• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 11
    Nov.  2020
    Turn off MathJax
    Article Contents
    Li Siwei, Wang Pujun, Ding Lin, Du Jiayuan, 2020. Petrogenesis of Paleocene Adakite-Like Rocks in Northern Margin of the South China Sea. Earth Science, 45(11): 4091-4117. doi: 10.3799/dqkx.2020.009
    Citation: Li Siwei, Wang Pujun, Ding Lin, Du Jiayuan, 2020. Petrogenesis of Paleocene Adakite-Like Rocks in Northern Margin of the South China Sea. Earth Science, 45(11): 4091-4117. doi: 10.3799/dqkx.2020.009

    Petrogenesis of Paleocene Adakite-Like Rocks in Northern Margin of the South China Sea

    doi: 10.3799/dqkx.2020.009
    • Received Date: 2019-12-25
    • Publish Date: 2020-11-15
    • There are different understandings on the types, genesis and geodynamic mechanism of the volcanic rocks formed in the Early Cenozoic in the northern margin of the South China Sea. In this paper, it presents zircon U-Pb data and geochemical data for the trachytic agglomerate or breccia lava, trachyte, rhyolite and trachydacite revealed by drilling in Huizhou sag of the Pearl River Mouth basin. The results show that the Cenozoic volcanic rocks in the study area were formed at 57.53-59.15 Ma, near the boundary between Paleocene and Eocene, and fell into the Thanetian stage. These rocks are characterized by high SiO2(64.60%-73.22%), Al2O3(11.86%-16.57%), low MgO(1.16%-1.80%), high Sr(305.20×10-6-465.50×10-6, 371.15×10-6 on average), low Y(7.47×10-6-9.84×10-6), Yb(0.90×10-6-1.43×10-6) and high Sr/Y ratios (35.19-54.55). They are enriched in LREE and depleted in HREE, together with enrichment in large-ion lithophile elements (LILE) Ba, K and depletion in high field strength elements (HFSE) Nb, Ta, Ti and P, as well as small positive Eu anomalies, similar to those of adakite. These rocks are calc-alkaline, high-K calc-alkaline and shoshonite metalumious (A/CNK=0.85-1.04). The Early Paleogene adakites are interpreted as the products of partial melting of newly underplated mafic lower crust under garnet-amphibolite facies conditions. It is concluded that the Cenozoic delamination in the northern margin of the South China Sea plays an important role in the formation and evolution of magma.

       

    • loading
    • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1):59-79. https://doi.org/10.1016/S0009-2541(02)00195-X
      Chen, X.J., Xu, Z.Q., Meng, Y.K., et al., 2014. Petrogenesis of Miocene Adakitic Diorite-Porphyrite in Middle Gangdese Batholith, Southern Tibet:Constraints from Geochemistry, Geochronology and Sr-Nd-Hf Isotopes. Acta Petrologica Sinica, 30(8):2253-2268 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201408010.htm
      Chung, S. L., Cheng, H., Jahn, B. M., et al., 1997. Major and Trace Element, and Sr-Nd Isotope Constraints on the Origin of Paleogene Volcanism in South China Prior to the South China Sea Opening. Lithos, 40(2/3/4):203-220. https://doi.org/10.1016/s0024-4937(97)00028-5
      Chung, S.L., Liu, D.Y., Ji, J.Q., et al., 2003. Adakites from Continental Collision Zones:Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11):1021-1024. https://doi.org/10.1130/G19796.1
      Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0
      Dong, D.D., Wang, D.W., Zhang, G.C., et al., 2009. Cenozoic Tectonic and Sedimentary Evolution of Deepwater Area, Pearl River Mouth Basin. Journal of China University of Petroleum (Edition of Natural Science), 33(5):17-22, 29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX200905006.htm
