• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 6
    Jun.  2021
    Turn off MathJax
    Article Contents
    Fu Lulu, Xiao Yilin, Zhang Xingliang, Wang Yangyang, Tan Dongbo, 2021. Preliminary Definition of Li Isotope Compositions on Surficial Environmental Processes Associated with Archean Seawater. Earth Science, 46(6): 2073-2082. doi: 10.3799/dqkx.2020.108
    Citation: Fu Lulu, Xiao Yilin, Zhang Xingliang, Wang Yangyang, Tan Dongbo, 2021. Preliminary Definition of Li Isotope Compositions on Surficial Environmental Processes Associated with Archean Seawater. Earth Science, 46(6): 2073-2082. doi: 10.3799/dqkx.2020.108

    Preliminary Definition of Li Isotope Compositions on Surficial Environmental Processes Associated with Archean Seawater

    doi: 10.3799/dqkx.2020.108
    • Received Date: 2020-03-09
    • Publish Date: 2021-06-15
    • In this study it attempts to use the Li isotope geochemistry to preliminarily limit the surficial environmental processes associated with Archean seawater. It performed Li isotope analysis on marine carbonate samples from the Kaapvaal craton in South Africa and finds that the carbonate shows light Li compositions of~+1‰ during the period of 3.0-2.9 Ga, and increase of +7‰ to +10‰ during the period of 2.6-2.5 Ga. Through inversion calculation, the Li isotope compositions of seawater in the two periods are~+12‰ and~+ 20‰, respectively, which are significantly lower than modern seawater (~+31‰). However, the δ7Li value of seawater during 2.6-2.5 Ga is more than 8‰ higher than that at 3.0-2.9 Ga. As an effective tracer for continental weathering of silicate rocks, Archean seawater shows relatively low δ7Li values, which indicates that the surficial weathering at that age was dominated by the dissolution of source rocks, and secondary minerals were rarely formed. During 3.0-2.5 Ga, the decrease in the overall temperature of the seawater and the increase in the formation of secondary minerals may jointly lead to an increase in the seawater δ7Li value during Late Archean. The study of Li isotopes of Archean carbonate can effectively invert the Li isotopic composition of paleoseawater, and provide new information for understanding the surficial environmental processes related to the Archean seawater.

       

    • loading
    • Allwood, A.C., Walter, M.R., Burch, I.W., et al., 2007.3.43 Billion-Year-Old Stromatolite Reef from the Pilbara Craton of Western Australia: Ecosystem-Scale Insights to Early Life on Earth. Precambrian Research, 158(3-4): 198-227. https://doi.org/10.1016/j.precamres.2007.04.013
      Berner, R.A., 1997. The Rise of Plants and Their Effect on Weathering and Atmospheric CO2. Science, 276(5312): 544-546. https://doi.org/10.1126/science.276.5312.544
      Bouchez, J., Gaillardet, J., von Blanckenburg, F., 2014. Weathering Intensity in Lowland River Basins: From the Andes to the Amazon Mouth. Procedia Earth and Planetary Science, 10: 280-286. https://doi.org/10.1016/j.proeps.2014.08.063
      Canfield, D.E., 2005. The Early History of Atmospheric Oxygen: Homage to Robert M. Garrels. Annual Review of Earth and Planetary Sciences, 33(1): 1-36. https://doi.org/10.1146/annurev.earth.33.092203.122711
      Chan, L.H., Edmond, J.M., Thompson, G., et al., 1992. Lithium Isotopic Composition of Submarine Basalts: Implications for the Lithium Cycle in the Oceans. Earth and Planetary Science Letters, 108(1-3): 151-160. https://doi.org/10.1016/0012-821x(92)90067-6 doi: 10.1016/0012-821X(92)90067-6
      Chen, F., Zhu, X.Q., 1985. Evolution of Archean Seawater pH and Its Relationship with Mineralization. Acta Sedimentologica Sinica, 3(4): 4-18(in Chinese with English abstract).
