• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 4
    Apr.  2021
    Turn off MathJax
    Article Contents
    Tian Yang, Jin Wei, Wang Jing, Ke Xianzhong, Long Wenguo, 2021. Provenance and Tectonic Setting of Lengjiaxi Group in the Central Jiangnan Orogen: A Case Study of Huanghudong Formation, Yueyang Area. Earth Science, 46(4): 1328-1348. doi: 10.3799/dqkx.2020.101
    Citation: Tian Yang, Jin Wei, Wang Jing, Ke Xianzhong, Long Wenguo, 2021. Provenance and Tectonic Setting of Lengjiaxi Group in the Central Jiangnan Orogen: A Case Study of Huanghudong Formation, Yueyang Area. Earth Science, 46(4): 1328-1348. doi: 10.3799/dqkx.2020.101

    Provenance and Tectonic Setting of Lengjiaxi Group in the Central Jiangnan Orogen: A Case Study of Huanghudong Formation, Yueyang Area

    doi: 10.3799/dqkx.2020.101
    • Received Date: 2020-04-02
    • Publish Date: 2021-04-15
    • For revealing provenance and tectonic setting of Lengjiaxi Group in the central Jiangnan orogen, a synthetic study on petrology, sedimentology, geochemistry and zircon geochronology of Huanghudong Formation in Yueyang area was carried out. All greywacke samples are rich in matrix (mostly more than 25%), feldspar (15%-25%) and lithic fragments (15%-30%), poor in quartz (25%-40%), with poor sorting and poor-medium rounding. These samples are characterized by medium SiO2(63.39%-72.88%, mean: 70.14%) contents, high (Fe2O3T+MgO)* (6.04%-8.29%, mean: 6.81%) and TiO2* (0.67%-0.92%, mean: 0.74%) contents, high K2O/Na2O (0.84-2.35, mean: 1.43) ratios, and low Al2O3/SiO2 (0.17-0.28, mean: 0.20) ratios, resembling those of continental island arc greywackes. Their medium index of compositional variation (ICV, mean: 0.86) and chemical index of alteration values (CIA, mean: 70-80) demonstrate that the source contains recycled ancient sediments and first-cycle materials which underwent moderate chemical weathering. Greywackes have high contents in ΣREE (mean: 173.02×10-6), with chondrite-normalized REE patterns similar to upper crust and PAAS, showing enriched LREE ((La/Yb)N mean: 7.32), subhorizontal HREE curves and moderate Eu (Eu/Eu*: 0.58-0.70, mean: 0.66) negative anomalies. However, compared to the upper crust, greywackes HREE contents are significantly enriched with an average (La/Yb)ucc value of 0.70. LA-ICP-MS zircon U-Pb dating of one layered tuff sample yields zircon U-Pb age of 824±3.1 Ma. Low textural and compositional maturity, NEE-SE paleocurrent, contents and ratios of characteristic elements, provenance and tectonic discrimination diagrams of Huanghudong Formation greywackes, and combined with other geological observations, suggest that the Lengjiaxi Group of Yueyang area in the central Jiangnan orogen might be formed in a back-arc basin. The sources are of high compositional maturity from interior Yangtze block in stable tectonic setting in the north, and of low compositional maturity from continental island arc with strong tectonic activity in the south, respectively.

