Citation: | Tian Yang, Jin Wei, Wang Jing, Ke Xianzhong, Long Wenguo, 2021. Provenance and Tectonic Setting of Lengjiaxi Group in the Central Jiangnan Orogen: A Case Study of Huanghudong Formation, Yueyang Area. Earth Science, 46(4): 1328-1348. doi: 10.3799/dqkx.2020.101 |
Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
|
Bai, D.Y., Lin, Y.M., Zhong, X., et al., 2018. Geological Features, Activity History and Tectonic Attribute of NW-Trending Changde-Anren Fault in Hunan. Earth Science, 43(7): 2496-2517 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201807022.htm
|
Barovich, K., Hand, M., 2008. Tectonic Setting and Provenance of the Paleoproterozoic Willyama Supergroup, Curnamona Province, Australia: Geochemical and Nd Isotopic Constraints on Contrasting Source Terrain Components. Precambrian Research, 166(1-4): 318-337. https://doi.org/10.1016/j.precamres.2007.06.024
|
Bhatia, M.R., 1983. Plate Tectonics and Geochemical Composition of Sandstones. The Journal of Geology, 91(6): 611-627. https://doi.org/10.1086/628815
|
Bhatia, M.R., 1985. Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks: Provenance and Tectonic Control. Sedimentary Geology, 45(1-2): 97-113. https://doi.org/10.1016/0037-0738(85)90025-9
|
Bhatia, M.R., Crook, K.A.W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/bf00375292
|
Black, L.P., Gulson, B.L., 1978. The Age of the Mud Tank Carbonatite, Strangways Range, Northern Territory. BMR Journal of Australian Geology and Geophysics, 3(3): 227-232.
|
Cawood, P.A., Wang, Y.J., Xu, Y.J., et al., 2013. Locating South China in Rodinia and Gondwana: A Fragment of Greater Indian Lithosphere? Geology, 41(8): 903-906. https://doi.org/10.1130/g34395.1
|
Cawood, P.A., Zhao, G.C., Yao, J.L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186: 173-194. https://doi.org/10.1016/j.earscirev.2017.06.001
|
Che, Q.J., Wu, G.Y., Tang, X.S., et al., 2005. Disintegration of Mesoproterooic Lengjiaxi Group in Northeast Hunan Province. Geology and Mineral Resources of South China, 21(1): 47-53, 71 (in Chinese with English abstract).
|
Chen, X., Rong, J.Y., Rowley, D.B., et al., 1995. Is the Early Paleozoic Banxi Ocean in South China Necessary? Geological Review, 41(3): 389-400 (in Chinese with English abstract).
|
Chen, X., Wang, X.L., Wang, D., et al., 2018. Contrasting Mantle-Crust Melting Processes within Orogenic Belts: Implications from Two Episodes of Mafic Magmatism in the Western Segment of the Neoproterozoic Jiangnan Orogen in South China. Precambrian Research, 309: 123-137. https://doi.org/10.1016/j.precamres.2017.04.001
|
Cox, R., Lowe, D.R., Cullers, R.L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9
|
Fedo, C.M., Wayne, N.H., Young, G.M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921-924. https://doi.org/10.1130/0091-7613(1995)0230921:uteopm > 2.3.co; 2 doi: 10.1130/0091-7613(1995)0230921:uteopm>2.3.co;2
|
Feng, L.J., Chu, X.L., Zhang, Q.R., et al., 2003. CIA (Chemical Index of Alteration) and Its Applications in the Neoproterozoic Clastic Rocks. Earth Science Frontiers, 10(4): 539-544 (in Chinese with English abstract).
|
Gao, L.Z., Chen, J., Ding, X.Z., et al., 2011. Zircon SHRIMP U-Pb Dating of the Tuff Bed of Lengjiaxi and Banxi Groups, Northeastern Hunan: Constraints on the Wuling Movement. Geological Bulletin of China, 30(7): 1001-1008(in Chinese with English abstract).