      Cohen, A.S., Coe, A.L., Harding, S.M., et al., 2004. Osmium Isotope Evidence for the Regulation of Atmospheric CO2 by Continental Weathering. Geology, 32(2): 157-160. https://doi.org/10.1130/g20158.1 doi: 10.1130/G20158.1
      Dellinger, M., Joshua, W.A., Paris, G., et al., 2018. The Li Isotope Composition of Marine Biogenic Carbonates: Patterns and Mechanisms. Geochimica et Cosmochimica Acta, 236: 315-335. https://doi.org/10.1016/j.gca.2018.03.014
      Evans, D.A., Beukes, N.J., Kirschvink, J.L., 1997. Low-Latitude Glaciation in the Palaeoproterozoic Era. Nature, 386: 262-266. https://doi.org/10.1038/386262a0
      Fang, Q., Hong, H.L., Zhao, L.L., et al., 2018. Climatic Implication of Authigenic Minerals Formed during Pedogenic Weathering Processes. Earth Science, 43(3): 753-769(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201803009.htm
      Frimmel, H.E., Groves, D.I., Kirk, J., et al., 2005. The Formation and Preservation of the Witwatersr and Goldfields, the World's Largest Gold Province. Society of Economic Geologists. 100: 769-797. https://doi.org/10.5382/av100.23 http://www.researchgate.net/publication/336543164_The_Formation_and_Preservation_of_the_Witwatersrand_Goldfields_the_World's_Largest_Gold_Province
      Gou, L.F., Jin, Z.D., He, M.Y., 2017. Using Lithium Isotopes Traces Continental Weathering: Progresses and Challenges. Journal of Earth Environment, 8(2): 89-102(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHJ201702001.htm
      Gouldey, J.C., Saltzman, M.R., Young, S.A., et al., 2010. Strontium and Carbon Isotope Stratigraphy of the Llandovery (Early Silurian): Implications for Tectonics and Weathering. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(3-4): 264-275. https://doi.org/10.1016/j.palaeo.2010.05.035
      Gumsley, A., Olsson, J., Söderlund, U., et al., 2015. Precise U-Pb Baddeleyite Age Dating of the Usushwana Complex, Southern Africa-Implications for the Mesoarchaean Magmatic and Sedimentological Evolution of the Pongola Supergroup, Kaapvaal Craton. Precambrian Research, 267: 174-185. https://doi.org/10.1016/j.precamres.2015.06.010
      Haqq-Misra, J.D., Domagal-Goldman, S.D., Kasting, P.J., et al., 2008. A Revised, Hazy Methane Greenhouse for the Archean Earth. Astrobiology, 8(6): 1127-1137. https://doi.org/10.1089/ast.2007.0197
      Hegner, E., Kröner, A., Hunt, P., 1994. A Precise U-Pb Zircon Age for the Archaean Pongola Supergroup Volcanics in Swaziland. Journal of African Earth Sciences, 18(4): 339-341. https://doi.org/10.1016/0899-5362(94)90072-8
      Hessler, A.M., Lowe, D.R., 2006. Weathering and Sediment Generation in the Archean: An Integrated Study of the Evolution of Siliciclastic Sedimentary Rocks of the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Research, 151(3-4): 185-210. https://doi.org/10.1016/j.precamres.2006.08.008
      Huang, L.M., Shao, M.A., Jia, X.X., et al., 2016. A Review of the Methods and Controls of Soil Weathering Rates. Advances in Earth Science, 31(10): 1021-1031(in Chinese with English abstract). http://www.researchgate.net/publication/315830466_A_review_of_the_methods_and_controls_of_soil_weathering_rates
      Li, D.Y., Xiao, Y.L., Wang, Y.Y., et al., 2019. Mg-Li-Fe-Cr Isotopic Fractionation during Subduction. Earth Science, 44(12): 4081-4085(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912016.htm