       

    • loading
    • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      Bai, D.Y., Lin, Y.M., Zhong, X., et al., 2018. Geological Features, Activity History and Tectonic Attribute of NW-Trending Changde-Anren Fault in Hunan. Earth Science, 43(7): 2496-2517 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201807022.htm
      Barovich, K., Hand, M., 2008. Tectonic Setting and Provenance of the Paleoproterozoic Willyama Supergroup, Curnamona Province, Australia: Geochemical and Nd Isotopic Constraints on Contrasting Source Terrain Components. Precambrian Research, 166(1-4): 318-337. https://doi.org/10.1016/j.precamres.2007.06.024
      Bhatia, M.R., 1983. Plate Tectonics and Geochemical Composition of Sandstones. The Journal of Geology, 91(6): 611-627. https://doi.org/10.1086/628815
      Bhatia, M.R., 1985. Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks: Provenance and Tectonic Control. Sedimentary Geology, 45(1-2): 97-113. https://doi.org/10.1016/0037-0738(85)90025-9
      Bhatia, M.R., Crook, K.A.W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/bf00375292
      Black, L.P., Gulson, B.L., 1978. The Age of the Mud Tank Carbonatite, Strangways Range, Northern Territory. BMR Journal of Australian Geology and Geophysics, 3(3): 227-232.
      Cawood, P.A., Wang, Y.J., Xu, Y.J., et al., 2013. Locating South China in Rodinia and Gondwana: A Fragment of Greater Indian Lithosphere? Geology, 41(8): 903-906. https://doi.org/10.1130/g34395.1
      Cawood, P.A., Zhao, G.C., Yao, J.L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186: 173-194. https://doi.org/10.1016/j.earscirev.2017.06.001
      Che, Q.J., Wu, G.Y., Tang, X.S., et al., 2005. Disintegration of Mesoproterooic Lengjiaxi Group in Northeast Hunan Province. Geology and Mineral Resources of South China, 21(1): 47-53, 71 (in Chinese with English abstract).
      Chen, X., Rong, J.Y., Rowley, D.B., et al., 1995. Is the Early Paleozoic Banxi Ocean in South China Necessary? Geological Review, 41(3): 389-400 (in Chinese with English abstract).
      Chen, X., Wang, X.L., Wang, D., et al., 2018. Contrasting Mantle-Crust Melting Processes within Orogenic Belts: Implications from Two Episodes of Mafic Magmatism in the Western Segment of the Neoproterozoic Jiangnan Orogen in South China. Precambrian Research, 309: 123-137. https://doi.org/10.1016/j.precamres.2017.04.001
      Cox, R., Lowe, D.R., Cullers, R.L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9
      Fedo, C.M., Wayne, N.H., Young, G.M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921-924. https://doi.org/10.1130/0091-7613(1995)0230921:uteopm > 2.3.co; 2 doi: 10.1130/0091-7613(1995)0230921:uteopm>2.3.co;2
      Feng, L.J., Chu, X.L., Zhang, Q.R., et al., 2003. CIA (Chemical Index of Alteration) and Its Applications in the Neoproterozoic Clastic Rocks. Earth Science Frontiers, 10(4): 539-544 (in Chinese with English abstract).
      Gao, L.Z., Chen, J., Ding, X.Z., et al., 2011. Zircon SHRIMP U-Pb Dating of the Tuff Bed of Lengjiaxi and Banxi Groups, Northeastern Hunan: Constraints on the Wuling Movement. Geological Bulletin of China, 30(7): 1001-1008(in Chinese with English abstract).
      Gao, L.Z., Yang, M.G., Ding, X.Z., et al., 2008. SHRIMP U-Pb Zircon Dating of Tuff in the Shuangqiaoshan and Heshangzhen Groups in South China: Constraints on the Evolution of the Jiangnan Neoproterozoic Orogenic Belt. Geological Bulletin of China, 27(10): 1744-1751 (in Chinese with English abstract).
      Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131: 231-282. https://doi.org/10.1016/j.precamres.2003.12.011
      Gu, X.X., Liu, J.M., Schulz, O., et al., 2003. Geochemical Constraints on the Tectonic Setting of the Proterozoic Turbidites in the Xuefeng Uplift Region of the Jiangnan Orogenic Belt. Geochimica, 32(5): 406-426(in Chinese with English abstract)
      Guo, L.H., Gao, R., Shi, L., et al., 2019. Crustal Thickness and Poisson's Ratios of South China Revealed from Joint Inversion of Receiver Function and Gravity Data. Earth and Planetary Science Letters, 510: 142-152. https://doi.org/10.1016/j.epsl.2018.12.039.
