• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 11
    Nov.  2020
    Turn off MathJax
    Article Contents
    Sun Houyun, Wei Xiaofeng, Sun Xiaoming, Jia Fengchao, Li Duojie, He Zexin, Li Jian, 2020. Formation Mechanism and Geological Construction Constraints of Metasilicate Mineral Water in Yudaokou, Hannuoba Basalt Area. Earth Science, 45(11): 4236-4253. doi: 10.3799/dqkx.2020.011
    Citation: Sun Houyun, Wei Xiaofeng, Sun Xiaoming, Jia Fengchao, Li Duojie, He Zexin, Li Jian, 2020. Formation Mechanism and Geological Construction Constraints of Metasilicate Mineral Water in Yudaokou, Hannuoba Basalt Area. Earth Science, 45(11): 4236-4253. doi: 10.3799/dqkx.2020.011

    Formation Mechanism and Geological Construction Constraints of Metasilicate Mineral Water in Yudaokou, Hannuoba Basalt Area

    doi: 10.3799/dqkx.2020.011
    • Received Date: 2020-01-24
    • Publish Date: 2020-11-15
    • Metasilicate mineral groundwater is widely distributed in basaltic area of Bashang area in North Hebei Province. It is of great significance to ascertain the formation mechanism and water-rock interaction process for the rational development and utilization of mineral water and the water conservation function of Beijing-Tianjin-Hebei region. Hydrochemical components statistical analysis, chemical weathering process of basaltic, mineral equilibrium phase of water-rock interaction process, δD, δ18O, δ13C isotopes and radioisotope dating by 14C were used to identify the geological construction constraints and ascertain the formation mechanism of metasilicate mineral groundwater. The results show that the mineral groundwater of study area is characterized by low mineralization while the main hydrochemical types of groundwater are HCO3- Ca·Mg and HCO3- Na·Ca. The outcropping mechanism of mineral water can be divided into two types:deep cyclic leaching of tectonic faults and stratified enrichment of recharge type. The age of groundwater in the upper paleoweathering crust is about 4 050 a, and the dissolved inorganic carbon of groundwater comes from the mixing of soil CO2 and mantle CO2. Metasilicic acid in groundwater originates from the weathering and hydrolysis of plagioclase, pyroxene and forsterite in basaltic. Hydrogeochemical response of rock weathering is controlled by rock mineral leaching and affected by hydrochemical parameters cation exchange. The formation and distribution of metasilicate mineral water are restricted by the basalt geological construction, and controlled by weathering mechanism of rocks and hydrogeochemical conditions.

       

