Citation: | Deng Qi, Wang Zhengjiang, Ren Guangming, Cui Xiaozhuang, Cao Huawen, Ning Kuobu, Ren Fei, 2020. Identification of the ~2.09 Ga and ~1.76 Ga Granitoids in the Northwestern Yangtze Block: Records of the Assembly and Break-Up of Columbia Supercontinent. Earth Science, 45(9): 3295-3312. doi: 10.3799/dqkx.2020.182 |
Berman, R. G., Pehrsson, S., Davis, W. J., et al., 2013. The Arrowsmith Orogeny:Geochronological and Thermobarometric Constraints on Its Extent and Tectonic Setting in the Rae Craton, with Implications for Pre-Nuna Supercontinent Reconstruction. Precambrian Research, 232:44-69. https://doi.org/10.1016/j.precamres.2012.10.015
|
Campbell, I. H., Allen, C. M., 2008. Formation of Supercontinents Linked to Increases in Atmospheric Oxygen. Nature Geoscience, 1(8):554. https://doi.org/10.1038/ngeo259
|
Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186:173-194. https://doi.org/10.1016/j.earscirev.2017.06.001
|
Chappell, B. W., White, A. J. R., 1992. I-and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2):1-26. https://doi.org/10.1017/s0263593300007720
|
Chappell, B. W., White, A. J. R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6):1111-1138. https://doi.org/10.1093/petrology/28.6.1111
|
Chen, Z. H., Xing, G. F., 2016. Geochemical and Zircon U-Pb-Hf-O Isotopic Evidence for a Coherent Paleoproterozoic Basement Beneath the Yangtze Block, South China. Precambrian Research, 279:81-90. https://doi.org/10.1016/j.precamres.2016.04.002
|
Cui, X. Z., Wang, J., Ren, G. M., et al., 2020. Paleoproterozoic Tectonic Evolution of the Yangtze Block:New Evidence from Ca. 2.36 to 2.22 Ga Magmatism and 1.96 Ga Metamorphism in the Cuoke Complex, SW China. Precambrian Research, 337:105525. https://doi.org/10.1016/j.precamres.2019.105525
|
Cui, X. Z., Wang, J., Sun, Z. M., et al., 2019. Early Paleoproterozoic (Ca. 2.36 Ga) Post-Collisional Granitoids in Yunnan, SW China:Implications for Linkage between Yangtze and Laurentia in the Columbia Supercontinent. Journal of Asian Earth Sciences, 169:308-322. https://doi.org/10.1016/j.jseaes.2018.10.026
|
Deng, Q., Wang, J., Wang, Z. J., et al., 2016. Middle Neoproterozoic Magmatic Activities and Their Constraints on Tectonic Evolution of the Jiangnan Orogen. Geotectonica et Metallogenia, 40(4):753-771 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201604010
|
Deng, Q., Wang, Z. J., Wang, J., et al., 2017. Discovery of the Baiyu~1.79 Ga A-Type Granite in the Beiba Area of the Northwestern Margin of Yangtze Block:Constraints on Tectonic Evolution of South China. Acta Geologica Sinica, 91(7):1454-1466 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201707005.htm
|
Dong, S. W., Zhang, Y. Q., Gao, R., et al., 2015. A Possible Buried Paleoproterozoic Collisional Orogen Beneath Central South China:Evidence from Seismic-Reflection Profiling. Precambrian Research, 264:1-10. https://doi.org/10.1016/j.precamres.2015.04.003
|
Drummond, M. S., Defant, M. J., 1990. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting:Archean to Modern Comparisons. Journal of Geophysical Research Atmospheres, 95(B13):21503. https://doi.org/10.1029/jb095ib13p21503
|
Eglington, B. M., Pehrsson, S. J., Ansdell, K. M., et al., 2013. A Domain-Based Digital Summary of the Evolution of the Palaeoproterozoic of North America and Greenland and Associated Unconformity-Related Uranium Mineralization. Precambrian Research, 232:4-26. https://doi.org/10.1016/j.precamres.2013.01.021
|
Ernst, R. E., Wingate, M. T. D., Buchan, K. L., et al., 2008. Global Record of 1 600-700 Ma Large Igneous Provinces (LIPs):Implications for the Reconstruction of the Proposed Nuna (Columbia) and Rodinia Supercontinents. Precambrian Research, 160(1-2):159-178. https://doi.org/10.1016/j.precamres.2007.04.019
