• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 10
    Nov.  2020
    Turn off MathJax
    Article Contents
    Liu Na, Wu Keqiang, Liu Li, Yu Lei, Xu Simeng, Peng Xiaolei, 2020. Mineralization Characteristics and Mechanism of Foraminifera in Mixed Siliciclastic-Carbonate Sediments in Zhujiang Formation of Pearl River Mouth Basin. Earth Science, 45(10): 3746-3758. doi: 10.3799/dqkx.2020.079
    Citation: Liu Na, Wu Keqiang, Liu Li, Yu Lei, Xu Simeng, Peng Xiaolei, 2020. Mineralization Characteristics and Mechanism of Foraminifera in Mixed Siliciclastic-Carbonate Sediments in Zhujiang Formation of Pearl River Mouth Basin. Earth Science, 45(10): 3746-3758. doi: 10.3799/dqkx.2020.079

    Mineralization Characteristics and Mechanism of Foraminifera in Mixed Siliciclastic-Carbonate Sediments in Zhujiang Formation of Pearl River Mouth Basin

    doi: 10.3799/dqkx.2020.079
    • Received Date: 2019-12-30
    • Publish Date: 2020-11-17
    • The Pearl River Mouth basin is an important area for deep water petroleum exploration in China,within which,the Liwan X structure is mainly composed of mixed siliciclastic-carbonate sediments at the depths between 3 000 m and 3 281 m. Petrologic and isotopic geochemical characteristics were investigated by polarizing microscope and carbon-oxygen isotopic analysis. The host rock type of foraminifera and the petrographic characteristics of foraminifera mineralization were determined,and the mineralization mechanism of foraminifera was discussed,and finally the mineralization model of foraminifera was established. The bioclast of Zhujiang Formation is mainly composed of foraminiferal clasts,while the foraminiferal shell is composed of blade-,equal diameter calcite or ferrocalcite. There are mainly three filling patterns for the foraminifera's chamber:unfilled,half-filled and full-filled pattern. According to the types and the occurrences of the main authigenic minerals,the foraminiferal mineralization can be divided into four types,including pyritization,ferrocalcitization,dawsonitization and ankeritization,among which the formation of pyritization may be related to the biodegradation of foraminiferal soft tissue,and the ferrocalcitization may be related to the thermal decarboxylation of organic matter,while the magmatic CO2 provided the carbon sources for the precipitation of dawsonite and ankerite.

       

    • loading
    • Baker, J.C., Bai, G.P., Hamilton, P.J., et al., 1995. Continental-Scale Magmatic Carbon Dioxide Seepage Recorded by Dawsonite in the Bowen-Gunnedah-Sydney Basin System, Eastern Australia. SEPM Journal of Sedimentary Research, 65:522-530. https://doi.org/10.1306/d4268117-2b26-11d7-8648000102c1865d
      Chang, J.B., Zou, X.P., Yu, G.D., et al., 2017. Mixed Clastic and Carbonate Deposits of Zhujiang Formation in the Southern Huizhou Depression, Zhujiangkou Basin. Marine Origin Petroleum Geology, 22(4): 19-26(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201704004
      Cózar, P., 2003. Taphonomical Analysis of the Infilling and Early Mineralization in Endothyroids (Foraminiferida, Mississippian). Palaeogeography, Palaeoclimatology, Palaeoecology, 193(3-4): 561-574. https://doi.org/10.1016/s0031-0182(03)00266-9
      Dai, J.X., 1995. Abiogenic Gas in Oil-Gas Bearing Basins in China and Its Reserviors. Natural Gas Industry, 15(3): 22-27(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500775122
      Dong, L.S., Liu, L., Meng, Q.A., et al., 2011. Generation of Dawsonite Cement of Pyroclastic Rocks in Tongbomiao Formation in Tanan Sag of Tamtsag Basin in Mongolia. Journal of Jilin University (Earth Science Edition), 41(2): 421-431(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201102012
      Elmore, R. D., Engel, M. H., Crawford, L., et al., 1987. Evidence for a Relationship between Hydrocarbons and Authigenic Magnetite. Nature, 325(6103): 428-430. https://doi.org/10.1038/325428a0
      Feng, Z.C., Zheng, W.J., 1982. Tectonic Evolution of Zhujiangkou (Pearl-River-Mouth) Basin and Origin of South China Sea. Acta Geologica Sinica, 56(3): 212-222.