      Fang, N.Q., Yao, B.C., Wan, L., et al., 2007. The Velocity Structure of the Lithosphere and the Origin of Sedimentary Basins in the South China and Northern Margin of the South China Sea. Earth Science, 32(2):147-154.(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200702000.htm
      Flower, M.F.J., Zhang, M., Chen, C.Y., et al., 1992. Magmatism in the South China Basin. 2. Post-Spreading Quaternary Basalts from Hainan Island, South China. Chemical Geology, 97 (1-2):65-87. https://doi.org/10.1016/0009-2541(92)90136-S
      Guan, Q., Zhu, D.C., Zhao, Z.D., et al., 2010. Late Cretaceous Adakites in the Eastern Segment of the Gangdese Belt, Southern Tibet:Products of Neo-Tethyan Ridge Subduction?. Acta Petrologica Sinica, 26(7):2165-2179 (in Chinese with English abstract). http://www.oalib.com/paper/1474232
      Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5):523-548. https://doi.org/10.1139/e71-055
      Keller, C. B., Schoene, B., Barboni, M., et al., 2015. Volcanic-Plutonic Parity and the Differentiation of the Continental Crust. Nature, 523(7560):301-307. https://doi.org/10.1038/nature14584
      Koschek, G., 1993. Origin and Significance of the SEM Cathodoluminescence from Zircon. Journal of Microscopy, 171(3):223-232. https://doi.org/10.1111/j.1365-2818.1993.tb03379.x
      Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3):745-750. https://doi.org/10.1093/petrology/27.3.745
      Li, W.X., Zhou, X.M., 2001. Subduction of the Paleo- Pacific Plate and Origin of Late Mesozoic Igneous Rocks in Southeastern China:Some Supplement Evidences for the Model of Lithosphere Subduction and Underplating of Mafic Magma. Geotectonica et Metallogenia, 25 (1):55-63 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10011069253
      Li, X. H., 2000. Cretaceous Magmatism and Lithospheric Extension in Southeast China. Journal of Asian Earth Sciences, 18(3):293-305. https://doi.org/10.1016/S1367-9120(99)00060-7
      Lin, C.S., Shi, H.S., Li, H., et al., 2018. Sequence Architecture, Depositional Evolution and Controlling Processes of Continental Slope in Pearl River Mouth Basin, Northern South China Sea. Earth Science, 43(10):3407-3422 (in Chinese with English abstract). http://www.researchgate.net/publication/329983809_Sequence_Architecture_Depositional_Evolution_and_Controlling_Processes_of_Continental_Slope_in_Pearl_River_Mouth_Basin_Northern_South_China_Sea
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In-Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Ludwig, K.R., 2003. Isoplot 3.09-A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4:1-4. http://www.researchgate.net/publication/303107803_User's_manual_for_Isoplot_36_A_geochronological_toolkit_for_microsoft_excel_Berkeley_Geochronology_Center
      Ma, Q., Zheng, J.P., Xu, Y.G., et al., 2015. Are Continental "Adakites" Derived from Thickened or Foundered Lower Crust?. Earth and Planetary Science Letters, 419:125-133. https://doi.org/10.1016/j.epsl.2015.02.036
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)1010635:TDOG > 2.3.CO; 2 doi: 10.1130/0016-7606(1989)1010635:TDOG>2.3.CO;2
      Martin, H., 1999. Adakitic Magmas:Modern Analogues of Archaean Granitoids. Lithos, 46(3):411-429. https://doi.org/10.1016/S0024-4937(98)00076-0
      Meng, F.Y., Zhao, Z.D., Zhu, D.C., et al., 2010. Petrogenesis of Late Cretaceous Adakite-Like Rocks in Mamba from the Eastern Gangdese, Tibet. Acta Petrologica Sinica, 26(7):2180-2192 (in Chinese with English abstract).
