• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 12
    Dec.  2020
    Turn off MathJax
    Article Contents
    Yue Ji, Lü Zeng, Cui Ying, 2020. Complex Evolution of Metamorphic Rocks from Lower Part of Akeyazi Valley, SW Tianshan: Implications from Thermometry Based on Raman Spectroscopy of Carbonaceous Material. Earth Science, 45(12): 4617-4629. doi: 10.3799/dqkx.2020.072
    Citation: Yue Ji, Lü Zeng, Cui Ying, 2020. Complex Evolution of Metamorphic Rocks from Lower Part of Akeyazi Valley, SW Tianshan: Implications from Thermometry Based on Raman Spectroscopy of Carbonaceous Material. Earth Science, 45(12): 4617-4629. doi: 10.3799/dqkx.2020.072

    Complex Evolution of Metamorphic Rocks from Lower Part of Akeyazi Valley, SW Tianshan: Implications from Thermometry Based on Raman Spectroscopy of Carbonaceous Material

    doi: 10.3799/dqkx.2020.072
    • Received Date: 2020-01-16
    • Publish Date: 2020-12-15
    • As a result of the collision between the Tarim plate and the Yili-Central Tianshan plate, the orogenic belt of Southwest Tianshan has experienced secular complex evolution. Metamorphic studies at the southern margin of the Yili-Central Tianshan plate are significant in deciphering the geological history of this orogenic belt. Although metamorphic rocks are widely distributed in this region, study focuses are mainly on the Muzhaerte high-grade rocks. The spatial distribution and tectono-metamorphic evolution of other metamorphic rock types from the same tectonic belt are poorly known. Whether they occur as part of a coherent high-temperature terrane or any other tectonic nappes is fundamental to reconstruct the orogeny of Southwest Tianshan. To resolve this issue, we carry out detailed petrography and temperature estimates using the RSCM (Raman spectroscopy of carbonaceous material, RSCM) thermometry for metamorphic rocks from several sections of the lower part of the Akeyazi valley. Based on textural and structural observations, two types of metamorphic rocks are grouped. Type 1 rocks consist of meta-sedimentary rocks (i.e., meta-siliciclastic and meta-carbonate rocks), with rounded detrital minerals (e.g., quartz and feldspar) and bedding structure locally modified by strong shearing. Type 2 rocks include mica schists and quartzofeldsparthic rocks, uniformly consisting of metamorphic minerals with lepidoblastic to granoblastic texture and well-developed schistosity. The RSCM thermometry suggests that peak temperatures of the former group are 465-597 ℃. They were probably derived from the Carboniferous strata and were locally subjected to mylonitization. Peak temperatures of the latter group are 552-617 ℃, probably as part of the pre-Cambrian basement (the Nalati Group) and they were infiltrated by C-O-H fluids during shearing at shallower levels. This study suggests that the metamorphic rocks of the Lower Akeyazi River have contrasting metamorphic histories and come from different tectonic units, not as an eastern extension of the Muzhaerte high-temperature belt.

       

    • loading
    • Aoya, M., Kouketsu, Y., Endo, S., et al., 2010.Extending the Applicability of the Raman Carbonaceous-Material Geothermometer Using Data from Contact Metamorphic Rocks.Journal of Metamorphic Geology, 28(9):895-914. https://doi.org/10.1111/j.1525-1314.2010.00896.x
      Beyssac, O., Goffé, B., Chopin, C., et al., 2002.Raman Spectra of Carbonaceous Material in Metasediments:A New Geothermometer.Journal of Metamorphic Geology, 20(9):859-871. https://doi.org/10.1046/j.1525-1314.2002.00408.x
      Beyssac, O., Goffé, B., Petitet, J.P., et al., 2003.On the Characterization of Disordered and Heterogeneous Carbonaceous Materials by Raman Spectroscopy.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 59(10):2267-2276. https://doi.org/10.1016/s1386-1425(03)00070-2
      Bureau of Geological and Mineral Resources, Xinjiang Province, 1993.Regional Geology of Xinjiang Province.Geological Publishing House, Beijing(in Chinese).