|
Gao, L.Z., Yang, M.G., Ding, X.Z., et al., 2008. SHRIMP U-Pb Zircon Dating of Tuff in the Shuangqiaoshan and Heshangzhen Groups in South China: Constraints on the Evolution of the Jiangnan Neoproterozoic Orogenic Belt. Geological Bulletin of China, 27(10): 1744-1751 (in Chinese with English abstract).
|
Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131: 231-282. https://doi.org/10.1016/j.precamres.2003.12.011
|
Gu, X.X., Liu, J.M., Schulz, O., et al., 2003. Geochemical Constraints on the Tectonic Setting of the Proterozoic Turbidites in the Xuefeng Uplift Region of the Jiangnan Orogenic Belt. Geochimica, 32(5): 406-426(in Chinese with English abstract)
|
Guo, L.H., Gao, R., Shi, L., et al., 2019. Crustal Thickness and Poisson's Ratios of South China Revealed from Joint Inversion of Receiver Function and Gravity Data. Earth and Planetary Science Letters, 510: 142-152. https://doi.org/10.1016/j.epsl.2018.12.039.
|
Guo, L.Z., 1996. On the Meso-Neoproterozoic Jiangnan Island Arc: Its Kinematics and Dynamics. Geological Journal of China Universities, 2(1): 1-13 (in Chinese with English abstract).
|
Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
|
Ji, W.B., Lin, W., Faure, M., et al., 2017. Origin of the Late Jurassic to Early Cretaceous Peraluminous Granitoids in the Northeastern Hunan Province (Middle Yangtze Region), South China: Geodynamic Implications for the Paleo-Pacific Subduction. Journal of Asian Earth Sciences, 141: 174-193. https://doi.org/10.1016/j.jseaes.2016.07.005
|
Li, X.H., Li, W.X., Li, Z.X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1-2): 117-128. http://dx.doi.org/10.1016/j.precamres.2009.07.004.
|
Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 160(1): 179-210. http://dx.doi.org/10.1016/j.precamres.2007.04.021.
|
Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
Ludwig, K.R., 2003. User's Manual for Isoplot 3.00: A Geolochronolgical Toolkit for Microsoft Excel. Geochronology Center, Special Publication, Berkeley, 4: 25-32.
|
Ma, T.Q., Chen, L.X., Bai, D.Y., et al., 2009. Zircon SHRIMP Dating and Geochemical Characteristics of Neoproterozoic Granites in Southeastern Hunan. Geology in China, 36(1): 65-73 (in Chinese with English abstract).
|
McLennan, S.M., Hemming, S.R., Taylor, S.R., et al., 1995. Early Proterozoic Crustal Evolution: Geochemical and Nd-Pb Isotopic Evidence from Metasedimentary Rocks, Southwestern North America. Geochimica et Cosmochimica Acta, 59(6): 1153-1177. https://doi.org/10.1016/0016-7037(95)00032-u
|
Meng, Q.X., Zhang, J., Geng, J.Z., et al., 2013. Zircon U-Pb Age and Hf Isotope Compositions of Lengjiaxi and Baxi Groups in Middle Hunan Province: Implications for the Neoproterozoic Tectonic Evolution in South China. Geology in China, 40(1): 191-216 (in Chinese with English abstract).
|
Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
|
Peng, S.B., Kusky, T.M., Jiang, X.F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2/3): 577-594. https://doi.org/10.1016/j.gr.2011.07.010
|
Pettijohn, F.J., Potter, P.E., Siever, R., et al., 1987. Sand and Sandstone (Second Edition). Springer-Verlag, New York, 553. https://doi.org/10.1007/978-1-4612-1066-5
|
Qiu, X.F., Ling, W.L., Liu, X.M., 2014. Correlation between the Mesoproterozoic Yangtze Continental Nucleus and the Shennongjia Area: Constraints from Zircon Geochronological and Hf Isotope. Geological Science and Technology Information, 33(2): 1-8(in Chinese with English abstract).
|
Roser, B.P., Korsch, R.J., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. The Journal of Geology, 94(5): 635-650. doi: 10.1086/629071
|
Roser, B.P., Korsch, R.J., 1988. Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 67(1-2): 119-139. https://doi.org/10.1016/0009-2541(88)90010-1
|
Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry. Elsevier-Pergamon, Oxford.
