• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 9
    Sep.  2020
    Turn off MathJax
    Article Contents
    Deng Qi, Wang Zhengjiang, Ren Guangming, Cui Xiaozhuang, Cao Huawen, Ning Kuobu, Ren Fei, 2020. Identification of the ~2.09 Ga and ~1.76 Ga Granitoids in the Northwestern Yangtze Block: Records of the Assembly and Break-Up of Columbia Supercontinent. Earth Science, 45(9): 3295-3312. doi: 10.3799/dqkx.2020.182
    Citation: Deng Qi, Wang Zhengjiang, Ren Guangming, Cui Xiaozhuang, Cao Huawen, Ning Kuobu, Ren Fei, 2020. Identification of the ~2.09 Ga and ~1.76 Ga Granitoids in the Northwestern Yangtze Block: Records of the Assembly and Break-Up of Columbia Supercontinent. Earth Science, 45(9): 3295-3312. doi: 10.3799/dqkx.2020.182

    Identification of the ~2.09 Ga and ~1.76 Ga Granitoids in the Northwestern Yangtze Block: Records of the Assembly and Break-Up of Columbia Supercontinent

    doi: 10.3799/dqkx.2020.182
    • Received Date: 2020-05-06
    • Publish Date: 2020-09-15
    • The Yangtze Block preserves large quantities of Paleoproterozoic rocks which hold the evidence of the Columbia supercontinent cycle, however, its evolution from the assembly to break-up and relative location in the palaeosupercontinent, are still in dispute. In this study, we present an integrated dataset of whole-rock geochemistry, zircon U-Pb age and Lu-Hf isotope of the Mayuan and Baiyu granitoids in the Beiba area of the northwestern Yangtze Block. Zircon U-Pb dating reveals that the Mayuan granodiorite and the Baiyu K-feldspar granite were emplaced at ~2 090 Ma and ~1 760 Ma, respectively. Geochemically, the Mayuan granodiorite shows strongly peraluminous characteristics with depletion in Sr, Cr, Ni, enrichment in Y and Yb, relatively enriched in LREE and depleted in HFSE, and these features bear resemblance to those of cal-alkali granite; in addition, its zircon Lu-Hf isotopic analyses yield positive εHf(t) values of +0.91 to +2.59. The Baiyu K-feldspar granite is alkali-rich and enriched in Sr, low Al, Mg, Mn and P, with A/CNK of 0.96-1.04; the trace elements show enrichment in Th, Na, Ta, Zr, Hf and depletion in Sr, Eu, with high total REE concentration, high LREE/HREE ratio, and strongly negative Eu anomalies; moreover, the granite has high HFSEs (Zr+Nb+Ce+Y=797×10-6-1 495×10-6) and 10 000×Ga/Al ratios (3.30-3.73). Together with high zircon saturation temperatures (897-939 ℃) from the K-feldspar granite, they are classified as A-type granites with negative εHf(t) values from -13.58 to -10.29. Integrated with the analysis of trace elements and oxygen fugacity of zircon and previous research results, the Mayuan 2 090-2 080 Ma granitoids were likely to be generated by remelting of both juvenile and old crustal components within an arc-related setting; the Baiyu 1 790-1 760 Ma K-feldspar granite may be derived from partial melting of ancient crustal materials within the intracontinental rift setting. And they are likely to be the responses to the assembly and break-up of the Columbia supercontinent. Taking account of geophysical data and magmatic-metamorphic events, it is suggested that the Yangtze Block was spatially linked to Laurentia in the Columbia supercontinent.