      Chen, X.Y., Wang, Y.J., Sun, L.H., et al., 2009.Zircon SHRIMP U-Pb Dating of the Granitic Gneisses from Bingdaban and Laerdundaban (Tianshan Orogen) and Their Geological Significances.Geochimica, 38(5):424-431(in Chinese with English abstract). http://www.researchgate.net/publication/284907490_Zircon_SHRIMP_U-Pb_dating_of_the_granitic_gneisses_from_Bingdaban_and_Laerdundaban_Tianshan_Orogen_and_their_geological_significances
      Compagnini, G., Puglisi, O., Foti, G., 1997.Raman Spectra of Virgin and Damaged Graphite Edge Planes.Carbon, 35(12):1793-1797. https://doi.org/10.1016/s0008-6223(97)00141-3
      Delchini, S., Lahfid, A., Plunder, A., et al., 2016.Applicability of the RSCM Geothermometry Approach in a Complex Tectono-Metamorphic Context:The Jebilet Massif Case Study (Variscan Belt, Morocco).Lithos, 256-257:1-12. https://doi.org/10.1016/j.lithos.2016.04.007
      Gao, J., Long, L.L., Klemd, R., et al., 2009.Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China:Geochemical and Age Constraints of Granitoid Rocks.International Journal of Earth Sciences, 98(6):1221-1238. https://doi.org/10.1007/s00531-008-0370-8
      Geological Survey of Shanxi Province, 2010.Kongguerbulake Geological Map (Sheet K44E009013), Scale 1:50 000.Geological Survey of Shanxi Province, Taiyuan(in Chinese).
      Gou, L.L., Zhang, L.F., 2016.Geochronology and Petrogenesis of Granitoids and Associated Mafic Enclaves from Xiate in Chinese Southwest Tianshan:Implications for Early Paleozoic Tectonic Evolution.Journal of Asian Earth Sciences, 115:40-61. https://doi.org/10.1016/j.jseaes.2015.09.024
      Gou, L.L., Zhang, L.F., 2009.Petrology and U-Th-Pb Chemical Monazite Dating of the Low-P Metapelitic Granulites at the Region of Muzhaerte River in Southwestern Tianshan, NW China, and Their Geological Implications.Acta Petrologica Sinica, 25(9):2271-2280(in Chinese with English abstract). http://www.oalib.com/paper/1470791
      Han, B.F., He, G.Q., Wang, X.C., et al., 2011.Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China.Earth-Science Reviews, 109(3-4):74-93. https://doi.org/10.1016/j.earscirev.2011.09.001
      He, G.Q., 2004.Geotectonic Map of Xinjiang, China and Its Adjacent Regions.Geological Press, Beijing(in Chinese).
      Hu, L., Liu, J.L., Ji, M., et al., 2009.Identification Manual of Deformation Microstructures.Geological Press, Beijing(in Chinese).
      Kříbek, B., Sýkorová, I., Machovič, V., et al., 2008.Graphitization of Organic Matter and Fluid-Deposited Graphite in Palaeoproterozoic (Birimian) Black Shales of the Kaya-Goren Greenstone Belt (Burkina Faso, West Africa).Journal of Metamorphic Geology, 26(9):937-958. https://doi.org/10.1111/j.1525-1314.2008.00796.x
      Lahfid, A., Beyssac, O., Deville, E., et al., 2010.Evolution of the Raman Spectrum of Carbonaceous Material in Low-Grade Metasediments of the Glarus Alps (Switzerland).Terra Nova, 22(5):354-360. https://doi.org/10.1111/j.1365-3121.2010.00956.x
      Large, D.J., Christy, A.G., Fallick, A.E., 1994.Poorly Crystalline Carbonaceous Matter in High Grade Metasediments:Implications for Graphitisation and Metamorphic Fluid Compositions.Contributions to Mineralogy and Petrology, 116(1-2):108-116. https://doi.org/10.1007/bf00310693
      Li, P., 2011.The Petrogenesis of Paleozoic Granites in the Middle and West Segment of the Central Tianshan and Constrain to the Process of the Ocean-Continent Transition of the Tianshan (Dissertation).Changan University, Xi'an(in Chinese with English abstract).
