paper systematically sorts out the relationship between the distribution of inversion anticlines at the end of Miocene and the basement structure,and discusses the influence of basement structure difference on the development of inversion anticlines in Xihu Sag by combining with structural physical simulation experimental methods. The research results show that there is a clear correlation between the inversion anticline at the end of Miocene and the distribution of high magnetic igneous rock basement,and it shows South-North segments. The igneous rock basement in the northern part of the sag is distributed in the central sag-inversion zone,and the inversion anticline is mainly developed on the eastern edge of the igneous rock basement. The igneous rock basement in the southern part of the sag is distributed on the eastern and western edges,and the inversion anticline is mainly developed on the inner side of the distribution area of the igneous rock basement on the edge. Structural physical simulation results show that under the compression background,the compressive stress is released through the edge of rigid silica gel to control the formation of compression anticline folds. The results reflect the difference in compressive strength caused by different lithological basement and can significantly affect the strength distribution of inversion anticlines. Finally,this paper proposes that the change of regional tectonic stress caused by igneous rock basement with high magnetic and high compressive strength is the key to control the strength distribution of the inversion anticline at the end of Miocene.

       

    • loading
    • Cai, H., Qin, L.Z., Liu, Y.H., 2019. Differentiation and Coupling Model of Source-to-Sink Systems with Transitional Facies in Pingbei Slope of Xihu Sag. Earth Science, 44(3): 880-897 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201903016
      Chen, S.G., Zhang, Y.M., Cui, Y.Q., et al., 2017. The Inversion Structures and Their Genetic Mechanisms of Bayindulan Sag, Erlian Basin. Earth Science, 42(4):559-569 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201704006
      Chen, Z.Y., Ge, H.P., 2003. Inversion Structures and Hydrocarbon Accumulation in Xihu Sag, East China Sea Basin. China Offshore Oil and Gas (Geology), 17(1): 20-24 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-dz200301004
      Glennie, K.W., Boegner, P.L.E., 1981. Sole Pit Inversion Tectonics. In: Illing, L.V., Hobson, G.D., eds., Petroleum Geology of the Continental Shelf of Northwest Europe. Institute of Petroleum, London.
      Guo, Z., Liu, C.Y., Tian, J.F., 2015. Structural Characteristics and Main Controlling Factors of Inversion Structures in Xihu Depression in Donghai Basin. Earth Science Frontiers, 22(3): 59-67 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201503005
      Hu, M.Y., Li, S.Z., Dai, L.M., et al., 2017. Numerical Dynamic Modeling of Tectonic Inversion in the Northeastern Xihu Sag. Marine Geology & Quaternary Geology, 37(4): 151-166 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201704010
      Jiang, Y.M., He, X.J., Tang, X.J., et al., 2019. Material Composition of Diaoyu Islands Folded Zone and Reanalysis of Eastern Boundary of Prototype Basin of Xihu Sag in East China Sea. Earth Science, 44(3): 773-783 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201903007
      Li, P.L., Zhu, P., 1992. Basement Tectonic Evolution and Basin Formation Mechanism of the East China Sea Shelf Basin. Marine Geology & Quaternary Geology, 12(3): 37-43 (in Chinese with English abstract).
      Li, S.Z., Yu, S., Zhao, S.J., et al., 2013. Tectonic Transition and Plate Reconstructions of the East Asian Continental Magin. Marine Geology & Quaternary Geology, 33(3): 65-94 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201303008
      Li, X.Q., Liu, J.S., Lu, Y.C., et al., 2018. Prototype Basin Chracterization of Huagang Formation of Xihu Depression, East China Sea Shelf Basin. Earth Science, 43(2): 502-513 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201802012
      Li, Z.Y., 1994. Introduction to Engineering Geology. China University of Geosciences Press, Wuhan (in Chinese).