       

    • loading
    • Berman, R. G., Pehrsson, S., Davis, W. J., et al., 2013. The Arrowsmith Orogeny:Geochronological and Thermobarometric Constraints on Its Extent and Tectonic Setting in the Rae Craton, with Implications for Pre-Nuna Supercontinent Reconstruction. Precambrian Research, 232:44-69. https://doi.org/10.1016/j.precamres.2012.10.015
      Campbell, I. H., Allen, C. M., 2008. Formation of Supercontinents Linked to Increases in Atmospheric Oxygen. Nature Geoscience, 1(8):554. https://doi.org/10.1038/ngeo259
      Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186:173-194. https://doi.org/10.1016/j.earscirev.2017.06.001
      Chappell, B. W., White, A. J. R., 1992. I-and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2):1-26. https://doi.org/10.1017/s0263593300007720
      Chappell, B. W., White, A. J. R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6):1111-1138. https://doi.org/10.1093/petrology/28.6.1111
      Chen, Z. H., Xing, G. F., 2016. Geochemical and Zircon U-Pb-Hf-O Isotopic Evidence for a Coherent Paleoproterozoic Basement Beneath the Yangtze Block, South China. Precambrian Research, 279:81-90. https://doi.org/10.1016/j.precamres.2016.04.002
      Cui, X. Z., Wang, J., Ren, G. M., et al., 2020. Paleoproterozoic Tectonic Evolution of the Yangtze Block:New Evidence from Ca. 2.36 to 2.22 Ga Magmatism and 1.96 Ga Metamorphism in the Cuoke Complex, SW China. Precambrian Research, 337:105525. https://doi.org/10.1016/j.precamres.2019.105525
      Cui, X. Z., Wang, J., Sun, Z. M., et al., 2019. Early Paleoproterozoic (Ca. 2.36 Ga) Post-Collisional Granitoids in Yunnan, SW China:Implications for Linkage between Yangtze and Laurentia in the Columbia Supercontinent. Journal of Asian Earth Sciences, 169:308-322. https://doi.org/10.1016/j.jseaes.2018.10.026
      Deng, Q., Wang, J., Wang, Z. J., et al., 2016. Middle Neoproterozoic Magmatic Activities and Their Constraints on Tectonic Evolution of the Jiangnan Orogen. Geotectonica et Metallogenia, 40(4):753-771 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201604010
      Deng, Q., Wang, Z. J., Wang, J., et al., 2017. Discovery of the Baiyu~1.79 Ga A-Type Granite in the Beiba Area of the Northwestern Margin of Yangtze Block:Constraints on Tectonic Evolution of South China. Acta Geologica Sinica, 91(7):1454-1466 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201707005.htm
      Dong, S. W., Zhang, Y. Q., Gao, R., et al., 2015. A Possible Buried Paleoproterozoic Collisional Orogen Beneath Central South China:Evidence from Seismic-Reflection Profiling. Precambrian Research, 264:1-10. https://doi.org/10.1016/j.precamres.2015.04.003
      Drummond, M. S., Defant, M. J., 1990. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting:Archean to Modern Comparisons. Journal of Geophysical Research Atmospheres, 95(B13):21503. https://doi.org/10.1029/jb095ib13p21503
      Eglington, B. M., Pehrsson, S. J., Ansdell, K. M., et al., 2013. A Domain-Based Digital Summary of the Evolution of the Palaeoproterozoic of North America and Greenland and Associated Unconformity-Related Uranium Mineralization. Precambrian Research, 232:4-26. https://doi.org/10.1016/j.precamres.2013.01.021
      Ernst, R. E., Wingate, M. T. D., Buchan, K. L., et al., 2008. Global Record of 1 600-700 Ma Large Igneous Provinces (LIPs):Implications for the Reconstruction of the Proposed Nuna (Columbia) and Rodinia Supercontinents. Precambrian Research, 160(1-2):159-178. https://doi.org/10.1016/j.precamres.2007.04.019
      Evans, D. A. D., Mitchell, R. N., 2011. Assembly and Breakup of the Core of Paleoproterozoic-Mesoproterozoic Supercontinent Nuna. Geology, 39(5):443-446. https://doi.org/10.1130/G31654.1