|
Shu, L.S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract).
|
Shu, L.S., Charvet, J., 1996. Kinematics and Geochronology of the Proterozoic Dongxiang-Shexian Ductile Shear Zone: With HP Metamorphism and Ophiolitic Melange (Jiangnan Region, South China). Tectonophysics, 267(1-4): 291-302. https://doi.org/10.1016/s0040-1951(96)00104-7
|
Shu, L.S., Wang, J.Q., Yao, J.L., 2019. Tectonic Evolution of the Eastern Jiangnan Region, South China: New Findings and Implications on the Assembly of the Rodinia Supercontinent. Precambrian Research, 322: 42-65. https://doi.org/10.1016/j.precamres.2018.12.007
|
Sun, H.Q., Huang, J.Z., Guo, L.Q., et al., 2012. Subdivision and Isotopic Age of Lengjiaxi Group in Hunan Province. Geology and Mineral Resources of South China, 28(1): 20-26(in Chinese with English abstract).
|
Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
|
Tian, Y., Xie, G.G., Wang, L.Z., et al., 2015a. Provenance and Tectonic Settings of Triassic Xujiahe Formation in Qiyueshan Area, Southwest Hubei: Evidences from Petrology, Geochemistry and Zircon U-Pb Ages of Clastic Rocks. Earth Science, 40(12): 2021-2036(in Chinese with English abstract).
|
Tian, Y., Zhao, X.M., Wang, L.Z., et al., 2015b. Geochemistry of Clastic Rocks from the Triassic Xujiahe Formation, Lichuan Area, Southwestern Hubei: Implications for Weathering, Provenance and Tectonic Setting. Acta Petrologica Sinica, 31(1): 261-272(in Chinese with English abstract).
|
Wang, J.Q., Shu, L.S., Santosh, M., 2017. U-Pb and Lu-Hf Isotopes of Detrital Zircon Grains from Neoproterozoic Sedimentary Rocks in the Central Jiangnan Orogen, South China: Implications for Precambrian Crustal Evolution. Precambrian Research, 294: 175-188. https://doi.org/10.1016/j.precamres.2017.03.025
|
Wang, W., Cawood, P.A., Pandit, M.K., et al., 2019a. No Collision between Eastern and Western Gondwana at Their Northern Extent. Geology, 47(4): 308-321. https://doi.org/10.1130/g45745.1
|
Wang, Y.J., Zhang, Y.Z., Cawood, P.A., et al., 2019b. Early Neoproterozoic Assembly and Subsequent Rifting in South China: Revealed from Mafic and Ultramafic Rocks, Central Jiangnan Orogen. Precambrian Research, 331: 105367. https://doi.org/10.1016/j.precamres.2019.105367
|
Wang, W., Zhou, M.F., 2012. Sedimentary Records of the Yangtze Block (South China) and Their Correlation with Equivalent Neoproterozoic Sequences on Adjacent Continents. Sedimentary Geology, 265/266: 126-142. https://doi.org/10.1016/j.sedgeo.2012.04.003
|
Wang, W., Zhou, M.F., 2013. Petrological and Geochemical Constraints on Provenance, Paleoweathering, and Tectonic Setting of the Neoproterozoic Sedimentary Basin in the Eastern Jiangnan Orogen, South China. Journal of Sedimentary Research, 83(11): 974-993. https://doi.org/10.2110/jsr.2013.74
|
Wang, W., Zhou, M.F., Yan, D.P., et al., 2013a. Detrital Zircon Record of Neoproterozoic Active-Margin Sedimentation in the Eastern Jiangnan Orogen, South China. Precambrian Research, 235: 1-19. https://doi.org/10.1016/j.precamres.2013.05.013.
|
Wang, Y.J., Zhang, A.M., Cawood, P.A., et al., 2013b. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-Back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343-371. https://doi.org/10.1016/j.precamres.2013.03.020
|
Wang, X.L., Zhao, G.C., Zhou, J.C., et al., 2008. Geochronology and Hf Isotopes of Zircon from Volcanic Rocks of the Shuangqiaoshan Group, South China: Implications for the Neoproterozoic Tectonic Evolution of the Eastern Jiangnan Orogen. Gondwana Research, 14(3): 355-367. https://doi.org/10.1016/j.gr.2008.03.001.