|
Evans, D. A. D., Mitchell, R. N., 2011. Assembly and Breakup of the Core of Paleoproterozoic-Mesoproterozoic Supercontinent Nuna. Geology, 39(5):443-446. https://doi.org/10.1130/G31654.1
|
Geng, Y. S., Shen, Q. H., Du, L. L., et al., 2016. Regional Metamorphism and Continental Growth and Assembly in China. Acta Petrologica Sinica, 32(9):2579-2608 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201609001
|
Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5-6):46. https://doi.org/10.1007/s00410-015-1199-3
|
Guo, J. W., Zheng, J. P., Ping, X. Q., et al., 2018. Paleoproterozoic Porphyries and Coarse-Grained Granites Manifesting a Vertical Hierarchical Structure of Archean Continental Crust Beneath the Yangtze Craton. Precambrian Research, 314:288-305. https://doi.org/10.1016/j.precamres.2018.06.012
|
Han, Q. S., Peng, S. B., 2020. Paleoproterozoic Subduction within the Yangtze Craton:Constraints from Nb-Enriched Mafic Dikes in the Kongling Complex. Precambrian Research, 340:105634. https://doi.org/10.1016/j.precamres.2020.105634
|
Han, Q. S., Peng, S. B., Kusky, T., et al., 2017. A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China:Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 293:13-38. https://doi.org/10.1016/j.precamres.2017.03.004
|
Han, Q. S., Peng, S. B., Polat, A., et al., 2018. A Ca. 2.1 Ga Andean-Type Margin Built on Metasomatized Lithosphere in the Northern Yangtze Craton, China:Evidence from High-Mg Basalts and Andesites. Precambrian Research, 309:309-324. https://doi.org/10.1016/j.precamres.2017.05.015
|
Han, Q. S., Peng, S. B., Polat, A., et al., 2019. Petrogenesis and Geochronology of Paleoproterozoic Magmatic Rocks in the Kongling Complex:Evidence for a Collisional Orogenic Event in the Yangtze Craton. Lithos, 342-343:513-529. https://doi.org/10.1016/j.lithos.2019.05.015
|
Hoffman, P. F., 1991. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out?. Science, 252(5011):1409-1412. https://doi.org/10.1126/science.252.5011.1409
|
Hou, L., Ding, J., Deng, J., et al., 2015. Geology, Geochronology, and Geochemistry of the Yinachang Fe-Cu-Au-REE Deposit of the Kangdian Region of SW China:Evidence for a Paleo-Mesoproterozoic Tectono-Magmatic Event and Associated IOCG Systems in the Western Yangtze Block. Journal of Asian Earth Sciences, 103:129-149. https://doi.org/10.1016/j.jseaes.2014.09.016
|
Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9):1391-1399. https://doi.org/10.1039/C2JA30078H
|
Huang, M. D., Cui, X. Z., Cheng, A. G., et al., 2019.Late Paleoproterozoic A-Type Granitic Rocks in the Northern Yangtze Block:Evidence for Breakup of the Columbia Supercontinent. Acta Geologica Sinica, 93(3):565-584 (in Chinese with English abstract). http://www.researchgate.net/publication/333558938_Late_Paleoproterozoic_A-type_granitic_rocks_in_the_northern_Yangtze_Block_Implications_for_breakup_of_the_Columbia_supercontinent
|
Hui, B., Dong, Y. P., Cheng, C., et al., 2017. Zircon U-Pb Chronology, Hf Isotope Analysis and Whole-Rock Geochemistry for the Neoarchean-Paleoproterozoic Yudongzi Complex, Northwestern Margin of the Yangtze Craton, China. Precambrian Research, 301:65-85. https://doi.org/10.1016/j.precamres.2017.09.003
|
Hui, B., Dong, Y. P., Zhang, F. F., et al., 2019. Geochronology and Geochemistry of Ca. 2.48 Ga Granitoid Gneisses from the Yudongzi Complex in the North-Western Yangtze Block, China. Geological Journal, 54(2):879-896. https://doi.org/10.1002/gj.3396
|
King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3):371-391. https://doi.org/10.1093/petroj/38.3.371
|
Kou, C. H., Zhang, Z. C., Santosh, M., et al., 2017. Oldest Volcanic-Hosted Submarine Iron Ores in South China:Evidence from Zircon U-Pb Geochronology and Geochemistry of the Paleoproterozoic Dahongshan Iron Deposit. Gondwana Research, 49:182-204. https://doi.org/10.1016/j.gr.2017.05.016