      Guo, L.Z., 1996. On the Meso-Neoproterozoic Jiangnan Island Arc: Its Kinematics and Dynamics. Geological Journal of China Universities, 2(1): 1-13 (in Chinese with English abstract).
      Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
      Ji, W.B., Lin, W., Faure, M., et al., 2017. Origin of the Late Jurassic to Early Cretaceous Peraluminous Granitoids in the Northeastern Hunan Province (Middle Yangtze Region), South China: Geodynamic Implications for the Paleo-Pacific Subduction. Journal of Asian Earth Sciences, 141: 174-193. https://doi.org/10.1016/j.jseaes.2016.07.005
      Li, X.H., Li, W.X., Li, Z.X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1-2): 117-128. http://dx.doi.org/10.1016/j.precamres.2009.07.004.
      Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 160(1): 179-210. http://dx.doi.org/10.1016/j.precamres.2007.04.021.
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Ludwig, K.R., 2003. User's Manual for Isoplot 3.00: A Geolochronolgical Toolkit for Microsoft Excel. Geochronology Center, Special Publication, Berkeley, 4: 25-32.
      Ma, T.Q., Chen, L.X., Bai, D.Y., et al., 2009. Zircon SHRIMP Dating and Geochemical Characteristics of Neoproterozoic Granites in Southeastern Hunan. Geology in China, 36(1): 65-73 (in Chinese with English abstract).
      McLennan, S.M., Hemming, S.R., Taylor, S.R., et al., 1995. Early Proterozoic Crustal Evolution: Geochemical and Nd-Pb Isotopic Evidence from Metasedimentary Rocks, Southwestern North America. Geochimica et Cosmochimica Acta, 59(6): 1153-1177. https://doi.org/10.1016/0016-7037(95)00032-u
      Meng, Q.X., Zhang, J., Geng, J.Z., et al., 2013. Zircon U-Pb Age and Hf Isotope Compositions of Lengjiaxi and Baxi Groups in Middle Hunan Province: Implications for the Neoproterozoic Tectonic Evolution in South China. Geology in China, 40(1): 191-216 (in Chinese with English abstract).
      Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
      Peng, S.B., Kusky, T.M., Jiang, X.F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2/3): 577-594. https://doi.org/10.1016/j.gr.2011.07.010
      Pettijohn, F.J., Potter, P.E., Siever, R., et al., 1987. Sand and Sandstone (Second Edition). Springer-Verlag, New York, 553. https://doi.org/10.1007/978-1-4612-1066-5
      Qiu, X.F., Ling, W.L., Liu, X.M., 2014. Correlation between the Mesoproterozoic Yangtze Continental Nucleus and the Shennongjia Area: Constraints from Zircon Geochronological and Hf Isotope. Geological Science and Technology Information, 33(2): 1-8(in Chinese with English abstract).
      Roser, B.P., Korsch, R.J., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. The Journal of Geology, 94(5): 635-650. doi: 10.1086/629071
      Roser, B.P., Korsch, R.J., 1988. Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 67(1-2): 119-139. https://doi.org/10.1016/0009-2541(88)90010-1
      Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry. Elsevier-Pergamon, Oxford.
      Shu, L.S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract).
      Shu, L.S., Charvet, J., 1996. Kinematics and Geochronology of the Proterozoic Dongxiang-Shexian Ductile Shear Zone: With HP Metamorphism and Ophiolitic Melange (Jiangnan Region, South China). Tectonophysics, 267(1-4): 291-302. https://doi.org/10.1016/s0040-1951(96)00104-7
      Shu, L.S., Wang, J.Q., Yao, J.L., 2019. Tectonic Evolution of the Eastern Jiangnan Region, South China: New Findings and Implications on the Assembly of the Rodinia Supercontinent. Precambrian Research, 322: 42-65. https://doi.org/10.1016/j.precamres.2018.12.007
      Sun, H.Q., Huang, J.Z., Guo, L.Q., et al., 2012. Subdivision and Isotopic Age of Lengjiaxi Group in Hunan Province. Geology and Mineral Resources of South China, 28(1): 20-26(in Chinese with English abstract).
      Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
      Tian, Y., Xie, G.G., Wang, L.Z., et al., 2015a. Provenance and Tectonic Settings of Triassic Xujiahe Formation in Qiyueshan Area, Southwest Hubei: Evidences from Petrology, Geochemistry and Zircon U-Pb Ages of Clastic Rocks. Earth Science, 40(12): 2021-2036(in Chinese with English abstract).
      Tian, Y., Zhao, X.M., Wang, L.Z., et al., 2015b. Geochemistry of Clastic Rocks from the Triassic Xujiahe Formation, Lichuan Area, Southwestern Hubei: Implications for Weathering, Provenance and Tectonic Setting. Acta Petrologica Sinica, 31(1): 261-272(in Chinese with English abstract).
      Wang, J.Q., Shu, L.S., Santosh, M., 2017. U-Pb and Lu-Hf Isotopes of Detrital Zircon Grains from Neoproterozoic Sedimentary Rocks in the Central Jiangnan Orogen, South China: Implications for Precambrian Crustal Evolution. Precambrian Research, 294: 175-188. https://doi.org/10.1016/j.precamres.2017.03.025
      Wang, W., Cawood, P.A., Pandit, M.K., et al., 2019a. No Collision between Eastern and Western Gondwana at Their Northern Extent. Geology, 47(4): 308-321. https://doi.org/10.1130/g45745.1
      Wang, Y.J., Zhang, Y.Z., Cawood, P.A., et al., 2019b. Early Neoproterozoic Assembly and Subsequent Rifting in South China: Revealed from Mafic and Ultramafic Rocks, Central Jiangnan Orogen. Precambrian Research, 331: 105367. https://doi.org/10.1016/j.precamres.2019.105367
      Wang, W., Zhou, M.F., 2012. Sedimentary Records of the Yangtze Block (South China) and Their Correlation with Equivalent Neoproterozoic Sequences on Adjacent Continents. Sedimentary Geology, 265/266: 126-142. https://doi.org/10.1016/j.sedgeo.2012.04.003
      Wang, W., Zhou, M.F., 2013. Petrological and Geochemical Constraints on Provenance, Paleoweathering, and Tectonic Setting of the Neoproterozoic Sedimentary Basin in the Eastern Jiangnan Orogen, South China. Journal of Sedimentary Research, 83(11): 974-993. https://doi.org/10.2110/jsr.2013.74
      Wang, W., Zhou, M.F., Yan, D.P., et al., 2013a. Detrital Zircon Record of Neoproterozoic Active-Margin Sedimentation in the Eastern Jiangnan Orogen, South China. Precambrian Research, 235: 1-19. https://doi.org/10.1016/j.precamres.2013.05.013.
      Wang, Y.J., Zhang, A.M., Cawood, P.A., et al., 2013b. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-Back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343-371. https://doi.org/10.1016/j.precamres.2013.03.020
      Wang, X.L., Zhao, G.C., Zhou, J.C., et al., 2008. Geochronology and Hf Isotopes of Zircon from Volcanic Rocks of the Shuangqiaoshan Group, South China: Implications for the Neoproterozoic Tectonic Evolution of the Eastern Jiangnan Orogen. Gondwana Research, 14(3): 355-367. https://doi.org/10.1016/j.gr.2008.03.001.
      Wang, X.L., Zhou, J.C., Chen, X., et al., 2017. Formation and Evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735 (in Chinese with English abstract).