      Geng, Y. S., Shen, Q. H., Du, L. L., et al., 2016. Regional Metamorphism and Continental Growth and Assembly in China. Acta Petrologica Sinica, 32(9):2579-2608 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201609001
      Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5-6):46. https://doi.org/10.1007/s00410-015-1199-3
      Guo, J. W., Zheng, J. P., Ping, X. Q., et al., 2018. Paleoproterozoic Porphyries and Coarse-Grained Granites Manifesting a Vertical Hierarchical Structure of Archean Continental Crust Beneath the Yangtze Craton. Precambrian Research, 314:288-305. https://doi.org/10.1016/j.precamres.2018.06.012
      Han, Q. S., Peng, S. B., 2020. Paleoproterozoic Subduction within the Yangtze Craton:Constraints from Nb-Enriched Mafic Dikes in the Kongling Complex. Precambrian Research, 340:105634. https://doi.org/10.1016/j.precamres.2020.105634
      Han, Q. S., Peng, S. B., Kusky, T., et al., 2017. A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China:Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 293:13-38. https://doi.org/10.1016/j.precamres.2017.03.004
      Han, Q. S., Peng, S. B., Polat, A., et al., 2018. A Ca. 2.1 Ga Andean-Type Margin Built on Metasomatized Lithosphere in the Northern Yangtze Craton, China:Evidence from High-Mg Basalts and Andesites. Precambrian Research, 309:309-324. https://doi.org/10.1016/j.precamres.2017.05.015
      Han, Q. S., Peng, S. B., Polat, A., et al., 2019. Petrogenesis and Geochronology of Paleoproterozoic Magmatic Rocks in the Kongling Complex:Evidence for a Collisional Orogenic Event in the Yangtze Craton. Lithos, 342-343:513-529. https://doi.org/10.1016/j.lithos.2019.05.015
      Hoffman, P. F., 1991. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out?. Science, 252(5011):1409-1412. https://doi.org/10.1126/science.252.5011.1409
      Hou, L., Ding, J., Deng, J., et al., 2015. Geology, Geochronology, and Geochemistry of the Yinachang Fe-Cu-Au-REE Deposit of the Kangdian Region of SW China:Evidence for a Paleo-Mesoproterozoic Tectono-Magmatic Event and Associated IOCG Systems in the Western Yangtze Block. Journal of Asian Earth Sciences, 103:129-149. https://doi.org/10.1016/j.jseaes.2014.09.016
      Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9):1391-1399. https://doi.org/10.1039/C2JA30078H
      Huang, M. D., Cui, X. Z., Cheng, A. G., et al., 2019.Late Paleoproterozoic A-Type Granitic Rocks in the Northern Yangtze Block:Evidence for Breakup of the Columbia Supercontinent. Acta Geologica Sinica, 93(3):565-584 (in Chinese with English abstract). http://www.researchgate.net/publication/333558938_Late_Paleoproterozoic_A-type_granitic_rocks_in_the_northern_Yangtze_Block_Implications_for_breakup_of_the_Columbia_supercontinent
      Hui, B., Dong, Y. P., Cheng, C., et al., 2017. Zircon U-Pb Chronology, Hf Isotope Analysis and Whole-Rock Geochemistry for the Neoarchean-Paleoproterozoic Yudongzi Complex, Northwestern Margin of the Yangtze Craton, China. Precambrian Research, 301:65-85. https://doi.org/10.1016/j.precamres.2017.09.003
      Hui, B., Dong, Y. P., Zhang, F. F., et al., 2019. Geochronology and Geochemistry of Ca. 2.48 Ga Granitoid Gneisses from the Yudongzi Complex in the North-Western Yangtze Block, China. Geological Journal, 54(2):879-896. https://doi.org/10.1002/gj.3396
      King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3):371-391. https://doi.org/10.1093/petroj/38.3.371
      Kou, C. H., Zhang, Z. C., Santosh, M., et al., 2017. Oldest Volcanic-Hosted Submarine Iron Ores in South China:Evidence from Zircon U-Pb Geochronology and Geochemistry of the Paleoproterozoic Dahongshan Iron Deposit. Gondwana Research, 49:182-204. https://doi.org/10.1016/j.gr.2017.05.016