|
Lee, C. T. A., Leeman, W. P., Canil, D., et al., 2005. Similar V/Sc Systematics in MORB and Arc Basalts:Implications for the Oxygen Fugacities of Their Mantle Source Regions. Journal of Petrology, 46(11):2313-2336. https://doi.org/10.1093/petrology/egi056
|
Li, L. M., Lin, S. F., Davis, D. W., et al., 2014. Geochronology and Geochemistry of Igneous Rocks from the Kongling Terrane:Implications for Mesoarchean to Paleoproterozoic Crustal Evolution of the Yangtze Block. Precambrian Research, 255:30-47. https://doi.org/10.1016/j.precamres.2014.09.009
|
Li, Q. W., Zhao, J. H., Wang, W., 2019. Ca. 2.0 Ga Mafic Dikes in the Kongling Complex, South China:Implications for the Reconstruction of Columbia. Journal of Asian Earth Sciences, 169:323-335. https://doi.org/10.1016/j.jseaes.2018.09.022
|
Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?. Lithos, 96(1-2):186-204. https://doi.org/10.1016/j.lithos.2006.09.018
|
Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia:A Synthesis. Precambrian Research, 160(1-2):179-210. https://doi.org/10.1016/j.precamres.2007.04.021
|
Ling, W. L., 1996. Isotopic Geochronology and Crustal Growth of Proterozoic Basement along the Northern Margin of Yangtze Craton:Ⅰ. Houhe Group and Xixiang Group. Earth Science, 21(5):491-494 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX605.007.htm
|
Ling, W. L., Gao, S., Cheng, J. P., et al., 2006. Neoproterozoic Magmatic Events within the Yangtze Continental Interior and Along Its Northern Margin and Their Tectonic Implication:Constraint from the ELA-ICPMS U-Pb Geochronology of Zircons from the Huangling and Hannan Complexes. Acta Petrologica Sinica, 22(2):387-396 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200602011.htm
|
Ling, W. L., Gao, S., Zhang, B. R., et al., 1997. Early Precambrian Continental Crust Evolution at the Northern Margin of Yangtze Craton:Constrain from the Elemental and Isotopic Geochemical Study of Houhe Complex. Journal of Mineralogy and Petrology, 17(4):26-32 (in Chinese with English abstract). http://www.researchgate.net/publication/296128876_Early_Precambrian_continental_crust_evolution_at_the_northern_margin_of_Yangtze_craton_constrain_from_the_elemental_and_isotopic_geochemical_study_of_Houhe_complex
|
Ling, W. L., Gao, S., Zhang, B. R., et al., 2001. The Recognizing of Ca. 1.95 Ga Tectono-Thermal Event in Kongling Nucleus and Its Significance for the Evolution of Yangtze Block, South China. Chinese Science Bulletin, 46(4):326-329. https://doi.org/10.1007/bf03187196
|
Ling, W. L., Gao, S., Zhang, B. R., et al., 2003. Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China:Implications for Amalgamation and Break-Up of the Rodinia Supercontinent. Precambrian Research, 122(1-4):111-140. https://doi.org/10.1016/S0301-9268(02)00222-X
|
Liu, D. Y., Jian, P., Zhang, Q., et al., 2003. SHRIMP Dating of Adakites in the Tulingkai Ophiolite, Inner Mongolia:Evidence for the Early Paleozoic Subduction. Acta Geologica Sinica, 77(3):317-327 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200303004
|
Liu, K., Lu, G. M., Wang, Z. Z., et al., 2019. The Paleoproterozoic Bimodal Magmatism in the SW Yangtze Block:Implications for Initial Breakup of the Columbia Supercontinent. Lithos, 332-333:23-38. https://doi.org/10.1016/j.lithos.2019.02.021
|
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
Lu, G. M., Wang, W., Ernst, R. E., et al., 2019. Petrogenesis of Paleo-Mesoproterozoic Mafic Rocks in the Southwestern Yangtze Block of South China:Implications for Tectonic Evolution and Paleogeographic Reconstruction. Precambrian Research, 322:66-84. https://doi.org/10.1016/j.precamres.2018.12.019