      Li, Q., Zhang, L.F., 2004.The P-T Path and Geological Significance of Low-Pressure Granulite-Facies Metamorphism in Muzhaerte, Southwest Tianshan.Acta Petrologica Sinica, 20(3):583-594(in Chinese with English abstract). http://www.researchgate.net/publication/281994533_The_P-T_path_and_geological_significance_of_low-pressure_granulite-facies_metamorphism_in_Muzhaerte_southwest_Tianshan
      Li, X.D., Li, M.S., 1996.Tectonic Correlation between the Western Chinese Tianshan and It's Western Adjacent Area.Geological Review, 42(2):107-115(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199602001.htm
      Li, Y.J., Wang, Z.P., Li, X.G., et al., 2018.The Discovery of Bubble Rhyolite in the Early Carboniferous and Geochemical Characteristics in Yining Block.Acta Petrologica Sinica, 34(1):49-62(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252011505.html
      Luque, F.J., Pasteris, J.D., Wopenka, B., et al., 1998.Natural Fluid-Deposited Graphite:Mineralogical Characteristics and Mechanisms of Formation.American Journal of Science, 298(6):471-498. https://doi.org/10.2475/ajs.298.6.471
      Luque, F.J., Ortega, L., Barrenechea, J.F., et al., 2009.Deposition of Highly Crystalline Graphite from Moderate-Temperature Fluids.Geology, 37(3):275-278. https://doi.org/10.1130/g25284a.1
      Mastalerz, M., Bustin, R.M., Sinclair, A.J., et al., 1995.Carbon-Rich Material in the Erickson Hydrothermal System, Northern British Columbia, Canada; Origin and Formation Mechanisms.Economic Geology, 90(4):938-947. https://doi.org/10.2113/gsecongeo.90.4.938
      Meinhold, G., 2010.Rutile and Its Applications in Earth Sciences.Earth-Science Reviews, 102(1-2):1-28. https://doi.org/10.1016/j.earscirev.2010.06.001
      Meyer, M., Klemd, R., John, T., et al., 2016.An (In-) Coherent Metamorphic Evolution of High-P Eclogites and Their Host Rocks in the Chinese Southwest Tianshan? Journal of Metamorphic Geology, 34(2):121-146. https://doi.org/10.1111/jmg.12175
      Pasteris, J.D., 1999.Causes of the Uniformly High Crystallinity of Graphite in Large Epigenetic Deposits.Journal of Metamorphic Geology, 17(6):779-787. https://doi.org/10.1046/j.1525-1314.1999.00231.x
      Pasteris, J.D., Chou, I.M., 1998.Fluid-Deposited Graphitic Inclusions in Quartz:Comparison between KTB (German Continental Deep-Drilling) Core Samples and Artificially Reequilibrated Natural Inclusions.Geochimica et Cosmochimica Acta, 62(1):109-122. https://doi.org/10.1016/s0016-7037(97)00322-0
      Rahl, J.M., Anderson, K.M., Brandon, M.T., et al., 2005.Raman Spectroscopic Carbonaceous Material Thermometry of Low-Grade Metamorphic Rocks:Calibration and Application to Tectonic Exhumation in Crete, Greece.Earth and Planetary Science Letters, 240(2):339-354. https://doi.org/10.1016/j.epsl.2005.09.055
      Rapp, J.F., Klemme, S., Butler, I.B., et al., 2010.Extremely High Solubility of Rutile in Chloride and Fluoride-Bearing Metamorphic Fluids:An Experimental Investigation.Geology, 38(4):323-326. https://doi.org/10.1130/g30753.1
      Scheltens, M., Zhang, L.F., Xiao, W.J., et al., 2015.Northward Subduction-Related Orogenesis of the Southern Altaids:Constraints from Structural and Metamorphic Analysis of the HP/UHP Accretionary Complex in Chinese Southwestern Tianshan, NW China.Geoscience Frontiers, 6(2):191-209. https://doi.org/10.1016/j.gsf.2014.08.002
      Shi, J.R., Liu, F.L., Liu, P.H., et al., 2014.Age and Geological Significance of Anatexis from the Low-Pressure and High-Temperature Metamorphic Belt, Southwestern Tianshan.Acta Petrologica Sinica, 30(10):2843-2856(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252017981.html
      Spear, F.S., 1993.Metamorphic Phase Equilibria and Pressure-Temperature-Time Path.Mineralogical Society of America, Washington, D.C.. http://ci.nii.ac.jp/naid/10003544064
      Tuinstra, F., Koenig, J.L., 1970.Raman Spectrum of Graphite.The Journal of Chemical Physics, 53(3):1126-1130. https://doi.org/10.1063/1.1674108
      Wang, A., Dhamenincourt, P., Dubessy, J., et al., 1989.Characterization of Graphite Alteration in an Uranium Deposit by Micro-Raman Spectroscopy, X-Ray Diffraction, Transmission Electron Microscopy and Scanning Electron Microscopy.Carbon, 27(2):209-218. https://doi.org/10.1016/0008-6223(89)90125-5
      Wang, B.Y., Lang, Z.J., Li, X.D., et al., 1994.Study on the Geological Sections across the Western Segment of Tianshan Mountains, China.Science Press, Beijing(in Chinese).