      Lin, X.X., 2012. Using the Gravity and Magnetic Data to Study the Pre-Cenozoic Basin Structure in the Bohai Sea (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Liu, J.S., Liao, Z.T., Jia, J.Y., et al., 2003. The Geological Structure and Tectonic Evolution of the East China Sea Shelf Basin. Shanghai Geology, 24(3): 1-6 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201901014
      Ren, J.Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10): 3337-3361 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201810002
      Suo, Y.H., Li, S.Z., Dai, L.M., et al., 2012. Cenozoic Tectonic Migration and Basin Evolution in East Asia and Its Continental Margins. Acta Petrologica Sinica, 28(8): 2602-2618 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201208025
      Song, Y.X., Zhou, M.F., 1995. Relationship of Inversion Structure and Oil and Gas Prospect in Xihu Depression in East China Sea. Marine Geology & Quaternary Geology, 15(4): 13-22 (in Chinese with English abstract).
      Taira, A., Okada, H., Whitaker, J. H., et al., 1982. The Shimanto Belt of Japan: Cretaceous-Lower Miocene Active-Margin Sedimentation. Geological Society, London, Special Publications, 10(1): 5-26. https://doi.org/10.1144/gsl.sp.1982.010.01.01
      Tian, Y., Ye, J.R., Lei, C., et al., 2019. Development Model for Source Rock of Marine-Continental Transitional Face in Faulted Basins: A Case Study of Pinghu Formation in Xihu Sag. Earth Science, 44(3): 898-908 (in Chinese with English abstract).
      Wang, G.C., 1995. Positive Inversion Structures and Their Significance to Petroleum Geology in China Offshore Basins. China Offshore Oil and Gas, 7(1): 33-40 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500647681
      Williams, G. D., Powell, C. M., Cooper, M. A., 1989. Geometry and Kinematics of Inversion Tectonics. Geological Society, London, Special Publications, 44(1): 3-15. https://doi.org/10.1144/gsl.sp.1989.044.01.02
      Yan, S.Y., Wu, J.F., Zhao, Z.G., et al., 2016. Physical Modeling of Tectonic Inversion in the Xihu Sag, East China Sea Shelf Basin, China. Science Technology and Engineering, 16(21): 166-171, 176 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201621026
      Yang, W.D., Cui, Z.K., Zhang, Y.B., 2010. Geology and Minerals in East China Sea. China Ocean Press, Beijing (in Chinese).
      Ye, J.R., Chen, H.H., Chen, J.Y., et al., 2006. Fluid History Analysis in the Xihu Depression, East China Sea. Natural Gas Industry, 26(9): 40-43 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200609012
      Zhang, G.H., Zhang, J.P., 2015. A Discussion on the Tectonic Inversion and Its Genetic Mechanism in the East China Sea Shelf Basin. Earth Science Frontiers, 22(1): 260-270 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201501022
      Zhang, J.P., Zhang, T., Liu, J.Y., et al., 2008. Distribution and Style of Inversed Structures in Xihu Depression. Offshore Oil, 28(4): 14-20 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hysy200804003
      Zhang, M.Q., Zhong, Z.H., Xia, B., et al., 2005. Late Miocene Tectonic Inversion and Hydrocarbon Migration and Accumulation in Central and Southern Xihu Sag, East China Sea. China Offshore Oil and Gas, 17(2): 73-79 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc200502001
      Zhong, K., Zhu, W.L., Gao, S.L., et al., 2018. Key Geological Questions of the Formation and Evolution and Hydrocarbon Accumulation of the East China Sea Shelf Basin. Earth Science, 43(10): 3485-3497 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201810012
      Zhou, X.H., Gao, S.L., Gao, W.Z., et al., 2019. Formation and Distribution of Marine-Continental Transitional Lithologic Reservoirs in Pingbei Slope Belt, Xihu Sag, East China Sea Shelf Basin. China Petroleum Exploration, 24(2): 153-164 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgsykt201902003
      蔡华, 秦兰芝, 刘英辉, 2019.西湖凹陷平北斜坡带海陆过渡相源-汇系统差异性及其耦合模式.地球科学, 44(3): 880-897. doi: 10.3799/dqkx.2019.025
      陈树光, 张以明, 崔永谦, 等, 2017.二连盆地巴音都兰凹陷反转构造及成因机制.地球科学, 42(4): 559-569. doi: 10.3799/dqkx.2017.044
      陈志勇, 葛和平, 2003.西湖凹陷反转构造与油气聚集.中国海上油气(地质), 17(1): 20-24. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-dz200301004
      郭真, 刘池洋, 田建锋, 2015.东海盆地西湖凹陷反转构造特征及其形成的动力环境.地学前缘, 22(3): 59-67. http://d.old.wanfangdata.com.cn/Periodical/dxqy201503005
      胡梦颖, 李三忠, 戴黎明, 等, 2017.西湖凹陷中北部反转构造动力学机制的数值模拟.海洋地质与第四纪地质, 37(4): 151-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201704010
      蒋一鸣, 何新建, 唐贤君, 等, 2019.钓鱼岛隆褶带物质构成及东海西湖凹陷原型盆地东边界再认识.地球科学, 44(3): 773-783. doi: 10.3799/dqkx.2018.293
      李培廉, 朱平, 1992.试论东海陆架盆地的基底构造演化和盆地形成机制.海洋地质与第四纪地质, 12(3): 37-43.
