• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 4
    Apr.  2019
    Turn off MathJax
    Article Contents
    Zhang Hongfu, Yu Hong, 2019. Petrological and Tectonic Evolution of Orogenic Peridotite Massif: A Case of Songshugou Peridotites. Earth Science, 44(4): 1057-1066. doi: 10.3799/dqkx.2019.952
    Citation: Zhang Hongfu, Yu Hong, 2019. Petrological and Tectonic Evolution of Orogenic Peridotite Massif: A Case of Songshugou Peridotites. Earth Science, 44(4): 1057-1066. doi: 10.3799/dqkx.2019.952

    Petrological and Tectonic Evolution of Orogenic Peridotite Massif: A Case of Songshugou Peridotites

    doi: 10.3799/dqkx.2019.952
    • Received Date: 2018-09-23
    • Publish Date: 2019-04-15
    • Orogenic peridotite is one of major research targets not only for mantle geochemistry, but also for the formation and evolution of the orogenic belts. There are mainly three types of orogenic peridotites: (1) Alpine peridotite, i. e. lithospheric mantle tectonic-thermal diaper into the shallow orogenic crust; (2) mafic-ultramafic cumulates of layered intrusions underwent subduction and metamorphism; (3) ophiolitic peridotite.Detailed petrological and geochemical investigation on Songshugou mylonitized peridotites and their related high-grade metamorphic rocks demonstrates that the Songshugou peridotites recorded the whole cycle from the formation of an oceanic lithosphere to amphibolite-facies retrograde metamorphism. i. e. dunites produced during the formation of an oceanic lithosphere at 1 000-800 Ma; followed by the period of oceanic-continental transition during < 800-500 Ma, lithospheric dunites metasomatized to produce an amounts of metasomatic harzburgites; rapid deep subdution and eclogite-facies metamorphism at 500-480 Ma; and amphibolite-facies retrograde metasomatism during slow exhumation at 460-335 Ma, magnesium-rich anthophyllites in Songshugou peridotites, including tremolite, actinolite, and magnesium amphibole, were emerged at this stage.Thus it can be seen that ophiolitic orogenic peridotites can record the whole cycle from the orogen formation and its evolution.They often underwent four stages:(1) formation of an oceanic lithosphere (ophiolite) to produce dunites; (2) the period of oceanic-continental transition and the formation of metasomatic harzburgite due to mantle metasomatism; (3) deep lithosphere subduction and eclogite-facies metamorphism; (4) retrograde metamorphism when exhumed to the depth of amphibolite-facies, lots of anthophyllites in peridotites emerged in this stage. Different orogens may have a diverse rock types just in the depth of the deep subduction and in degrees of retrograde metamorphism. Finally, the age formation of ophiolites must be emphasized.Meantime, the high grade metamorphosed rocks can be completely destroyed due to the later retrograde metamorphism, this deserves a great attention.

       

    • loading
    • Arai, S., Kida, M., 2000.Origin of Fine-Grained Peridotite Xenoliths from Iraya Volcano of Batan Island, Philippines:Deserpentinization or Metasomatism at the Wedge Mantle beneath an Incipient Arc?.Island Arc, 9(4):458-471.https://doi.org/10.1111/j.1440-1738.2000.00294.x doi: 10.1046/j.1440-1738.2000.00294.x
      Bader, T., Franz, L., Ratschbacher, L., et al., 2013.The Heart of China Revisited:Ⅱ Early Paleozoic (Ultra) High-Pressure and (Ultra) High-Temperature Metamorphic Qinling Orogenic Collage.Tectonics, 32(4):922-947.https://doi.org/10.1002/tect.20056 doi: 10.1002/tect.20056
      Bowen, N.L., Tuttle, O.F., 1949.The System MgO-SiO2-H2O.Geological Society of America Bulletin, 60(3):439-460. doi: 10.1130/0016-7606(1949)60[439:TSM]2.0.CO;2
      Chen, D.L., Liu, L., Zhou, D.W., et al., 2002.Genesis and 40Ar-39Ar Dating of Clinopyroxene Megacrysts in Ultramafic Terrain from Songshugou, East Qinling Mountain and Its Geological Implication.Acta Petrologica Sinica, 18(3):355-362(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200203010
      Chen, D.L., Ren, Y.F., Gong, X.K., et al., 2015.Identification and Its Geological Significance of Eclogite in Songshugou, the North Qinling.Acta Petrologica Sinica, 31(7):1841-1854(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507003
      Chen, Z.H., Lu, S.N., Li, H.K., et al., 2004.The Age of the Dehe Biotite Monzogranite Gneiss in the North Qinling:TIMS and SHRIMP U-Pb Zircon Dating.Regional Geology of China, 23(2):136-141(in Chinese with English abstract).