      Niu, H., Sato, H., Zhang, H. X., et al., 2006. Juxtaposition of Adakite, Boninite, High-TiO2 and Low-TiO2 Basalts in the Devonian Southern Altay, Xinjiang, NW China. Journal of Asian Earth Sciences, 28(4):439-456. https://doi.org/10.1016/j.jseaes.2005.11.010
      Northrup, C. J., Royden, L. H., Burchfiel, B. C., 1995. Motion of the Pacific Plate Relative to Eurasia and Its Potential Relation to Cenozoic Extension along the Eastern Margin of Eurasia. Geology, 23(8):719-722. https://doi.org/10.1130/0091-7613(1995)0230719:MOTPPR > 2.3.CO; 2 doi: 10.1130/0091-7613(1995)0230719:MOTPPR>2.3.CO;2
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/BF00384745
      Quan, Y. B., Liu, J. Z., Zhao, D. J., et al., 2015. The Origin and Distribution of Crude Oil in Zhu Ⅲ Sub-Basin, Pearl River Mouth Basin, China. Marine and Petroleum Geology, 66(66):732-747. https://doi.org/10.1016/j.marpetgeo.2015.07.015
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Wang, Y., Deng, J.F., Ji, G.Y., 2004. A Perspective on the Geotectonic Setting of Early Cretaceous Adakite-Like Rocks in the Lower Reaches of Yangtze River and Its Significance for Copper-Gold Mineralization. Acta Petrologica Sinica, 20(2):297-314 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200402010.htm
      Wen, D.R., Chung, S.L., Song, B., et al., 2008. Late Cretaceous Gangdese Intrusions of Adakitic Geochemical Characteristics, SE Tibet:Petrogenesis and Tectonic Implications. Lithos, 105(1):1-11. https://doi.org/10.1016/j.lithos.2008.02.005
      Xu, J., Shinjo, R., Defant, M. J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China:Partial Melting of Delaminated Lower Continental Crust?. Geology, 30(12):1111-1114. https://doi.org/10.1130/0091-7613(2002)0301111:OOMAIR > 2.0.CO; 2 doi: 10.1130/0091-7613(2002)0301111:OOMAIR>2.0.CO;2
      Xu, W. L., Wang, Q. H., Wang, D. Y., et al., 2006. Mesozoic Adakitic Rocks from the Xuzhou-Suzhou Area, Eastern China:Evidence for Partial Melting of Delaminated Lower Continental Crust. Journal of Asian Earth Sciences, 27(2):230-240. https://doi.org/10.1016/j.jseaes.2005.03.005
      Yan, P., Deng, H., Liu, H. L., et al., 2006. The Temporal and Spatial Distribution of Volcanism in the South China Sea Region. Journal of Asian Earth Sciences, 27(5):647-659. https://doi.org/10.1016/j.jseaes.2005.06.005
      Yao, B. C., Wan, L., Liu Z. H., 2004. Tectonic Dynamics of Cenozoic Sedimentary Basins and Hydrocarbon Resources in the South China Sea. Earth Science, 29 (5):543-549 (in Chinese). http://www.researchgate.net/publication/279756612_Tectonic_dynamics_of_Cenozoic_sedimentary_basins_and_hydrocarbon_resources_in_the_South_China_Sea
      Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3):353-370. https://doi.org/10.1111/j.1751-908X.2004.tb00755.x
      Zhang, Q., 2014. Geodynamic Implications of Continental Granites. Acta Petrologica et Mineralogica, 33(4):785-798 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-yskw201404016.htm
      Zhang, Y.Z., Qi, J.F., Wu, J.F., 2019. Cenozoic Faults Systems and Its Geodynamics of the Continental Margin Basins in the Northern of South China Sea. Earth Science, 44(2):603-625 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX201902023.htm