      Ferrini, V., Martarelli, L., de Vito, C., et al., 2003. The Koman Dawsonite and Realgar Orpiment Deposit, Northern Albania: Inferences on Processes of Formation. The Canadian Mineralogist, 41(2): 413-427. https://doi.org/10.2113/gscanmin.41.2.413.
      Gao, Y. Q., Liu, L., Hu, W. X., 2009. Petrology and Isotopic Geochemistry of Dawsonite-Bearing Sandstones in Hailaer Basin, Northeastern China. Applied Geochemistry, 24(9): 1724-1738. https://doi.org/10.1016/j.apgeochem.2009.05.002
      Golab, A. N., Carr, P. F., Palamara, D. R., 2006. Influence of Localised Igneous Activity on Cleat Dawsonite Formation in Late Permian Coal Measures, Upper Hunter Valley, Australia. International Journal of Coal Geology, 66(4): 296-304. https://doi.org/10.1016/j.coal.2005.08.001
      Li, P.L., 1993. Cenozoic Tectonic Movement in the Pearl River Mouth Basin. China Offshore Oil and Gas (Geology), 7(6):11-17 (in Chinese with English abstract).
      Li, Y., 2012. Deep-Water Sedimentology of the Miocene Zhujiang Formation in Baiyun Sag, Pearl River Mouth Basin(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      Liu, N., Liu, L., Qu, X. Y., et al., 2011. Genesis of Authigene Carbonate Minerals in the Upper Cretaceous Reservoir, Honggang Anticline, Songliao Basin: A Natural Analog for Mineral Trapping of Natural CO2 Storage. Sedimentary Geology, 237(3-4): 166-178. https://doi.org/10.1016/j.sedgeo.2011.02.012
      Liu, N., Wu, K.Q., Liu, L., et al., 2019. Dawsonite Characteristics and Its Implication on the CO2 in Yinggehai-Huangliu Formation of Ledong Area, Yinggehai Basin. Earth Science, 44(8):2695-2703 (in Chinese with English abstract).
      Love, L. G., 1967. Early Diagenetic Iron Sulphide in Recent Sediments of the Wash (England). Sedimentology, 9(4): 327-352. https://doi.org/10.1111/j.1365-3091.1967.tb01339.x
      Ma, B.J., Qin, Z.L., Wu, S.G., et al., 2018. Types and Genesis of the Mixed Deposits in the Pearl River Mouth Basin of South China Sea. Marine Geology & Quaternary Geology, 38(6): 149-158(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201806015
      Mazzullo, S. J., 2000. Organogenic Dolomitization in Peritidal to Deep-Sea Sediments. Journal of Sedimentary Research, 70(1): 10-23. https://doi.org/10.1306/2dc408f9-0e47-11d7-8643000102c1865d
      Ming, X. R., Liu, L., Yu, L., et al., 2017. Thin-Film Dawsonite in Jurassic Coal Measure Strata of the Yaojie Coalfield, Minhe Basin, China: A Natural Analogue for Mineral Carbon Storage in Wet Supercritical CO2. International Journal of Coal Geology, 180: 83-99. https://doi.org/10.1016/j.coal.2017.07.007
      Morad, S., 1998. Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution. In: Morad, S., ed., Carbonate Cementation in Sandstones. International Association of Sedimentologists.
      Ohmoto, H., Rye, R.O., 1979. Isotopes of Sulfur and Carbon. In: Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits(2nd Edition). Wiley Press, New York, 509-567.
      Pang, J., 2018. Formation Mechanism and Vertical Distribution of Ankerite in Tertiary Reservoir and the Relationship to the CO2 Fluid Activities, Baiyun Sag, the Pearl River Mouth Basin (Dissertation). Northwest Uinversity, Xi'an (in Chinese with English abstract).