|
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)1010635:TDOG > 2.3.CO; 2 doi: 10.1130/0016-7606(1989)1010635:TDOG>2.3.CO;2
|
Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and Some Implications for Crustal Evolution. Lithos, 79(1-2):1-24. https://doi.org/10.1016/j.lithos.2004.04.048
|
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
|
Næraa, T., Scherstén, A., Rosing, M. T., et al., 2012. Hafnium Isotope Evidence for a Transition in the Dynamics of Continental Growth 3.2 Gyr Ago. Nature, 485(7400):627-630. https://doi.org/10.1038/nature11140
|
Nam, T. N., Toriumi, M., Sano, Y., et al., 2003.2.9, 2.36, and 1.96 Ga Zircons in Orthogneiss South of the Red River Shear Zone in Viet Nam:Evidence from SHRIMP U-Pb Dating and Tectonothermal Implications. Journal of Asian Earth Sciences, 21(7):743-753. https://doi.org/10.1016/S1367-9120(02)00089-5
|
Nance, R. D., Murphy, J. B., Santosh, M., 2014. The Supercontinent Cycle:a Retrospective Essay. Gondwana Research, 25(1):4-29. https://doi.org/10.1016/j.gr.2012.12.026
|
Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
|
Peng, M., Wu, Y. B., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Chinese Science Bulletin, 54(6):1098-1104. https://doi.org/10.1007/s11434-008-0558-0
|
Qiu, X. F., Jiang, T., Zhao, X. M., et al., 2020. Baddeleyite U-Pb Geochronology and Geochemistry of Late Paleoproterozoic Mafic Dykes from the Kongling Complex of the Northern Yangtze Block, South China. Precambrian Research, 337:105537. https://doi.org/10.1016/j.precamres.2019.105537
|
Qiu, X. F., Yang, H. M., Lu, S. S., et al., 2015. Geochronological and Geochemical Study for the Paleoproterozoic A-Type Granite in the Nucleus of the Yangtze Craton and Its Tectonic Implication. Geoscience, 29(4):884-895 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201504018
|
Qiu, X. F., Yang, H. M., Zhao, X. M., et al., 2019. Neoarchean Granitic Gneissesinthe Kongling Complex, Yangtze Craton:Petrogenesis and TectonicImplications. Earth Science, 44(2):415-426 (in Chinese with English abstract).
|
Rogers, J. J. W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5(1):5-22. https://doi.org/10.1016/S1342-937X(05)70883-2
|
Sun, M., Chen, N. S., Zhao, G. C., et al., 2008. U-Pb Zircon and Sm-Nd Isotopic Study of the Huangtuling Granulite, Dabie-Sulu Belt, China:Implication for the Paleoproterozoic Tectonic History of the Yangtze Craton. American Journal of Science, 308(4):469-483. https://doi.org/10.2475/04.2008.03
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
Trail, D., Watson, E. B., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97:70-87. https://doi.org/10.1016/j.gca.2012.08.032
|
Wang, K., Dong, S. W., 2019. New Insights into Paleoproterozoic Tectonics of the Yangtze Block in the Context of Early Nuna Assembly:Possible Collisional Granitic Magmatism in the Zhongxiang Complex, South China. Precambrian Research, 334:105452. https://doi.org/10.1016/j.precamres.2019.105452
|
Wang, W., Cawood, P. A., Zhou, M. F., et al., 2016. Paleoproterozoic Magmatic and Metamorphic Events Link Yangtze to Northwest Laurentia in the Nuna Supercontinent. Earth and Planetary Science Letters, 433:269-279. https://doi.org/10.1016/j.epsl.2015.11.005
|
Wang, W., Lu, G. M., Huang, S. F., et al., 2019. Geological Evolution of the Yangtze Block in Paleo-to Meso-Proterozoic and Its Implication on the Reconstruction of the Columbia Supercontinent. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1):30-52 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH201901004.htm
|
Wang, W., Zhou, M. F., 2014. Provenance and Tectonic Setting of the Paleo-to Mesoproterozoic Dongchuan Group in the Southwestern Yangtze Block, South China:Implication for the Breakup of the Supercontinent Columbia. Tectonophysics, 610:110-127. https://doi.org/10.1016/j.tecto.2013.11.009