      Lee, C. T. A., Leeman, W. P., Canil, D., et al., 2005. Similar V/Sc Systematics in MORB and Arc Basalts:Implications for the Oxygen Fugacities of Their Mantle Source Regions. Journal of Petrology, 46(11):2313-2336. https://doi.org/10.1093/petrology/egi056
      Li, L. M., Lin, S. F., Davis, D. W., et al., 2014. Geochronology and Geochemistry of Igneous Rocks from the Kongling Terrane:Implications for Mesoarchean to Paleoproterozoic Crustal Evolution of the Yangtze Block. Precambrian Research, 255:30-47. https://doi.org/10.1016/j.precamres.2014.09.009
      Li, Q. W., Zhao, J. H., Wang, W., 2019. Ca. 2.0 Ga Mafic Dikes in the Kongling Complex, South China:Implications for the Reconstruction of Columbia. Journal of Asian Earth Sciences, 169:323-335. https://doi.org/10.1016/j.jseaes.2018.09.022
      Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?. Lithos, 96(1-2):186-204. https://doi.org/10.1016/j.lithos.2006.09.018
      Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia:A Synthesis. Precambrian Research, 160(1-2):179-210. https://doi.org/10.1016/j.precamres.2007.04.021
      Ling, W. L., 1996. Isotopic Geochronology and Crustal Growth of Proterozoic Basement along the Northern Margin of Yangtze Craton:Ⅰ. Houhe Group and Xixiang Group. Earth Science, 21(5):491-494 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX605.007.htm
      Ling, W. L., Gao, S., Cheng, J. P., et al., 2006. Neoproterozoic Magmatic Events within the Yangtze Continental Interior and Along Its Northern Margin and Their Tectonic Implication:Constraint from the ELA-ICPMS U-Pb Geochronology of Zircons from the Huangling and Hannan Complexes. Acta Petrologica Sinica, 22(2):387-396 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200602011.htm
      Ling, W. L., Gao, S., Zhang, B. R., et al., 1997. Early Precambrian Continental Crust Evolution at the Northern Margin of Yangtze Craton:Constrain from the Elemental and Isotopic Geochemical Study of Houhe Complex. Journal of Mineralogy and Petrology, 17(4):26-32 (in Chinese with English abstract). http://www.researchgate.net/publication/296128876_Early_Precambrian_continental_crust_evolution_at_the_northern_margin_of_Yangtze_craton_constrain_from_the_elemental_and_isotopic_geochemical_study_of_Houhe_complex
      Ling, W. L., Gao, S., Zhang, B. R., et al., 2001. The Recognizing of Ca. 1.95 Ga Tectono-Thermal Event in Kongling Nucleus and Its Significance for the Evolution of Yangtze Block, South China. Chinese Science Bulletin, 46(4):326-329. https://doi.org/10.1007/bf03187196
      Ling, W. L., Gao, S., Zhang, B. R., et al., 2003. Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China:Implications for Amalgamation and Break-Up of the Rodinia Supercontinent. Precambrian Research, 122(1-4):111-140. https://doi.org/10.1016/S0301-9268(02)00222-X
      Liu, D. Y., Jian, P., Zhang, Q., et al., 2003. SHRIMP Dating of Adakites in the Tulingkai Ophiolite, Inner Mongolia:Evidence for the Early Paleozoic Subduction. Acta Geologica Sinica, 77(3):317-327 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200303004
      Liu, K., Lu, G. M., Wang, Z. Z., et al., 2019. The Paleoproterozoic Bimodal Magmatism in the SW Yangtze Block:Implications for Initial Breakup of the Columbia Supercontinent. Lithos, 332-333:23-38. https://doi.org/10.1016/j.lithos.2019.02.021
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Lu, G. M., Wang, W., Ernst, R. E., et al., 2019. Petrogenesis of Paleo-Mesoproterozoic Mafic Rocks in the Southwestern Yangtze Block of South China:Implications for Tectonic Evolution and Paleogeographic Reconstruction. Precambrian Research, 322:66-84. https://doi.org/10.1016/j.precamres.2018.12.019
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)1010635:TDOG > 2.3.CO; 2 doi: 10.1130/0016-7606(1989)1010635:TDOG>2.3.CO;2
      Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and Some Implications for Crustal Evolution. Lithos, 79(1-2):1-24. https://doi.org/10.1016/j.lithos.2004.04.048