      Pang, J., Luo, J.L., Ma, Y.K., et al., 2019. Forming Mechanism of Ankerite in Tertiary Reservoir of the Baiyun Sag, Pearl River Mouth Basin, and Its Relationship to CO2-Bearing Fluid Activity. Acta Geologica Sinica, 93(3): 724-737(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201903016
      Pang, X., Chen, C. M., Peng, D. J., et al., 2007. Sequence Stratigraphy of Deep-Water Fan System of Pearl River, South China Sea. Earth Science Frontiers, 14(1): 220-229. https://doi.org/10.1016/s1872-5791(07)60010-4
      Rollinson, H. R., 1993. A Terrane Interpretation of the Archaean Limpopo Belt. Geological Magazine, 130(6): 755-765. https://doi.org/10.1017/s001675680002313x
      Uysal, I. T., Golding, S. D., Bolhar, R., et al., 2011. CO2 Degassing and Trapping during Hydrothermal Cycles Related to Gondwana Rifting in Eastern Australia. Geochimica et Cosmochimica Acta, 75(19): 5444-5466. https://doi.org/10.1016/j.gca.2011.07.018
      Wang, D.F., Luo, J.L., Chen, S.H., et al., 2017. Carbonate Cementation and Origin Analysis of Deep Sandstone Reservoirs in the Baiyun Sag, Pearl River Mouth Basin. Acta Geologica Sinica, 91(9): 2079-2090(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201709011
      Wang, D.R., 2000. Stable Isotope Geochemistry of Oil and Gas. Geological Publishing House, Beijing, 17-18, 49-53 (in Chinese).
      Wang, J.L., Zhang, X.B., Wu, J.S., et al., 2002. Integrated Geophysical Researches on Base Texture of Zhujiang River Mouth Basin. Journal of Tropical Oceanography, 21(2): 13-22(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy200202002
      Wang, Y., 2012. Genetic Model and Hydrocarbon Exploration Potential of Mixed Sediment in Liwan Area of Baiyun Sag, Pearl River Mouth Basin (Dissertation). Institute of Oceanology, Chinese Academy of Sciences, Qingdao (in Chinese with English abstract).
      Watson, M.N., Zwingmann, N., Lemon, N. M., 2004. The Ladbroke Grove-Katnook Carbon Dioxide Natural Laboratory: A Recent CO2 Accumulation in a Lithic Sandstone Reservoir. Energy, 29(9-10): 1457-1466. https://doi.org/10.1016/j.energy.2004.03.079
      Worden, R. H., 2006. Dawsonite Cement in the Triassic Lam Formation, Shabwa Basin, Yemen: A Natural Analogue for a Potential Mineral Product of Subsurface CO2 Storage for Greenhouse Gas Reduction. Marine and Petroleum Geology, 23(1): 61-77. https://doi.org/10.1016/j.marpetgeo.2005.07.001
      Worden, R.H., Burley, S.D., 2003. Sandstone Diagenesis: The Evolution of Sand to Stone. In: Burley, S.D., Worden, R.H., eds., Sandstone Diagenesis: Recent and Ancient. International Association of Sedimentologists, Reprint Series, 3-44.
      Xie, X.N., Ye, M.S., Xu, C.G., et al., 2018. High Quality Reservoirs Characteristics and Forming Mechanisms of Mixed Siliciclastic-Carbonate Sediments in the Bozhong Sag, Bohai Bay Basin. Earth Science, 43(10): 3526-3539 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201810015
      Xu, L., Xie, Q.Q., Chen, T.H., et al., 2017. Mineralogical Characteristics of Colloform Pyrite Siderite Ore from the Xinqiao Deposit and Its Role in Mineralization of the Stratabound Sulfide Deposit in Tongling Ore District, Eastern China. Geological Review, 63(6): 1523-1534(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201706009
      Ye, M.S., Xie, X.N., Xu, C.G., et al., 2018. Discussion for Classification-Designation System of Mixed Siliciclastic-Carbonate Sediments and the Implication for Their Reservoir Prediction: A Case Study of Mixed Sediments from Bohai Sea Area. Geological Review, 64(5): 1118-1131(in Chinese with English abstract).