      Cheng, H., Zhang, C., Vervoort, J.D., et al., 2011.Geochronology of the Transition of Eclogite to Amphibolite Facies Metamorphism in the North Qinling Orogen of Central China.Lithos, 125(3-4):969-983. https://doi.org/10.1016/j.lithos.2011.05.010
      Cheng, H., Zhang, C., Vervoort, J.D., et al., 2012.Timing of Eclogite Facies Metamorphism in the North Qinling by U-Pb and Lu-Hf Geochronology.Lithos, 136-139:46-59. https://doi.org/10.1016/j.lithos.2011.06.003
      Dong, Y.P., Genser, J., Neubauer, F., et al., 2011a.U-Pb and 40Ar/39Ar Geochronological Constraints on the Exhumation History of the North Qinling Terrane, China.Gondwana Research, 19(4):881-893. https://doi.org/10.1016/j.gr.2010.09.007
      Dong, Y.P., Zhang, G.W., Neubauer, F., et al., 2011b.Tectonic Evolution of the Qinling Orogen, China:Review and Synthesis.Journal of Asian Earth Sciences, 41(3):213-237. https://doi.org/10.1016/j.jseaes.2011.03.002
      Dong, Y.P., Zhou, D.W., Liu, L., et al., 1997.Sm-Nd Isotopic Ages of the Songshugou Ophiolite from the East Qinling and Its Geological Significance.Regional Geology of China, 16(2):217-221(in Chinese with English abstract).
      Hanghøj, K., Kelemen, P.B., Hassler, D., et al., 2010.Composition and Genesis of Depleted Mantle Peridotites from the Wadi Tayin Massif, Oman Ophiolite; Major and Trace Element Geochemistry, and Os Isotope and PGE Systematics.Journal of Petrology, 51(1-2):201-227. https://doi.org/10.1093/petrology/egp077
      Kaczmarek, M.A., Müntener, O., 2008.Juxtaposition of Melt Impregnation and High-Temperature Shear Zones in the Upper Mantle; Field and Petrological Constraints from the Lanzo Peridotite (Northern Italy).Journal of Petrology, 49(12):2187-2220. https://doi.org/10.1093/petrology/egn065
      Kelemen, P.B., Dick, H.J.B., Quick, J.E., 1992.Formation of Harzburgite by Pervasive Melt/Rock Reaction in the Upper Mantle.Nature, 358(6388):635-641. https://doi.org/10.1038/358635a0
      Kelemen, P.B., Hart, S.R., Bernstein, S., 1998.Silica Enrichment in the Continental Upper Mantle via Melt/Rock Reaction.Earth and Planetary Science Letters, 164(1-2):387-406.https://doi.org/10.1016/s0012-821x(98)00233-7 doi: 10.1016/S0012-821X(98)00233-7
      Khedr, M.Z., Arai, S., Python, M., 2013.Petrology and Chemistry of Basal Lherzolites above the Metamorphic Sole from Wadi Sarami Central Oman Ophiolite.Journal of Mineralogical and Petrological Sciences, 108(1):13-24. https://doi.org/10.2465/jmps.121026
      Kusbach, V., Ulrich, S., Schulmann, K., 2012.Ductile Deformation and Rheology of Sub-Continental Mantle in a Hot Collisional Orogeny:Example from the Bohemian Massif.Journal of Geodynamics, 56-57:108-123. https://doi.org/10.1016/j.jog.2011.06.004
      Li, S.G., Chen, Y.Z., Zhang, G.W., et al., 1991.A 1 Ga B.Alpine Peridotite Body Emplaced into the Qinling Group:Evidence for the Existence of the Late Proterozoic Plate Tectonics in the North Qinling Area.Geological Review, 37:235-242 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_355341