      Li, G.J., West, A.J., 2014. Evolution of Cenozoic Seawater Lithium Isotopes: Coupling of Global Denudation Regime and Shifting Seawater Sinks. Earth and Planetary Science Letters, 401: 284-293. https://doi.org/10.1016/j.epsl.2014.06.011
      Lin, J., Liu, Y.S., Hu, Z.C., et al., 2019. Accurate Measurement of Lithium Isotopes in Eleven Carbonate Reference Materials by MC-ICP-MS with Soft Extraction Mode and 1012 Ω Resistor High-Gain Faraday Amplifiers. Geostandards and Geoanalytical Research, 43(2): 277-289. https://doi.org/10.1111/ggr.12260
      Luo, G.M., Ono, S., Beukes, N.J., et al., 2016. Rapid Oxygenation of Earth's Atmosphere 2.33 Billion Years Ago. Science Advances, 2(5): e1600134. https://doi.org/10.1126/sciadv.1600134
      Marriott, C.S., Henderson, G.M., Belshaw, N.S., et al., 2004a. Temperature Dependence of δ7Li, δ44Ca and Li/Ca during Growth of Calcium Carbonate. Earth and Planetary Science Letters, 222(2): 615-624. https://doi.org/10.1016/j.epsl.2004.02.031
      Marriott, C.S., Henderson, G.M., Crompton, R., et al., 2004b. Effect of Mineralogy, Salinity, and Temperature on Li/Ca and Li Isotope Composition of Calcium Carbonate. Chemical Geology, 212(1-2): 5-15. https://doi.org/10.1016/j.chemgeo.2004.08.002
      Misra, S., Froelich, P.N., 2012. Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering. Science, 335(6070): 818-823. https://doi.org/10.1126/science.1214697
      Neaman, A., Chorover, J., Brantley, S.L., 2005. Element Mobility Patterns Record Organic Ligands in Soils on Early Earth. Geology, 33(2): 117. https://doi.org/10.1130/g20687.1 doi: 10.1130/G20687.1
      Rasmussen, B., Krapež, B., Muhling, J.R., et al., 2015. Precipitation of Iron Silicate Nanoparticles in Early Precambrian Oceans Marks Earth's First Iron Age. Geology, 43(4): 303-306. https://doi.org/10.1130/g36309.1 doi: 10.1130/G36309.1
      Robert, F., Chaussidon, M., 2006. A Palaeotemperature Curve for the Precambrian Oceans Based on Silicon Isotopes in Cherts. Nature, 443: 969-972. https://doi.org/10.1038/nature05239
      Rogers, J.J.W., Santosh, M., 2003. Supercontinents in Earth History. Gondwana Research, 6(3): 357-368. https://doi.org/10.1016/s1342-937x(05)70993-x doi: 10.1016/S1342-937X(05)70993-X
      Rudnick, R.L., Tomascak, P.B., Njo, H.B., et al., 2004. Extreme Lithium Isotopic Fractionation during Continental Weathering Revealed in Saprolites from South Carolina. Chemical Geology, 212(1-2): 45-57. https://doi.org/10.1016/j.chemgeo.2004.08.008
      Siahi, M., Hofmann, A., Hegner, E., et al., 2016. Sedimentology and Facies Analysis of Mesoarchaean Stromatolitic Carbonate Rocks of the Pongola Supergroup, South Africa. Precambrian Research, 278: 244-264. https://doi.org/10.1016/j.precamres.2016.03.004
      Siever, R., 1992. The Silica Cycle in the Precambrian. Geochimica et Cosmochimica Acta, 56(8): 3265-3272. https://doi.org/10.1016/0016-7037(92)90303-z doi: 10.1016/0016-7037(92)90303-Z
      Soomer, S., Somelar, P., Mänd, K., et al., 2019. High-CO2, Acidic and Oxygen-Starved Weathering at the Fennoscandian Shield at the Archean-Proterozoic Transition. Precambrian Research, 327: 68-80. https://doi.org/10.1016/j.precamres.2019.03.001
      Sumner, D.Y., Beukes, N.J., 2006. Sequence Stratigraphic Development of the Neoarchean Transvaal Carbonate Platform, Kaapvaal Craton, South Africa. South African Journal of Geology, 109(1-2): 11-22. https://doi.org/10.2113/gssajg.109.1-2.11