      Yuan, Y.S., Ding, M.G., 2008. Characteristics and Geodynamic Setting of the Basins in Deepwater Area of the Northern South China Sea Margin. Marine Sciences, 32(12): 102-110(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx200812018
      Zalba, P. E., Conconi, M. S., Morosi, M., et al., 2011. Dawsonite in Tuffs and Litharenites of the Cerro Castano Member, Cerro Barcino Formation, Chubut Group (Cenomanian), Los Altares, Patagonia, Argentina. The Canadian Mineralogist, 49(2): 503-520. https://doi.org/10.3749/canmin.49.2.503
      Zhao, S., Liu, L., Liu, N., 2018. Petrographic and Stable Isotopic Evidences of CO2-Induced Alterations in Sandstones in the Lishui Sag, East China Sea Basin, China. Applied Geochemistry, 90: 115-128. https://doi.org/10.1016/j.apgeochem.2018.01.004
      Zhou, D., Sun, Z., Chen, H. Z., et al., 2008. Mesozoic Paleogeography and Tectonic Evolution of South China Sea and Adjacent Areas in the Context of Tethyan and Paleo-Pacific Interconnections. Island Arc, 17(2): 186-207. https://doi.org/10.1111/j.1440-1738.2008.00611.x
      Zou, H.P., Li, P.L., Rao, C.T., 1995. Geochemistry of Cenozoic Volcanic Rocks in Zhujiangkou Basin and Its Geodynamic Significance. Geochimica, 24(Suppl.): 33-45(in Chinese with English abstract).
      昌建波, 邹晓萍, 余国达, 等, 2017.珠江口盆地惠州凹陷南部珠江组混合沉积作用.海相油气地质, 22(4): 19-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201704004
      戴金星, 1995.中国含油气盆地的无机成因气及其气藏.天然气工业, 15(3): 22-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500775122
      董林森, 刘立, 蒙启安, 等, 2011.蒙古国塔木察格盆地塔南凹陷铜钵庙组火山碎屑岩中片钠铝石胶结物的成因.吉林大学学报(地球科学版), 41(2): 421-431. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201102012
      李平鲁, 1993.珠江口盆地新生代构造运动.中国海上油气(地质), 7(6):11-17.
      李云, 2012.珠江口盆地白云凹陷中新统珠江组深水沉积学(博士学位论文).成都: 成都理工大学.
      刘娜, 吴克强, 刘立, 等, 2019.莺歌海盆地乐东区片钠铝石特征及其对浅层CO2充注的指示.地球科学, 44(8):2695-2703. doi: 10.3799/dqkx.2019.106
      马本俊, 秦志亮, 吴时国, 等, 2018.南海珠江口盆地深水区混合沉积类型及其形成机制.海洋地质与第四纪地质, 38(6): 149-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201806015
      庞江, 2018.白云凹陷第三系储层中铁白云石的分布特征、成因机理及其与CO2活动的关系(硕士学位论文).西安: 西北大学.
      庞江, 罗静兰, 马永坤, 等, 2019.白云凹陷第三系储层中铁白云石的成因机理及与CO2活动的关系.地质学报, 93(3): 724-737. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201903016
      王大锐, 2000.油气稳定同位素地球化学.北京: 地质出版社, 17-18, 49-53.
      王代富, 罗静兰, 陈淑慧, 等, 2017.珠江口盆地白云凹陷深层砂岩储层中碳酸盐胶结作用及成因探讨.地质学报, 91(9): 2079-2090. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201709011
      王家林, 张新兵, 吴健生, 等, 2002.珠江口盆地基底结构的综合地球物理研究.热带海洋学报, 21(2): 13-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy200202002
      王莹, 2012.珠江口盆地白云凹陷荔湾井区珠海组混合沉积成因模式及其油气勘探前景(硕士学位论文).青岛: 中国科学院海洋研究所.
      解习农, 叶茂松, 徐长贵, 等. 2018.渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理.地球科学, 43(10): 3526-3539. doi: 10.3799/dqkx.2018.277
      徐亮, 谢巧勤, 陈天虎, 等, 2017.铜陵矿集区层状硫化物矿床成因:来自胶状黄铁矿-菱铁矿型矿石矿物学制约.地质论评, 63(6): 1523-1534.
      叶茂松, 解习农, 徐长贵, 等, 2018.混积岩分类命名体系探讨及对混积岩储层评价的启示:以渤海海域混积岩研究为例.地质论评, 64(5): 1118-1131.
      袁玉松, 丁玫瑰, 2008.南海北部深水区盆地特征及其动力学背景.海洋科学, 32(12): 102-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx200812018
      邹和平, 李平鲁, 饶春涛, 1995.珠江口盆地新生代火山岩地球化学特征及其动力学意义.地球化学, 24(增刊): 33-45.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(1)

      Article views (1367) PDF downloads(65) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return