      Wang, Z.Q., Gao, L.Z., Ding, X.Z., et al., 2012. Tectonic Environment of the Metamorphosed Basement in the Jiangnan Orogen and Its Evolutional Features. Geological Review, 58(3): 401-413(in Chinese with English abstract).
      Xue, E.K., Wang, W., Huang, S.F., et al., 2019. Detrital Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry of Neoproterozoic-Cambrian Successions in the Cathaysia Block of South China Block: Implications on Paleogeographic Reconstruction in Supercontinent. Gondwana Research, 331: 105348. https://doi.org/10.1016/j.precamres.2019.105348.
      Yang, C., Li, X.H., Wang, X.C., et al., 2015. Mid-Neoproterozoic Angular Unconformity in the Yangtze Block Revisited: Insights from Detrital Zircon U-Pb Age and Hf-O Isotopes. Precambrian Research, 266: 165-178. https://doi.org/10.1016/j.precamres.2015.05.016.
      Yang, X., Zhang, Y.Z., Cui, X., et al., 2020. Geochemistry and Detrital Zircon U-Pb Ages of Sedimentary Rocks from Neoproterozoic Lengjiaxi Group in NE Hunan Province. Earth Science, 45(9): 3461-3474 (in Chinese with English abstract).
      Yao, J.L., Shu, L.S., Cawood, P.A., et al., 2017. Constraining Timing and Tectonic Implications of Neoproterozoic Metamorphic Event in the Cathaysia Block, South China. Precambrian Research, 293: 1-12. https://doi.org/10.1016/j.precamres.2017.01.032
      Zhang, H., Xie, Y., Zhang, C.H., et al., 2013. A Discussion on the Sedimentary Characteristics and Structural Properties of Lengjiaxi Group in the West Part of Jiangnan Orogenic Belt. Earth Science Frontiers, 20(6): 269-281 (in Chinese with English abstract).
      Zhang, K.X., Xu, Y.D., He, W.H., et al., 2018. The Pattern of Early Neoproterozoic Ocean and Blocks in China. Earth Science, 43(11): 3837-3852 (in Chinese with English abstract).
      Zhang, Y.Z., Wang, Y.J., 2020. Early Neoproterozoic Continental Arc System at the Central Jiangnan Orogen, South China: Geochronological and Geochemical Constraints on the Key Igneous Rock-Association. GSA Bulletin, 132: 638-654. https://doi.org/10.1130/B35221.1
      Zhang, Y.Z., Wang, Y.J., Geng, H.Y., et al., 2013. Early Neoproterozoic (∼850 Ma) Back-Arc Basin in the Central Jiangnan Orogen (Eastern South China): Geochronological and Petrogenetic Constraints from Meta-Basalts. Precambrian Research, 231: 325-342. https://doi.org/10.1016/j.precamres.2013.03.016
      Zhang, Y.Z., Wang, Y.J., Zhang, Y.H., et al., 2015. Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks: Evidence from the Cangshuipu Group and Associated Rocks along the Central Jiangnan Orogen, South China. Precambrian Research, 269: 18-30. https://doi.org/10.1016/j.precamres.2015.08.003
      Zhao, G.C., 2015. Jiangnan Orogen in South China: Developing from Divergent Double Subduction. Gondwana Research, 27(3): 1173-1180. https://doi.org/10.1016/j.gr.2014.09.004
      Zhao, G.C., Cawood, P.A., 2012. Precambrian Geology of China. Precambrian Research, 222/223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017