|
Wang, W., Zhou, M. F., Zhao, X. F., et al., 2014. Late Paleoproterozoic to Mesoproterozoic Rift Successions in SW China:Implication for the Yangtze Block-North Australia-Northwest Laurentia Connection in the Columbia Supercontinent. Sedimentary Geology, 309:33-47. https://doi.org/10.1016/j.sedgeo.2014.05.004
|
Wang, Z. J., Wang, J., Deng, Q., et al., 2015. Paleoproterozoic Ⅰ-Type Granites and Their Implications for the Yangtze Block Position in the Columbia Supercontinent:Evidence from the Lengshui Complex, South China. Precambrian Research, 263:157-173. https://doi.org/10.1016/j.precamres.2015.03.014
|
Wang, Z. Z., Guo, Y., Yang, B., et al., 2013. Discovery of the 1.73 Ga Haizi Anorogenic Type Granite in the Western Margin of Yangtze Craton, and Its Geological Significance. Acta Geologica Sinica, 87(7):931-942 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201307004&dbcode=CJFD&year=2013&dflag=pdfdown
|
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/BF00402202
|
Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001
|
Wu, Y. B., Gao, S., Gong, H. J., et al., 2009. Zircon U-Pb Age, Trace Element and Hf Isotope Composition of Kongling Terrane in the Yangtze Craton:Refining the Timing of Palaeoproterozoic High-Grade Metamorphism. Journal of Metamorphic Geology, 27(6):461-477. https://doi.org/10.1111/j.1525-1314.2009.00826.x
|
Wu, Y. B., Gao, S., Zhang, H. F., et al., 2012. Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Precambrian Research, 200/201/202/203:26-37. https://doi.org/10.1016/j.precamres.2011.12.015
|
Wu, Y. B., Zheng, Y. F., Gao, S., et al., 2008. Zircon U-Pb Age and Trace Element Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Rocks in the Dabie Orogen. Lithos, 101(3-4):308-322. https://doi.org/10.1016/j.lithos.2007.07.008
|
Wu, Y. B., Zhou, G. Y., Gao, S., et al., 2014. Petrogenesis of Neoarchean TTG Rocks in the Yangtze Craton and Its Implication for the Formation of Archean TTGs. Precambrian Research, 254:73-86. https://doi.org/10.1016/j.precamres.2014.08.004
|
Xiong, Q., Zheng, J. P., Yu, C. M., et al., 2009. Zircon U-Pb Age and Hf Isotope of Quanyishang A-Type Granite in Yichang:Signification for the Yangtze Continental Cratonization in Paleoproterozoic. Chinese Science Bulletin, 54(3):436-446. https://doi.org/10.1007/s11434-008-0401-7
|
Xiong, X. S., Gao, R., Wang, H. Y., et al., 2016. Frozen Subduction in the Yangtze Block:Insights from the Deep Seismic Profiling and Gravity Anomaly in East Sichuan Fold Belt. Earthquake Science, 29(2):61-70. https://doi.org/10.1007/s11589-016-0140-9
|
Yin, C. Q., Lin, S. F., Davis, D. W., et al., 2013.2.1-1.85 Ga Tectonic Events in the Yangtze Block, South China:Petrological and Geochronological Evidence from the Kongling Complex and Implications for the Reconstruction of Supercontinent Columbia. Lithos, 182-183:200-210. https://doi.org/10.1016/j.lithos.2013.10.012
|
Yu, J. H., Wang, L. J., O'Reilly, S. Y., et al., 2009. A Paleoproterozoic Orogeny Recorded in a Long-Lived Cratonic Remnant (Wuyishan Terrane), Eastern Cathaysia Block, China. Precambrian Research, 174(3-4):347-363. https://doi.org/10.1016/j.precamres.2009.08.009
|
Zhai, Q. G., Jahn, B. M., Wang, J., et al., 2016. Oldest Paleo-Tethyan Ophiolitic Mélange in the Tibetan Plateau. Geological Society of America Bulletin, 128(3-4):355-373. https://doi.org/10.1130/b31296.1
|
Zhang, L. J., Ma, C. Q., Wang, L. X., et al., 2011. Discovery of Paleoproterozoic Rapakivi Granite on the Northern Margin of the Yangtze Block and Its Geological Significance. Chinese Science Bulletin, 56(3):306-318. https://doi.org/10.1007/s11434-010-4236-7
|