|
Wang, X.L., Zhou, J.C., Chen, X., et al., 2017. Formation and Evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735 (in Chinese with English abstract).
|
Wang, Z.Q., Gao, L.Z., Ding, X.Z., et al., 2012. Tectonic Environment of the Metamorphosed Basement in the Jiangnan Orogen and Its Evolutional Features. Geological Review, 58(3): 401-413(in Chinese with English abstract).
|
Xue, E.K., Wang, W., Huang, S.F., et al., 2019. Detrital Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry of Neoproterozoic-Cambrian Successions in the Cathaysia Block of South China Block: Implications on Paleogeographic Reconstruction in Supercontinent. Gondwana Research, 331: 105348. https://doi.org/10.1016/j.precamres.2019.105348.
|
Yang, C., Li, X.H., Wang, X.C., et al., 2015. Mid-Neoproterozoic Angular Unconformity in the Yangtze Block Revisited: Insights from Detrital Zircon U-Pb Age and Hf-O Isotopes. Precambrian Research, 266: 165-178. https://doi.org/10.1016/j.precamres.2015.05.016.
|
Yang, X., Zhang, Y.Z., Cui, X., et al., 2020. Geochemistry and Detrital Zircon U-Pb Ages of Sedimentary Rocks from Neoproterozoic Lengjiaxi Group in NE Hunan Province. Earth Science, 45(9): 3461-3474 (in Chinese with English abstract).
|
Yao, J.L., Shu, L.S., Cawood, P.A., et al., 2017. Constraining Timing and Tectonic Implications of Neoproterozoic Metamorphic Event in the Cathaysia Block, South China. Precambrian Research, 293: 1-12. https://doi.org/10.1016/j.precamres.2017.01.032
|
Zhang, H., Xie, Y., Zhang, C.H., et al., 2013. A Discussion on the Sedimentary Characteristics and Structural Properties of Lengjiaxi Group in the West Part of Jiangnan Orogenic Belt. Earth Science Frontiers, 20(6): 269-281 (in Chinese with English abstract).
|
Zhang, K.X., Xu, Y.D., He, W.H., et al., 2018. The Pattern of Early Neoproterozoic Ocean and Blocks in China. Earth Science, 43(11): 3837-3852 (in Chinese with English abstract).
|
Zhang, Y.Z., Wang, Y.J., 2020. Early Neoproterozoic Continental Arc System at the Central Jiangnan Orogen, South China: Geochronological and Geochemical Constraints on the Key Igneous Rock-Association. GSA Bulletin, 132: 638-654. https://doi.org/10.1130/B35221.1
|
Zhang, Y.Z., Wang, Y.J., Geng, H.Y., et al., 2013. Early Neoproterozoic (∼850 Ma) Back-Arc Basin in the Central Jiangnan Orogen (Eastern South China): Geochronological and Petrogenetic Constraints from Meta-Basalts. Precambrian Research, 231: 325-342. https://doi.org/10.1016/j.precamres.2013.03.016
|
Zhang, Y.Z., Wang, Y.J., Zhang, Y.H., et al., 2015. Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks: Evidence from the Cangshuipu Group and Associated Rocks along the Central Jiangnan Orogen, South China. Precambrian Research, 269: 18-30. https://doi.org/10.1016/j.precamres.2015.08.003
|
Zhao, G.C., 2015. Jiangnan Orogen in South China: Developing from Divergent Double Subduction. Gondwana Research, 27(3): 1173-1180. https://doi.org/10.1016/j.gr.2014.09.004