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Næraa, T., Scherstén, A., Rosing, M. T., et al., 2012. Hafnium Isotope Evidence for a Transition in the Dynamics of Continental Growth 3.2 Gyr Ago. Nature, 485(7400):627-630. https://doi.org/10.1038/nature11140
      Nam, T. N., Toriumi, M., Sano, Y., et al., 2003.2.9, 2.36, and 1.96 Ga Zircons in Orthogneiss South of the Red River Shear Zone in Viet Nam:Evidence from SHRIMP U-Pb Dating and Tectonothermal Implications. Journal of Asian Earth Sciences, 21(7):743-753. https://doi.org/10.1016/S1367-9120(02)00089-5
      Nance, R. D., Murphy, J. B., Santosh, M., 2014. The Supercontinent Cycle:a Retrospective Essay. Gondwana Research, 25(1):4-29. https://doi.org/10.1016/j.gr.2012.12.026
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      Peng, M., Wu, Y. B., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Chinese Science Bulletin, 54(6):1098-1104. https://doi.org/10.1007/s11434-008-0558-0
      Qiu, X. F., Jiang, T., Zhao, X. M., et al., 2020. Baddeleyite U-Pb Geochronology and Geochemistry of Late Paleoproterozoic Mafic Dykes from the Kongling Complex of the Northern Yangtze Block, South China. Precambrian Research, 337:105537. https://doi.org/10.1016/j.precamres.2019.105537
      Qiu, X. F., Yang, H. M., Lu, S. S., et al., 2015. Geochronological and Geochemical Study for the Paleoproterozoic A-Type Granite in the Nucleus of the Yangtze Craton and Its Tectonic Implication. Geoscience, 29(4):884-895 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201504018
      Qiu, X. F., Yang, H. M., Zhao, X. M., et al., 2019. Neoarchean Granitic Gneissesinthe Kongling Complex, Yangtze Craton:Petrogenesis and TectonicImplications. Earth Science, 44(2):415-426 (in Chinese with English abstract).
      Rogers, J. J. W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5(1):5-22. https://doi.org/10.1016/S1342-937X(05)70883-2
      Sun, M., Chen, N. S., Zhao, G. C., et al., 2008. U-Pb Zircon and Sm-Nd Isotopic Study of the Huangtuling Granulite, Dabie-Sulu Belt, China:Implication for the Paleoproterozoic Tectonic History of the Yangtze Craton. American Journal of Science, 308(4):469-483. https://doi.org/10.2475/04.2008.03
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Trail, D., Watson, E. B., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97:70-87. https://doi.org/10.1016/j.gca.2012.08.032
      Wang, K., Dong, S. W., 2019. New Insights into Paleoproterozoic Tectonics of the Yangtze Block in the Context of Early Nuna Assembly:Possible Collisional Granitic Magmatism in the Zhongxiang Complex, South China. Precambrian Research, 334:105452. https://doi.org/10.1016/j.precamres.2019.105452
      Wang, W., Cawood, P. A., Zhou, M. F., et al., 2016. Paleoproterozoic Magmatic and Metamorphic Events Link Yangtze to Northwest Laurentia in the Nuna Supercontinent. Earth and Planetary Science Letters, 433:269-279. https://doi.org/10.1016/j.epsl.2015.11.005
      Wang, W., Lu, G. M., Huang, S. F., et al., 2019. Geological Evolution of the Yangtze Block in Paleo-to Meso-Proterozoic and Its Implication on the Reconstruction of the Columbia Supercontinent. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1):30-52 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH201901004.htm
      Wang, W., Zhou, M. F., 2014. Provenance and Tectonic Setting of the Paleo-to Mesoproterozoic Dongchuan Group in the Southwestern Yangtze Block, South China:Implication for the Breakup of the Supercontinent Columbia. Tectonophysics, 610:110-127. https://doi.org/10.1016/j.tecto.2013.11.009