      Zheng, Y. C., Hou, Z. Q., Gong, Y. L., et al., 2014. Petrogenesis of Cretaceous Adakite-Like Intrusions of the Gangdese Plutonic Belt, Southern Tibet:Implications for Mid-Ocean Ridge Subduction and Crustal Growth. Lithos, 190:240-263. https://doi.org/10.1016/j.lithos.2013.12.013
      Zhou, D., Sun, Z., Chen, H. Z., et al., 2008. Mesozoic Paleogeography and Tectonic Evolution of South China Sea and Adjacent Areas in the Context of Tethyan and Paleo-Pacific Interconnections. Island Arc, 17(2):186-207. https://doi.org/10.1111/j.1440-1738.2008.00611.x
      Zhou, H. M., Xiao, L., Dong, Y. X., et al., 2009. Geochemical and Geochronological Study of the Sanshui Basin Bimodal Volcanic Rock Suite, China:Implications for Basin Dynamics in Southeastern China. Journal of Asian Earth Sciences, 34(2):178-189. https://doi.org/10.1016/j.jseaes.2008.05.001
      Zhou, X.M., Li, W.X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China:Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3):269-287. https://doi.org/10.1016/S0040-1951(00)00120-7
      Zhu, B.Q., Wang, H.F., Chen, Y.W., et al., 2002. Geochronological and Geochemical Constraint on the Cenozoic Extension of Cathaysian Lithosphere and Tectonic Evolution of the Border Sea Basins in East Asia. Geochimica, 31(3):213-221 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1367912003002281
      陈希节, 许志琴, 孟元库, 等, 2014.冈底斯带中段中新世埃达克质岩浆作用的年代学、地球化学及Sr-Nd-Hf同位素制约.岩石学报, 30(8):2253-2268. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201408010.htm
      董冬冬, 王大伟, 张功成, 等, 2009.珠江口盆地深水区新生代构造沉积演化.中国石油大学学报(自然科学版), 33(5):17-22, 29. http://www.cnki.com.cn/Article/CJFDTotal-SYDX200905006.htm
      方念乔, 姚伯初, 万玲, 等, 2007.华南和南海北部陆缘岩石圈速度结构特征与沉积盆地成因.地球科学, 32(2):147-154. http://www.earth-science.net/article/id/3434
      管琪, 朱弟成, 赵志丹, 等, 2010.西藏南部冈底斯带东段晚白垩世埃达克岩:新特提斯洋脊俯冲的产物?.岩石学报, 26(7):2165-2179. http://d.wanfangdata.com.cn/Periodical/ysxb98201007018
      李武显, 周新民, 2001.古太平洋岩石圈消减与中国东南部晚中生代火成岩成因:岩石圈消减与玄武岩底侵相结合模式的补充证据.大地构造与成矿学, 25(1):55-63. http://d.wanfangdata.com.cn/Periodical/ddgzyckx200101006
      林畅松, 施和生, 李浩, 等, 2018.南海北部珠江口盆地陆架边缘斜坡带层序结构和沉积演化及控制作用.地球科学, 43(10):3407-3422. doi: 10.3799/dqkx.2018.311
      孟繁一, 赵志丹, 朱弟成, 等, 2010.西藏冈底斯东部门巴地区晚白垩世埃达克质岩的岩石成因.岩石学报, 26(7):2180-2192. http://d.wanfangdata.com.cn/periodical/ysxb98201007019
      汪洋, 邓晋福, 姬广义, 2004.长江中下游地区早白垩世埃达克质岩的大地构造背景及其成矿意义.岩石学报, 20(2):297-314.
      姚伯初, 万玲, 刘振湖, 2004.南海海域新生代沉积盆地构造演化的动力学特征及其油气资源.地球科学, 29 (5):543-549. http://www.earth-science.net/article/id/1484
      张旗, 2014.大陆花岗岩的地球动力学意义.岩石矿物学杂志, 33(4):785-798. http://d.wanfangdata.com.cn/Periodical/yskwxzz201404016
      张远泽, 漆家福, 吴景富, 2019.南海北部新生代盆地断裂系统及构造动力学影响因素.地球科学, 44(2):603-625. doi: 10.3799/dqkx.2018.542
      朱炳泉, 王慧芬, 陈毓蔚, 等, 2002.新生代华夏岩石圈减薄与东亚边缘海盆构造演化的年代学与地球化学制约研究.地球化学, 31(3):213-221. http://d.wanfangdata.com.cn/Periodical/dqhx200203001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(2)

      Article views (1668) PDF downloads(71) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return