      李三忠, 余珊, 赵淑娟, 等, 2013.东亚大陆边缘的板块重建与构造转换.海洋地质与第四纪地质, 33(3): 65-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201303008
      李祥权, 刘金水, 陆永潮, 等, 2018.东海陆架盆地西湖凹陷花港组原型盆地性质厘定.地球科学, 43(2): 502-513. doi: 10.3799/dqkx.2017.596
      李智毅, 1994.工程地质学概论.武汉: 中国地质大学出版社.
      林晓星, 2012.重磁资料在渤海前新生代油气盆地结构研究中的应用(博士学位论文).北京: 中国地质大学.
      刘金水, 廖宗廷, 贾健谊, 等, 2003.东海陆架盆地地质结构及构造演化.上海地质, 24(3): 1-6. doi: 10.3969/j.issn.2095-1329.2003.03.001
      任建业, 2018.中国近海海域新生代成盆动力机制分析.地球科学, 43(10): 3337-3361. doi: 10.3799/dqkx.2018.330
      索艳慧, 李三忠, 戴黎明, 等, 2012.东亚及其大陆边缘新生代构造迁移与盆地演化.岩石学报, 28(8): 2602-2618. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201208025
      宋岳雄, 周铭锋, 1995.东海西湖凹陷反转构造与油气.海洋地质与第四纪地质, 15(4): 13-22. http://d.old.wanfangdata.com.cn/Periodical/dqxb200004003
      田杨, 叶加仁, 雷闯, 等, 2019.断陷盆地海陆过渡相烃源岩发育模式:以西湖凹陷平湖组为例.地球科学, 44(3): 898-908. doi: 10.3799/dqkx.2018.940
      王国纯, 1995.中国近海盆地的正反转构造及其石油地质意义.中国海上油气, 7(1): 33-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500647681
      闫淑玉, 吴景富, 赵志刚, 等, 2016.西湖凹陷反转构造物理模拟研究.科学技术与工程, 16(21): 166-171, 176. doi: 10.3969/j.issn.1671-1815.2016.21.026
      杨文达, 崔征科, 张异彪, 2010.东海地质与矿产.北京:海洋出版社.
      叶加仁, 陈海红, 陈景阳, 等, 2006.东海西湖凹陷成藏流体历史分析.天然气工业, 26(9): 40-43. doi: 10.3321/j.issn:1000-0976.2006.09.012
      张国华, 张建培, 2015.东海陆架盆地构造反转特征及成因机制探讨.地学前缘, 22(1): 260-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201501022
      张建培, 张涛, 刘景彦, 等, 2008.西湖凹陷反转构造分布与样式.海洋石油, 28(4): 14-20. doi: 10.3969/j.issn.1008-2336.2008.04.003
      张敏强, 钟志洪, 夏斌, 等, 2005.东海西湖凹陷中南部晚中新世构造反转与油气运聚.中国海上油气, 17(2): 73-79. doi: 10.3969/j.issn.1673-1506.2005.02.001
      钟锴, 朱伟林, 高顺莉, 等, 2018.东海陆架盆地形成演化及油气成藏关键地质问题.地球科学, 43(10): 3485-3497. doi: 10.3799/dqkx.2018.282
      周心怀, 高顺莉, 高伟中, 等, 2019.东海陆架盆地西湖凹陷平北斜坡带海陆过渡型岩性油气藏形成与分布预测.中国石油勘探, 24(2): 153-164. http://d.old.wanfangdata.com.cn/Periodical/zgsykt201902003
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (4342) PDF downloads(100) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return