      Wang, W., Zhou, M. F., Zhao, X. F., et al., 2014. Late Paleoproterozoic to Mesoproterozoic Rift Successions in SW China:Implication for the Yangtze Block-North Australia-Northwest Laurentia Connection in the Columbia Supercontinent. Sedimentary Geology, 309:33-47. https://doi.org/10.1016/j.sedgeo.2014.05.004
      Wang, Z. J., Wang, J., Deng, Q., et al., 2015. Paleoproterozoic Ⅰ-Type Granites and Their Implications for the Yangtze Block Position in the Columbia Supercontinent:Evidence from the Lengshui Complex, South China. Precambrian Research, 263:157-173. https://doi.org/10.1016/j.precamres.2015.03.014
      Wang, Z. Z., Guo, Y., Yang, B., et al., 2013. Discovery of the 1.73 Ga Haizi Anorogenic Type Granite in the Western Margin of Yangtze Craton, and Its Geological Significance. Acta Geologica Sinica, 87(7):931-942 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201307004&dbcode=CJFD&year=2013&dflag=pdfdown
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/BF00402202
      Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001
      Wu, Y. B., Gao, S., Gong, H. J., et al., 2009. Zircon U-Pb Age, Trace Element and Hf Isotope Composition of Kongling Terrane in the Yangtze Craton:Refining the Timing of Palaeoproterozoic High-Grade Metamorphism. Journal of Metamorphic Geology, 27(6):461-477. https://doi.org/10.1111/j.1525-1314.2009.00826.x
      Wu, Y. B., Gao, S., Zhang, H. F., et al., 2012. Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Precambrian Research, 200/201/202/203:26-37. https://doi.org/10.1016/j.precamres.2011.12.015
      Wu, Y. B., Zheng, Y. F., Gao, S., et al., 2008. Zircon U-Pb Age and Trace Element Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Rocks in the Dabie Orogen. Lithos, 101(3-4):308-322. https://doi.org/10.1016/j.lithos.2007.07.008
      Wu, Y. B., Zhou, G. Y., Gao, S., et al., 2014. Petrogenesis of Neoarchean TTG Rocks in the Yangtze Craton and Its Implication for the Formation of Archean TTGs. Precambrian Research, 254:73-86. https://doi.org/10.1016/j.precamres.2014.08.004
      Xiong, Q., Zheng, J. P., Yu, C. M., et al., 2009. Zircon U-Pb Age and Hf Isotope of Quanyishang A-Type Granite in Yichang:Signification for the Yangtze Continental Cratonization in Paleoproterozoic. Chinese Science Bulletin, 54(3):436-446. https://doi.org/10.1007/s11434-008-0401-7
      Xiong, X. S., Gao, R., Wang, H. Y., et al., 2016. Frozen Subduction in the Yangtze Block:Insights from the Deep Seismic Profiling and Gravity Anomaly in East Sichuan Fold Belt. Earthquake Science, 29(2):61-70. https://doi.org/10.1007/s11589-016-0140-9
      Yin, C. Q., Lin, S. F., Davis, D. W., et al., 2013.2.1-1.85 Ga Tectonic Events in the Yangtze Block, South China:Petrological and Geochronological Evidence from the Kongling Complex and Implications for the Reconstruction of Supercontinent Columbia. Lithos, 182-183:200-210. https://doi.org/10.1016/j.lithos.2013.10.012
      Yu, J. H., Wang, L. J., O'Reilly, S. Y., et al., 2009. A Paleoproterozoic Orogeny Recorded in a Long-Lived Cratonic Remnant (Wuyishan Terrane), Eastern Cathaysia Block, China. Precambrian Research, 174(3-4):347-363. https://doi.org/10.1016/j.precamres.2009.08.009
      Zhai, Q. G., Jahn, B. M., Wang, J., et al., 2016. Oldest Paleo-Tethyan Ophiolitic Mélange in the Tibetan Plateau. Geological Society of America Bulletin, 128(3-4):355-373. https://doi.org/10.1130/b31296.1
      Zhang, L. J., Ma, C. Q., Wang, L. X., et al., 2011. Discovery of Paleoproterozoic Rapakivi Granite on the Northern Margin of the Yangtze Block and Its Geological Significance. Chinese Science Bulletin, 56(3):306-318. https://doi.org/10.1007/s11434-010-4236-7
      Zhang, S. B., Wu, P., Zheng, Y. F., 2019. Mafic Magmatic Records of Rodinia Amalgamation in the Northern Margin of the South China Block. Earth Science, 44(12):4157-4166 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201912026
      Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 151(3-4):265-288. https://doi.org/10.1016/j.precamres.2006.08.009
      Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222-223:13-54. https://doi.org/10.1016/j.precamres.2012.09.017
      Zhao, G. C., Sun, M., Wilde, S. A., 2002. Reconstruction of a Pre-Rodinia Supercontinent:New Advances and Perspectives. Chinese Science Bulletin, 47(19):1585-1588. https://doi.org/10.1007/BF03184102
      Zhao, G. C., Sun, M., Wilde, S. A., et al., 2004. A Paleo-Mesoproterozoic Supercontinent:Assembly, Growth and Breakup. Earth-Science Reviews, 67(1-2):91-123. https://doi.org/10.1016/j.earscirev.2004.02.003
      Zhao, J. H., Zhou, M. F., 2009. Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China. Lithos, 107(3-4):152-168. https://doi.org/10.1016/j.lithos.2008.09.017
      Zhou, G. Y., Wu, Y. B., Wang, H., et al., 2017. Petrogenesis of the Huashanguan A-Type Granite Complex and Its Implications for the Early Evolution of the Yangtze Block. Precambrian Research, 292:57-74. https://doi.org/10.1016/j.precamres.2017.02.005
      Zhu, W. G., Bai, Z. J., Zhong, H., et al., 2017. The Origin of the C. 1.7 Ga Gabbroic Intrusion in the Hekou Area, SW China:Constraints from SIMS U-Pb Zircon Geochronology and Elemental and Nd Isotopic Geochemistry. Geological Magazine, 154(2):286-304. https://doi.org/10.1017/s0016756815001119
      Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia:The Correlation of Early Neoproterozoic (Ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290:32-48. https://doi.org/10.1016/j.precamres.2016.12.010
      邓奇, 王剑, 汪正江, 等, 2016.江南造山带新元古代中期(830~750 Ma)岩浆活动及对构造演化的制约.大地构造与成矿学, 40(4):753-771. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201604010
      邓奇, 汪正江, 王剑, 等, 2017.扬子地块西北缘碑坝地区白玉~1.79 Ga A型花岗岩的发现及其对构造演化的制约.地质学报, 91(7):1454-1466. http://kns.cnki.net/KCMS/detail/detail.aspx?dbCode=CJFD&filename=DZXE201707005&tableName=CJFDPREP
      耿元生, 沈其韩, 杜利林, 等, 2016.区域变质作用与中国大陆地壳的形成与演化.岩石学报, 32(9):2579-2608. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201609001
      黄明达, 崔晓庄, 程爱国, 等, 2019.扬子北缘晚元古代A型花岗质岩:Columbia超大陆裂解的证据.地质学报, 93(3):565-584. http://www.geojournals.cn/dzxbe/ch/reader/view_abstract.aspx?file_no=2017376&flag=1
      凌文黎, 1996.扬子克拉通北缘元古宙基底同位素地质年代学和地壳增生历史:I.后河群和西乡群.地球科学, 21(5):491-494. http://www.cnki.com.cn/Article/CJFDTotal-DQKX605.007.htm
      凌文黎, 高山, 程建萍, 等, 2006.扬子陆核与陆缘新元古代岩浆事件对比及其构造意义——来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U-Pb同位素年代学的约束.岩石学报, 22(2):387-396. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200602011
      凌文黎, 高山, 张本仁, 等, 1997.扬子克拉通北缘早前寒武纪地壳演化——后河杂岩元素和同位素地球化学限制.矿物岩石, 17(4):26-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700784253
      刘敦一, 简平, 张旗, 等, 2003.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据.地质学报, 77(3):317-327. http://d.wanfangdata.com.cn/Periodical/dizhixb200303004
      邱啸飞, 杨红梅, 卢山松, 等, 2015.扬子陆核古元古代A型花岗岩的年代学与地球化学研究及其构造意义.现代地质, 29(4):884-895. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201504018
      邱啸飞, 杨红梅, 赵小明, 等, 2019.扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义.地球科学, 44(2):415-426. doi: 10.3799/dqkx.2018.198
      王伟, 卢桂梅, 黄思访, 等, 2019.扬子陆块古-中元古代地质演化与Columbia超大陆重建.矿物岩石地球化学通报, 38(1):30-52. http://www.cnki.com.cn/Article/CJFDTotal-KYDH201901004.htm
      王子正, 郭阳, 杨斌, 等, 2013.扬子克拉通西缘1.73 Ga非造山型花岗斑岩的发现及其地质意义.地质学报, 87(7):931-942. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201307003
      吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001
      张少兵, 吴鹏, 郑永飞, 2019.罗迪尼亚超大陆聚合在华南陆块北缘的镁铁质岩浆岩记录.地球科学, 44(12):4157-4166. doi: 10.3799/dqkx.2019.252
    • dqkxzx-45-9-3295-附表.doc
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)

      Article views (1744) PDF downloads(124) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return