      Wang, Z.X., Lü, X.C., Wu, J.Y., et al., 1990.Polycyclic Tectonic Evolution and Metallogeny of the Tianshan Mountains.Science Press, Beijing(in Chinese).
      Wopenka, B., Pasteris, J.D., 1993.Structural Characterization of Kerogens to Granulite-Facies Graphite:Applicability of Raman Microprobe Spectroscopy.American Mineralogist, 78:533-557. http://ci.nii.ac.jp/naid/80007120026
      Wu, C.M., Chen, H.X., 2015.Revised Ti-in-Biotite Geothermometer for Ilmenite-or Rutile-Bearing Crustal Metapelites.Science Bulletin, 60(1):116-121. https://doi.org/10.1007/s11434-014-0674-y
      Xia, B., Zhang, L.F., Bader, T., 2014.Zircon U-Pb Ages and Hf Isotopic Analyses of Migmatite from the 'Paired Metamorphic Belt' in Chinese SW Tianshan:Constraints on Partial Melting Associated with Orogeny.Lithos, 192-195:158-179. https://doi.org/10.1016/j.lithos.2014.02.003
      Xiao, X.C., Tang, Y.Q., Feng, Y.M., et al., 1992.Tectonic Evolution of Northern Xinjiang and Its Adjacent Regions.Geological Press, Beijing(in Chinese).
      Zhao, D.G., Essene, E.J., Zhang, Y.X., 1999.An Oxygen Barometer for Rutile-Ilmenite Assemblages:Oxidation State of Metasomatic Agents in the Mantle.Earth and Planetary Science Letters, 166(3-4):127-137. https://doi.org/10.1016/s0012-821x(98)00281-7
      Zhang, L.F., Ai, Y.L., Li, Q., et al., 2005.The Formation and Tectonic Evolution of UHP Metamorphic Belt in Southwestern Tianshan, Xinjiang.Acta Petrologica Sinica, 21(4):1029-1038(in Chinese with English abstract). http://www.researchgate.net/publication/272151407_The_formation_and_tectonic_evolution_of_UHP_metamorphic_belt_in_southwestern_Tianshan_Xinjiang
      陈新跃, 王岳军, 孙林华, 等, 2009.天山冰达坂和拉尔敦达坂花岗片麻岩SHRIMP锆石年代学特征及其地质意义.地球化学, 38(5):424-431. doi: 10.3321/j.issn:0379-1726.2009.05.002
      苟龙龙, 张立飞, 2009.新疆西南天山木扎尔特河一带低压泥质麻粒岩岩石学特征、独居石U-Th-Pb定年及其地质意义.岩石学报, 25(9):2271-2280. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909019.htm
      何国琦, 2004.中国新疆及邻区大地构造图.北京:地质出版社.
      胡玲, 刘俊来, 纪沫, 等, 2009.变形显微构造识别手册.北京:地质出版社.
      李平, 2011.中天山中西段古生代花岗岩成因及对天山洋陆转换时限的制约(硕士学位论文).西安: 长安大学.
      李强, 张立飞, 2004.新疆西南天山木扎尔特一带低压麻粒岩相变质作用P-T轨迹及其地质意义.岩石学报, 20(3):583-594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403022.htm
      李向东, 李茂松, 1996.中国西天山地质构造与西邻区的对比研究.地质论评, 42(2):107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199602001.htm
      李永军, 王祚鹏, 李新光, 等, 2018.伊宁地块早石炭世球泡流纹岩的发现及地球化学特征.岩石学报, 34(1):49-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201801006.htm
      山西地调院, 2010.空古尔布拉克幅(K44E009013) 1:5万地质矿产报告.太原:山西地调院.
      施建荣, 刘福来, 刘平华, 等, 2014.新疆西南天山低压高温变质带深熔时代及其地质意义.岩石学报, 30(10):2843-2856. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201410005.htm
      王宝瑜, 郎智君, 李向东, 等, 1994.中国天山西段地质剖面综合研究.北京:科学出版社.
      王作勋, 吕喜朝, 邬继易, 等, 1990.天山多旋回构造演化及成矿.北京:科学出版社.
      肖序常, 汤耀庆, 冯益民, 等, 1992.新疆北部及其邻区大地构造.北京:地质出版社.
      新疆地质矿产局, 1993.新疆维吾尔自治区区域新疆地质矿产局地质志.北京:地质出版社.
      张立飞, 艾永亮, 李强, 等, 2005.新疆西南天山超高压变质带的形成与演化.岩石学报, 21(4):1029-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200504000.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(2)

      Article views (1275) PDF downloads(56) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return