      Liu, L., Liao, X.Y., Zhang, C.L., et al., 2013.Multi-Metamorphic Timings of HP-UHP Rocks in the North Qinling and Their Geological Implications.Acta Petrologica Sinica, 29(5):1634-1656(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201305015.htm
      McInnes, B.I.A., Gregoire, M., Binns, R.A., et al., 2001.Hydrous Metasomatism of Oceanic Sub-Arc Mantle, Lihir, Papua New Guinea:Petrology and Geochemistry of Fluid-Metasomatised Mantle Wedge Xenoliths.Earth and Planetary Science Letters, 188(1-2):169-183.https://doi.org/10.1016/s0012-821x(01)00306-5 doi: 10.1016/S0012-821X(01)00306-5
      Meng, Q.R., Zhang, G.W., 2000.Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China.Tectonophysics, 323(3-4):183-196.https://doi.org/10.1016/s0040-1951(00)00106-2 doi: 10.1016/S0040-1951(00)00106-2
      Newman, J., Lamb, W.M., Drury, M.R., et al., 1999.Deformation Processes in a Peridotite Shear Zone:Reaction-Softening by an H2O-Deficient, Continuous Net Transfer Reaction.Tectonophysics, 303(1-4):193-222.https://doi.org/10.1016/s0040-1951(98)00259-5 doi: 10.1016/S0040-1951(98)00259-5
      Nozaka, T., 2011.Constraints on Anthophyllite Formation in Thermally Metamorphosed Peridotites from Southwestern Japan.Journal of Metamorphic Geology, 29(4):385-398.https://doi.org/10.1111/j.1525-1314.2010.00921.x doi: 10.1111/jmg.2011.29.issue-4
      Nozaka, T., 2014.Metasomatic Hydration of the Oeyama Forearc Peridotites:Tectonic Implications.Lithos, 184-187:346-360. https://doi.org/10.1016/j.lithos.2013.11.012
      Ratschbacher, L., Hacker, B.R., Calvert, A., et al., 2003.Tectonics of the Qinling (Central China):Tectonostratigraphy, Geochronology, and Deformation History.Tectonophysics, 366(1-2):1-53.https://doi.org/10.1016/s0040-1951(03)00053-2 doi: 10.1016/S0040-1951(03)00053-2
      Roselle, G.T., Baumgartner, L.P., Chapman, J.A., 1997.Nucleation-Dominated Crystallization of Forsterite in the Ubehebe Peak Contact Aureole, California.Geology, 25(9):823-826.https://doi.org/10.1130/0091-7613(1997)025<0823:ndcofi>2.3.co; 2 doi: 10.1130/0091-7613(1997)025<0823:NDCOFI>2.3.CO;2
      Takazawa, E., Okayasu, T., Satoh, K., 2003.Geochemistry and Origin of the Basal Lherzolites from the Northern Oman Ophiolite (Northern Fizh Block).Geochemistry, Geophysics, Geosystems, 4(2):1021.https://doi.org/10.1029/2001gc000232 doi: 10.1029/2001gc000232
      Tamura, A., Arai, S., 2006.Harzburgite-Dunite-Orthopyroxenite Suite as a Record of Supra-Subduction Zone Setting for the Oman Ophiolite Mantle.Lithos, 90(1-2):43-56. https://doi.org/10.1016/j.lithos.2005.12.012
      Tang, Y.J., Zhang, H.F., Ying, J.F., et al., 2013.Widespread Refertilization of Cratonic and Circum-Cratonic Lithospheric Mantle.Earth-Science Reviews, 118:45-68. https://doi.org/10.1016/j.earscirev.2013.01.004
      Wu, Y.B., Zheng, Y.F., 2013.Tectonic Evolution of a Composite Collision Orogen:An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China.Gondwana Research, 23(4):1402-1428. doi: 10.1016/j.gr.2012.09.007