|
Zhao, G.C., Cawood, P.A., 2012. Precambrian Geology of China. Precambrian Research, 222/223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017
|
Zhou, M.F., Ma, Y.X., Yan, D.P., et al., 2006. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 144(1-2): 19-38. https://doi.org/10.1016/j.precamres.2005.11.002
|
柏道远, 李银敏, 钟响, 等, 2018. 湖南NW向常德-安仁断裂的地质特征、活动历史及构造性质. 地球科学, 43(7): 2496-2517. doi: 10.3799/dqkx.2018.571
|
车勤建, 伍光英, 唐晓珊, 等, 2005. 湘东北中元古代冷家溪群的解体及其地质意义. 华南地质与矿产, 21(1): 47-53, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200501008.htm
|
陈旭, 戎嘉余, Rowley, D.B., 等, 1995. 对华南早古生代板溪洋的质疑. 地质论评, 41(3): 389-400. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199505000.htm
|
冯连君, 储雪蕾, 张启锐, 等, 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘, 10(4): 539-544. doi: 10.3321/j.issn:1005-2321.2003.04.019
|
高林志, 陈峻, 丁孝忠, 等, 2011. 湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄: 对武陵运动的制约. 地质通报, 30(7): 1001-1008. doi: 10.3969/j.issn.1671-2552.2011.07.001
|
高林志, 杨明桂, 丁孝忠, 等, 2008. 华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄: 对江南新元古代造山带演化的制约. 地质通报, 27(10): 1744-1751. doi: 10.3969/j.issn.1671-2552.2008.10.017
|
顾雪祥, 刘建明, Oskar Schulz, 等, 2003. 江南造山带雪峰隆起区元古宙浊积岩沉积构造背景的地球化学制约. 地球化学, 32(5): 406-426. doi: 10.3321/j.issn:0379-1726.2003.05.002
|
郭令智, 1996. 江南中-新元古代岛弧的运动学和动力学. 高校地质学报, 2(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX601.000.htm
|
马铁球, 陈立新, 柏道远, 等, 2009. 湘东北新元古代花岗岩体锆石SHRIMP U-Pb年龄及地球化学特征. 中国地质, 36(1): 65-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901007.htm
|
孟庆秀, 张健, 耿建珍, 等, 2013. 湘中地区冷家溪群和板溪群锆石U-Pb年龄、Hf同位素特征及对华南新元古代构造演化的意义. 中国地质, 40(1): 191-216. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201301016.htm
|
邱啸飞, 凌文黎, 柳小明, 2014. 扬子陆核与神农架地块中元古代相互关系: 来自锆石U-Pb年代学和Hf同位素的约束. 地质科技情报, 33(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402002.htm
|
舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm
|
孙海清, 黄建中, 郭乐群, 等, 2012. 湖南冷家溪群划分及同位素年龄约束. 华南地质与矿产, 28(1): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201201004.htm
|
田洋, 谢国刚, 王令占, 等, 2015a. 鄂西南齐岳山须家河组物源及构造背景: 来自岩石学、地球化学和锆石年代学的制约. 地球科学, 40(12): 2021-2036. doi: 10.3799/dqkx.2015.180
|
田洋, 赵小明, 王令占, 等, 2015b. 鄂西南利川三叠纪须家河组地球化学特征及其对风化、物源与构造背景的指示. 岩石学报, 31(1): 261-272. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501019.htm
|
王孝磊, 周金城, 陈昕, 等, 2017. 江南造山带的形成与演化. 矿物岩石地球化学通报, 36(5): 714-735. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201705004.htm
|
王自强, 高林志, 丁孝忠, 等, 2012. "江南造山带"变质基底形成的构造环境及演化特征. 地质论评, 58(3): 401-413. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201203002.htm
|
杨雪, 张玉芝, 崔翔, 等, 2020. 湘东北新元古代冷家溪群沉积岩的地球化学特征和碎屑锆石U-Pb年代学. 地球科学, 45(9): 3461-3474. doi: 10.3799/dqkx.2019.052
|
张恒, 谢莹, 张传恒, 等, 2013. 江南造山带西段冷家溪群沉积地质特征及构造属性探讨. 地学前缘, 20(6): 269-281. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201306035.htm
|
张克信, 徐亚东, 何卫红, 等, 2018. 中国新元古代青白口纪(1 000~820 Ma)洋陆分布. 地球科学, 43(11): 3837-3852. doi: 10.3799/dqkx.2018.339
|