    • loading
    • Alexandra, M., Niko, K., Hazel, C., et al., 2015. Kinetics of CO2-Fluid-Rock Reactions in a Basalt Aquifer, Soda Springs, Idaho. Applied Geochemistry, 61(Oct.):272-283. https://doi.org/10.1016/j.apgeochem.2015.06.010
      Babechuk, M.G., Widdowson, M., Kamber, B. S., 2014. Quantifying Chemical Weathering Intensity and Trace Element Release from Two Contrasting Basalt Profiles, Deccan Traps, India. Chemical Geology, 363(Jan.):56-75. https://doi.org/10.1016/j.chemgeo.2013.10.027
      Bagdavadze, L., Beon, O., Hrkal, Z., et al., 2008. Effects of Groundwater Exploitation on the Borjomi Mineral Water Reservoir in Georgia. Environmental Geology, 54(6):1301-1311. https://doi.org/10.1007/s00254-007-0913-5
      Bhattacharyya, T., Pal, D. K., Srivastava, P., 1999. Role of Zeolites in Persistence of High Altitude Ferruginous Alfisols of the Humid Tropical Western Ghats, India. Geoderma, 90(3/4):263-276. https://doi.org/10.1016/s0016-7061(98)00122-0
      Fan, Q.C., Du, X.X., Sui, J.L., et al., 2010. Genesis of Carbonatite from Hannuoba and Yangyuan. Acta Petrologica Sinica, 26(11):3189-3194 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201011003.htm
      Floury, P., Gaillardet, J., Tallec, G., et al., 2019. Chemical Weathering and CO2 Consumption Rate in a Multilayered-Aquifer Dominated Watershed under Intensive Farming:The Orgeval Critical Zone Observatory, France. Hydrological Processes, 33(2):195-213. https://doi.org/10.1002/hyp.13340
      Gaillardet, J., Dupré, B., Louvat, P., et al., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159(1/2/3/4):3-30. https://doi.org/10.1016/s0009-2541(99)00031-5
      Gao, M., Chen, Y., 1995. Study on the Interactions between Water and Basalt in a Closed System. Journal of Nanjing University (Natural Science Edition), 31(3):476-486 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ503.017.htm
      Guo, Q.H., Wang, Y.X., 2014. Simulation of Geochemical Processes Affecting Groundwater in Quaternary Porous Aquifers of Taiyuan Basin:A Typical Cenozoic Rift Basin. Earth Science Frontiers, 21(4):83-90 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201404012.htm
      Han, G.L., Liu, C. Q., 2005. Hydrogeochemistry of Rivers in Guizhou Province, China:Constraints on Crustal Weathering in Karst Terrain. Advances in Earth Science, 20(4):394-406 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200504004
      Hasan, M., Shang, Y. J., Jin, W. J., 2018. Delineation of Weathered/Fracture Zones for Aquifer Potential Using an Integrated Geophysical Approach:A Case Study from South China. Journal of Applied Geophysics, 157:47-60. https://doi.org/10.1016/j.jappgeo.2018.06.017
      Koh, D. C., Genereux, D. P., Koh, G. W., et al., 2017. Relationship of Groundwater Geochemistry and Flow to Volcanic Stratigraphy in Basaltic Aquifers Affected by Magmatic CO2, Jeju Island, Korea. Chemical Geology, 467:143-158. https://doi.org/10.1016/j.chemgeo.2017.08.009
      Li, S., 2012. Experimental Study of the Characteristic Component(HSiO3-、Sr2+)Genesis of the Mineral Water in the Basalt in Jingyu County (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Liang, X. J., Li, S., Li, Y. X., et al., 2013. Experimental Study of Evolution of Aqueous SiO2 in the Mineral Water in Basalt Beds of Jingyu County, China. Procedia Earth and Planetary Science, 7:500-503. https://doi.org/10.1016/j.proeps.2013.03.118
      Liu, Q. X., Wang, G. L., Zhang, F. W., 2004. Geological-Geochemical Environment for the Enrichment of Trace Component H2SiO3 in Groundwater. Acta Geoscientica Sinica, 22(5):575-578 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geoscientica-sinica_thesis/0201253098442.html
      Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885):715-717. https://doi.org/10.1038/299715a0
      Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7):1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
      Schoeller, H., 1967. Qualitative Evaluation of Groundwater Resource:Methods and Techniques of Groundwater Investigation and Development. Water Research, 33:44-52. http://www.researchgate.net/publication/298455180_Qualitative_evaluation_of_groundwater_resources_in_methods_and_techniques_of_groundwater_investigation_and_development
      Shan, T.T., Xu, S.G., Fan, Z.G., et al., 2019. Characteristics and Formation Mechanism of Metasilicate Mineral Water in Xishan Mountain of Kunming. Journal of Kunming University of Science and Technology (Natural Science Edition), 44(2):39-47 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KMLG201902007.htm
      Stefánsson, A., Sveinbjörnsdóttir, Á. E., Heinemeier, J., et al., 2016. Mantle CO2 Degassing through the Icelandic Crust:Evidence from Carbon Isotopes in Groundwater. Geochimica et Cosmochimica Acta, 191:300-319. https://doi.org/10.1016/j.gca.2016.06.038
      Su, C. L., Zhang, Y., Ma, Y. H., et al., 2019. Hydrochemical Evolution Processes of Karst Groundwater in Guiyang City:Evidences from Hydrochemistry and 87Sr/86Sr Ratios. Earth Science, 44(9):2829-2838 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909002.htm