      Yu, H., Zhang, H.F., Li, X.H., et al., 2016.Tectonic Evolution of the North Qinling Orogen from Subduction to Collision and Exhumation:Evidence from Zircons in Metamorphic Rocks of the Qinling Group.Gondwana Research, 30:65-78. doi: 10.1016/j.gr.2015.07.003
      Yu, H., Zhang, H.F., Santosh, M., 2017.Mylonitized Peridotites of Songshugou in the Qinling Orogen, Central China:A Fragment of Fossil Oceanic Lithosphere Mantle.Gondwana Research, 52:1-17. doi: 10.1016/j.gr.2017.08.007
      Zhang, C.L., Liu, L., Wang, T., et al., 2013.Granitic Magmatism Related to Early Paleozoic Continental Collision in North Qinling.Chinese Science Bulletin, 58(35):4405-4410. https://doi.org/10.1007/s11434-013-6064-z
      Zhang, G.W., Meng, Q.R., Lai, S.C., 1995.Tectonics and Structure of the Qinling Orogenic Belt.Scientia Sinica Terrae, 38:1379-1394. http://d.old.wanfangdata.com.cn/Periodical/OA000002705
      Zhang, H.F., Menzies, M.A., Gurney, J.J., et al., 2001.Cratonic Peridotites and Silica-Rich Melts:Diopside-Enstatite Relationships in Polymict Xenoliths, Kaapvaal, South Africa.Geochimica et Cosmochimica Acta, 65(19):3365-3377.https://doi.org/10.1016/s0016-7037(01)00675-5 doi: 10.1016/S0016-7037(01)00675-5
      Zhang, H.F., Yu, H., Zhou, D.W., et al., 2015.The Meta-Gabbroic Complex of Fushui in North Qinling Orogen:A Case of Syn-Subduction Mafic Magmatism.Gondwana Research, 28(1):262-275. doi: 10.1016/j.gr.2014.04.010
      Zhang, H.F., 2006.Complex Peridotitic Xenoliths:Rare and Important Samples for Understanding the Lithospheric Evolution.Earth Science, 31(1):31-37(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=65cafab59a16585601a5b8288e86bf45&encoded=0&v=paper_preview&mkt=zh-cn
      Zhou, D.W., Zhang, Z.J., Dong, Y.P., et al., 1995.Geological and Geochemical Characteristics on Proterozoic Songshugou Ophiolite Piece from Shangnan Country, Qinling.Acta Petrologica Sinica, 11(Suppl.):154-164 (in Chinese with English abstract).
      陈丹玲, 刘良, 周鼎武, 等, 2002.东秦岭松树沟超镁铁质岩中辉石巨晶的成因和40Ar-39Ar定年及其地质意义.岩石学报, 18(3):355-362. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200203010
      陈丹玲, 任云飞, 宫相宽, 等, 2015.北秦岭松树沟榴辉岩的确定及其地质意义.岩石学报, 31(7):1841-1854. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507003
      陈志宏, 陆松年, 李怀坤, 等, 2004.北秦岭德河黑云二长花岗片麻岩体的成岩时代——TIMS和SHRIMP锆石U-Pb同位素年代学.地质通报, 23(2):136-141. doi: 10.3969/j.issn.1671-2552.2004.02.006
      董云鹏, 周鼎武, 刘良, 等, 1997.东秦岭松树沟蛇绿岩Sm-Nd同位素年龄的地质意义.中国区域地质, 16(2):217-221. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD702.014.htm
      李曙光, 陈移之, 张国伟, 等, 1991.一个距今10亿年侵位的阿尔卑斯型橄榄岩体:北秦岭晚元古代板块构造体制的证据.地质论评, 37:235-242. doi: 10.3321/j.issn:0371-5736.1991.03.005
      刘良, 廖小莹, 张成立, 等, 2013.北秦岭高压-超高压岩石的多期变质时代及其地质意义.岩石学报, 29(5):1634-1656. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201305013
      张宏福, 2006.复杂橄榄岩捕虏体:反演岩石圈演化过程的罕见而重要的样品.地球科学, 31(1):31-37. http://earth-science.net/WebPage/Article.aspx?id=1534
      周鼎武, 张泽军, 董云鹏, 等, 1995.东秦岭商南松树沟元古宙蛇绿岩片的地质地球化学特征.岩石学报, 11(增刊):154-164. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB5S1.011.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (5887) PDF downloads(191) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return