Zhang, S. B., Wu, P., Zheng, Y. F., 2019. Mafic Magmatic Records of Rodinia Amalgamation in the Northern Margin of the South China Block. Earth Science, 44(12):4157-4166 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201912026
|
Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 151(3-4):265-288. https://doi.org/10.1016/j.precamres.2006.08.009
|
Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222-223:13-54. https://doi.org/10.1016/j.precamres.2012.09.017
|
Zhao, G. C., Sun, M., Wilde, S. A., 2002. Reconstruction of a Pre-Rodinia Supercontinent:New Advances and Perspectives. Chinese Science Bulletin, 47(19):1585-1588. https://doi.org/10.1007/BF03184102
|
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2004. A Paleo-Mesoproterozoic Supercontinent:Assembly, Growth and Breakup. Earth-Science Reviews, 67(1-2):91-123. https://doi.org/10.1016/j.earscirev.2004.02.003
|
Zhao, J. H., Zhou, M. F., 2009. Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China. Lithos, 107(3-4):152-168. https://doi.org/10.1016/j.lithos.2008.09.017
|
Zhou, G. Y., Wu, Y. B., Wang, H., et al., 2017. Petrogenesis of the Huashanguan A-Type Granite Complex and Its Implications for the Early Evolution of the Yangtze Block. Precambrian Research, 292:57-74. https://doi.org/10.1016/j.precamres.2017.02.005
|
Zhu, W. G., Bai, Z. J., Zhong, H., et al., 2017. The Origin of the C. 1.7 Ga Gabbroic Intrusion in the Hekou Area, SW China:Constraints from SIMS U-Pb Zircon Geochronology and Elemental and Nd Isotopic Geochemistry. Geological Magazine, 154(2):286-304. https://doi.org/10.1017/s0016756815001119
|
Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia:The Correlation of Early Neoproterozoic (Ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290:32-48. https://doi.org/10.1016/j.precamres.2016.12.010
|
邓奇, 王剑, 汪正江, 等, 2016.江南造山带新元古代中期(830~750 Ma)岩浆活动及对构造演化的制约.大地构造与成矿学, 40(4):753-771. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201604010
|
邓奇, 汪正江, 王剑, 等, 2017.扬子地块西北缘碑坝地区白玉~1.79 Ga A型花岗岩的发现及其对构造演化的制约.地质学报, 91(7):1454-1466. http://kns.cnki.net/KCMS/detail/detail.aspx?dbCode=CJFD&filename=DZXE201707005&tableName=CJFDPREP
|
耿元生, 沈其韩, 杜利林, 等, 2016.区域变质作用与中国大陆地壳的形成与演化.岩石学报, 32(9):2579-2608. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201609001
|
黄明达, 崔晓庄, 程爱国, 等, 2019.扬子北缘晚元古代A型花岗质岩:Columbia超大陆裂解的证据.地质学报, 93(3):565-584. http://www.geojournals.cn/dzxbe/ch/reader/view_abstract.aspx?file_no=2017376&flag=1
|
凌文黎, 1996.扬子克拉通北缘元古宙基底同位素地质年代学和地壳增生历史:I.后河群和西乡群.地球科学, 21(5):491-494. http://www.cnki.com.cn/Article/CJFDTotal-DQKX605.007.htm
|
凌文黎, 高山, 程建萍, 等, 2006.扬子陆核与陆缘新元古代岩浆事件对比及其构造意义——来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U-Pb同位素年代学的约束.岩石学报, 22(2):387-396. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200602011
|
凌文黎, 高山, 张本仁, 等, 1997.扬子克拉通北缘早前寒武纪地壳演化——后河杂岩元素和同位素地球化学限制.矿物岩石, 17(4):26-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700784253
|
刘敦一, 简平, 张旗, 等, 2003.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据.地质学报, 77(3):317-327. http://d.wanfangdata.com.cn/Periodical/dizhixb200303004
|
邱啸飞, 杨红梅, 卢山松, 等, 2015.扬子陆核古元古代A型花岗岩的年代学与地球化学研究及其构造意义.现代地质, 29(4):884-895. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201504018
|
邱啸飞, 杨红梅, 赵小明, 等, 2019.扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义.地球科学, 44(2):415-426. doi: 10.3799/dqkx.2018.198
|
王伟, 卢桂梅, 黄思访, 等, 2019.扬子陆块古-中元古代地质演化与Columbia超大陆重建.矿物岩石地球化学通报, 38(1):30-52. http://www.cnki.com.cn/Article/CJFDTotal-KYDH201901004.htm
|
王子正, 郭阳, 杨斌, 等, 2013.扬子克拉通西缘1.73 Ga非造山型花岗斑岩的发现及其地质意义.地质学报, 87(7):931-942. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201307003
|
吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001
|
张少兵, 吴鹏, 郑永飞, 2019.罗迪尼亚超大陆聚合在华南陆块北缘的镁铁质岩浆岩记录.地球科学, 44(12):4157-4166. doi: 10.3799/dqkx.2019.252
|
![]() |
![]() |