      Zhou, M.F., Ma, Y.X., Yan, D.P., et al., 2006. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 144(1-2): 19-38. https://doi.org/10.1016/j.precamres.2005.11.002
      柏道远, 李银敏, 钟响, 等, 2018. 湖南NW向常德-安仁断裂的地质特征、活动历史及构造性质. 地球科学, 43(7): 2496-2517. doi: 10.3799/dqkx.2018.571
      车勤建, 伍光英, 唐晓珊, 等, 2005. 湘东北中元古代冷家溪群的解体及其地质意义. 华南地质与矿产, 21(1): 47-53, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200501008.htm
      陈旭, 戎嘉余, Rowley, D.B., 等, 1995. 对华南早古生代板溪洋的质疑. 地质论评, 41(3): 389-400. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199505000.htm
      冯连君, 储雪蕾, 张启锐, 等, 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘, 10(4): 539-544. doi: 10.3321/j.issn:1005-2321.2003.04.019
      高林志, 陈峻, 丁孝忠, 等, 2011. 湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄: 对武陵运动的制约. 地质通报, 30(7): 1001-1008. doi: 10.3969/j.issn.1671-2552.2011.07.001
      高林志, 杨明桂, 丁孝忠, 等, 2008. 华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄: 对江南新元古代造山带演化的制约. 地质通报, 27(10): 1744-1751. doi: 10.3969/j.issn.1671-2552.2008.10.017
      顾雪祥, 刘建明, Oskar Schulz, 等, 2003. 江南造山带雪峰隆起区元古宙浊积岩沉积构造背景的地球化学制约. 地球化学, 32(5): 406-426. doi: 10.3321/j.issn:0379-1726.2003.05.002
      郭令智, 1996. 江南中-新元古代岛弧的运动学和动力学. 高校地质学报, 2(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX601.000.htm
      马铁球, 陈立新, 柏道远, 等, 2009. 湘东北新元古代花岗岩体锆石SHRIMP U-Pb年龄及地球化学特征. 中国地质, 36(1): 65-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901007.htm
      孟庆秀, 张健, 耿建珍, 等, 2013. 湘中地区冷家溪群和板溪群锆石U-Pb年龄、Hf同位素特征及对华南新元古代构造演化的意义. 中国地质, 40(1): 191-216. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201301016.htm
      邱啸飞, 凌文黎, 柳小明, 2014. 扬子陆核与神农架地块中元古代相互关系: 来自锆石U-Pb年代学和Hf同位素的约束. 地质科技情报, 33(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402002.htm
      舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm
      孙海清, 黄建中, 郭乐群, 等, 2012. 湖南冷家溪群划分及同位素年龄约束. 华南地质与矿产, 28(1): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201201004.htm
      田洋, 谢国刚, 王令占, 等, 2015a. 鄂西南齐岳山须家河组物源及构造背景: 来自岩石学、地球化学和锆石年代学的制约. 地球科学, 40(12): 2021-2036. doi: 10.3799/dqkx.2015.180
      田洋, 赵小明, 王令占, 等, 2015b. 鄂西南利川三叠纪须家河组地球化学特征及其对风化、物源与构造背景的指示. 岩石学报, 31(1): 261-272. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501019.htm
      王孝磊, 周金城, 陈昕, 等, 2017. 江南造山带的形成与演化. 矿物岩石地球化学通报, 36(5): 714-735. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201705004.htm
      王自强, 高林志, 丁孝忠, 等, 2012. "江南造山带"变质基底形成的构造环境及演化特征. 地质论评, 58(3): 401-413. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201203002.htm
      杨雪, 张玉芝, 崔翔, 等, 2020. 湘东北新元古代冷家溪群沉积岩的地球化学特征和碎屑锆石U-Pb年代学. 地球科学, 45(9): 3461-3474. doi: 10.3799/dqkx.2019.052
      张恒, 谢莹, 张传恒, 等, 2013. 江南造山带西段冷家溪群沉积地质特征及构造属性探讨. 地学前缘, 20(6): 269-281. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201306035.htm
      张克信, 徐亚东, 何卫红, 等, 2018. 中国新元古代青白口纪(1 000~820 Ma)洋陆分布. 地球科学, 43(11): 3837-3852. doi: 10.3799/dqkx.2018.339
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(3)

      Article views (2153) PDF downloads(107) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return