      Sun, H., Gao, Y.J., Xiao, Y.L., et al., 2016. Lithium Isotope Fractionation during Incongruent Melting: Constraints from Post-Collisional Leucogranite and Residual Enclaves from Bengbu Uplift, China. Chemical Geology, 439: 71-82. https://doi.org/10.1016/j.chemgeo.2016.06.004
      Sun, H., Xiao, Y.L., Gao, Y.J., et al., 2018. Rapid Enhancement of Chemical Weathering Recorded by Extremely Light Seawater Lithium Isotopes at the Permian-Triassic Boundary. Proceedings of the National Academy of Sciences, 115(15): 3782-3787. https://doi.org/10.1073/pnas.1711862115
      Taylor, H.L., Duivestein, I.J.K., Farkas, J., et al., 2019. Technical Note: Lithium Isotopes in Dolostone as a Palaeo-Environmental Proxy: An Experimental Approach. Climate of the Past Discussions, 15(2): 635-646. https://doi.org/10.5194/cp-15-635-2019
      Teng, F.Z., McDonough, W.F., Rudnick, R.L., et al., 2004. Lithium Isotopic Composition and Concentration of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 68(20): 4167-4178. https://doi.org/10.1016/j.gca.2004.03.031
      Tomascak, P.B., 2004. Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences. Reviews in Mineralogy and Geochemistry, 55(1): 153-195. https://doi.org/10.2138/gsrmg.55.1.153
      Ushikubo, T., Kita, N.T., Cavosie, A.J., et al., 2008. Lithium in Jack Hills Zircons: Evidence for Extensive Weathering of Earth's Earliest Crust. Earth and Planetary Science Letters, 272(3-4): 666-676. https://doi.org/10.1016/j.epsl.2008.05.032
      von Strandmann, P.A.E.P., Desrochers, A., Murphy, M.J., et al., 2017. Global Climate Stabilisation by Chemical Weathering during the Hirnantian Glaciation. Geochemical Perspectives Letters, 3: 230-237. https://doi.org/10.7185/geochemlet.172 http://ora.ox.ac.uk/objects/uuid:93c031fb-e00b-4ac5-b3a6-4323e9f75f42
      von Strandmann, P.A.E.P., Jenkyns, H.C., Woodfine, R.G., 2013. Lithium Isotope Evidence for Enhanced Weathering during Oceanic Anoxic Event 2. Nature Geoscience, 6(8): 668-672. https://doi.org/10.1038/ngeo1875
      Wang, Q.L., Zhao, Z.Q., Liu, C.Q., et al., 2008. Progress in Geochemical Research of Lithium Isotope during Continental Weathering. Earth Science Frontiers, 15(6): 332-337(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200806042.htm
      Zahnle, K., Claire, M., Catling, D., 2006. The Loss of Mass-Independent Fractionation in Sulfur Due to a Palaeoproterozoic Collapse of Atmospheric Methane. Geobiology, 4(4): 271-283. https://doi.org/10.1111/j.1472-4669.2006.00085.x
      陈福, 朱笑青, 1985. 太古代海水pH值的演化及其和成矿作用的关系. 沉积学报, 3(4): 4-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198504000.htm
      方谦, 洪汉烈, 赵璐璐, 等, 2018. 风化成土过程中自生矿物的气候指示意义. 地球科学, 43(3): 753-769. doi: 10.3799/dqkx.2018.905
      苟龙飞, 金章东, 贺茂勇, 2017. 锂同位素示踪大陆风化: 进展与挑战. 地球环境学报, 8(2): 89-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201702001.htm
      黄来明, 邵明安, 贾小旭, 等, 2016. 土壤风化速率测定方法及其影响因素研究进展. 地球科学进展, 31(10): 1021-1031. doi: 10.11867/j.issn.1001-8166.2016.10.1021
      李东永, 肖益林, 王洋洋, 等, 2019. 板块俯冲过程中的Mg-Li-Fe-Cr同位素分馏. 地球科学, 44(12): 4081-4085. doi: 10.3799/dqkx.2019.255
      汪齐连, 赵志琦, 刘丛强, 等, 2008. 大陆风化过程的锂同位素地球化学研究进展. 地学前缘, 15(6): 332-337. doi: 10.3321/j.issn:1005-2321.2008.06.039
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(1)

      Article views (1458) PDF downloads(80) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return