      Sun, H.Y., Mao, Q.G., Wei, X.F., et al., 2018. Hydrogeochemical Characteristics and Formation Evolutionary Mechanism of the Groundwater System in the Hami Basin. Geology in China, 45(6):1128-1141 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201806005.htm
      Sun, H.Y., Wei, X.F., Gan, F.W., et al., 2020. Genetic Type and Formation Mechanism of Strontium-Rich Groundwater in the Upper and Middle Reaches of Luanhe River Basin. Acta Geoscientia Sinica, 41(1):65-79 (in Chinese with English abstract).
      Sun, R. L., 2006. Scale Effects and Sequential Indicator Simulation of Hydraulic Conductivity in Basalt (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Tan, J. W., Liu, Y. M., 1983. Formation Conditions and Hydrogeological Characteristics of Secondary Caves in Hannuoba Basalt. Journal of Hebei GEO University, 6(3):23-35 (in Chinese with English abstract).
      Tang, J., Xu, W. L., Li, Y., et al., 2019. Composition Variations of Mesozoic and Cenozoic Basalts in Northern Great Xing' an Range:Implications for Thermal Evolution of Mantle. Earth Science, 44(4):1096-1112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904004.htm
      Wang, Z. B., Shen, L. F., Xu, Z.M., 2016. Hydrochemical Characteristics and Their Implication for the Water-Rock/Soil Interaction in the Touzhai Landslide. Hydrogeology & Engineering Geology, 43(1):111-116, 123 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SWDG201601018.htm
      Wei, R. C., 2014. Study on the Formation Mechanism of Natural Mineral Water in Jingyu National Nature Reserve (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Wu, Y., Gibson, C. E., 1996. Mechanisms Controlling the Water Chemistry of Small Lakes in Northern Ireland. Water Research, 30(1):178-182. https://doi.org/10.1016/0043-1354(95)00140-g
      Xu, Z. M., 2013. The Chemical Water-Rock Interaction in Silicate Rock Slopes. Acta Geologica Sinica, 87(6):860-871 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201306010&dbcode=CJFD&year=2013&dflag=pdfdown
      Xu, Z. M., Huang, R.Q., 2013. The Assessment of the Weathering Intensity of Emeishan Basalt Based on Rock Blocks (Ⅰ):Geochemistry of Weathered Basalt Blocks. Geology in China, 40 (3):895-908 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DIZI201303021.htm
      Yan, B. Z., Xiao, C. L., Liang, X. J., et al., 2016. Hydrogeochemical Tracing of Mineral Water in Jingyu County, Northeast China. Environmental Geochemistry and Health, 38(1):291-307. https://doi.org/10.1007/s10653-015-9719-7
      Ye, H. J., Zhang, R. X., Wu, P., et al., 2019. Characteristics and Driving Factor of Hydrochemical Evolution in Karst Water in the Critical Zone of Liupanshui Mining Area. Earth Science, 44(9):2887-2898 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909007.htm
      樊祺诚, 杜星星, 隋建立, 等, 2010.汉诺坝-阳原火成碳酸岩成因探讨.岩石学报, 26(11):3189-3194. http://qikan.cqvip.com/Qikan/Article/Detail?id=1003851223
      高明, 陈芸, 1995.封闭体系中水与玄武岩作用的研究.南京大学学报(自然科学版), 31(3):476-486. http://www.cnki.com.cn/Article/CJFDTotal-NJDZ503.017.htm
      郭清海, 王焰新, 2014.典型新生代断陷盆地内孔隙地下水地球化学过程及其模拟:以山西太原盆地为例.地学前缘, 21(4):83-90. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201404012.htm
      韩贵琳, 刘丛强, 2005.贵州喀斯特地区河流的研究‒碳酸盐岩溶解控制的水文地球化学特征.地球科学进展, 20(4):394-406. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200504004
      李树, 2012.靖宇玄武岩矿泉水中特征组分(HSiO3-、Sr2+)成因的实验研究(博士学位论文).长春: 吉林大学.
      刘庆宣, 王贵玲, 张发旺, 2004.地下水中微量组份H2SiO3富集的地质地球化学环境.地球学报, 22(5):575-578. http://www.cqvip.com/Main/Detail.aspx?id=11073608
      单婷婷, 徐世光, 范柱国, 等, 2019.昆明西山偏硅酸矿泉水特征及形成机理.昆明理工大学学报(自然科学版), 44(2):39-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kmlgdxxb201902007
      苏春利, 张雅, 马燕华, 等, 2019.贵阳市岩溶地下水水化学演化机制:水化学和锶同位素证据.地球科学, 44(9):2829-2838. doi: 10.3799/dqkx.2019.214
      孙厚云, 毛启贵, 卫晓锋, 等, 2018.哈密盆地地下水系统水化学特征及形成演化.中国地质, 45(6):1128-1141. http://d.wanfangdata.com.cn/periodical/zgdizhi201806005
      孙厚云, 卫晓锋, 甘凤伟, 等, 2020.滦河流域中上游富锶地下水成因类型与形成机制.地球学报, 41(1):65-79. http://d.wanfangdata.com.cn/periodical/dqxb202001005
      孙蓉琳, 2006.玄武岩渗透系数尺度效应及顺序指示模拟(博士学位论文).武汉: 中国地质大学.
      谭绩文, 刘亚民, 1983.汉诺坝玄武岩次生洞穴形成条件及其水文地质特征.河北地质学院学报, 6(3):23-35. http://www.cnki.com.cn/Article/CJFDTotal-HBDX198303003.htm
      唐杰, 许文良, 李宇, 等, 2019.大兴安岭北段中-新生代玄武岩成分变异:对地幔热演化过程意义.地球科学, 44(4):1096-1112. doi: 10.3799/dqkx.2019.055
      王志兵, 申林方, 徐则民, 2016.头寨滑坡地下水化学特征及其反映的水-岩(土)相互作用.水文地质工程地质, 43(1):111-116, 123. http://d.wanfangdata.com.cn/Periodical/swdzgcdz201601017
      危润初, 2014.靖宇国家级自然保护区天然矿泉水形成机理研究(博士学位论文).长春: 吉林大学.
      徐则民, 2013.硅酸盐岩斜坡水岩化学作用.地质学报, 87(6):860-871. http://d.wanfangdata.com.cn/Periodical/dizhixb201306010
      徐则民, 黄润秋, 2013.基于结构体的峨眉山玄武岩风化程度评价(Ⅰ):风化结构体地球化学.中国地质, 40(3):895-908. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201303021.htm
      叶慧君, 张瑞雪, 吴攀, 等, 2019.六盘水矿区关键带岩溶水水化学演化特征及驱动因子.地球科学, 44(9):2887-2898. doi: 10.3799/dqkx.2019.201
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(3)

      Article views (2220) PDF downloads(74) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return