• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 12
    Dec.  2020
    Turn off MathJax
    Article Contents
    Wang Zejun, Zhou Hong, Qi Lingxuan, Wang Jiyuan, Yan Ziqi, 2020. Method for Characterizing Structure and Hydrological Response in Karst Water Systems: A Case Study in Y-M System in Three Gorges Area. Earth Science, 45(12): 4512-4523. doi: 10.3799/dqkx.2020.261
    Citation: Wang Zejun, Zhou Hong, Qi Lingxuan, Wang Jiyuan, Yan Ziqi, 2020. Method for Characterizing Structure and Hydrological Response in Karst Water Systems: A Case Study in Y-M System in Three Gorges Area. Earth Science, 45(12): 4512-4523. doi: 10.3799/dqkx.2020.261

    Method for Characterizing Structure and Hydrological Response in Karst Water Systems: A Case Study in Y-M System in Three Gorges Area

    doi: 10.3799/dqkx.2020.261
    • Received Date: 2020-07-16
    • Publish Date: 2020-12-15
    • In order to describe the structure and hydrological response mechanism of the karst water systems, the dispersion model, the diffusion model, the standard attenuation curve, and the Gaussian mixture models are presented for identifying the structure and explaining hydrological response. Successful application of these methods in the Y-M karst water system in the Three Gorges area shows that "single recharge-single discharge", "single recharge-multiple discharges" and "multiple recharge-single discharge" flow path patterns occurred in the area. After rainfalls, groundwater was dominated by convection in the response stage, while diffusion in the attenuation stage. The groundwater runoff components were divided into 5 and 6 grades for the rainy season and dry season, respectively. The conductivity and discharge thresholds dividing fast and slow flow were determined to be approximately 180 μS/cm and 0.6 m3/s, respectively, with fast flow exhibiting lower conductivity and larger discharge. On an quarterly basis, fast flow occurred 3.5% of the time and accounted for 19% of total water volume. The fast flow moved in the conduits, leading to the sharply variation of discharge and electrical conductivity, while the slow flow moved in the fissures and pores, which resulted in weak response. This study provides novel alternative methods for quantitative evaluation of structure and hydrological response of karst water systems.

       

    • loading
    • Bicalho, C.C., Guilhe, C.B., Seidel, J.L., et al., 2012.Geochemical Evidence of Water Source Characterization and Hydrodynamic Responses in a Karst Aquifer.Journal of Hydrology, 450-451:206-218. https://doi.org/10.1016/j.jhydrol.2012.04.059
      Civita, M.V., 2008.An Improved Method for Delineating Source Protection Zones for Karst Springs Based on Analysis of Recession Curve Data.Hydrogeology Journal, 16(5):855-869. https://doi.org/10.1007/s10040-008-0283-4
      Eris, E., Wittenberg, H., 2015.Estimation of Baseflow and Water Transfer in Karst Catchments in Mediterranean Turkey by Nonlinear Recession Analysis.Journal of Hydrology, 530:500-507. https://doi.org/10.1016/j.jhydrol.2015.10.017
      Field, M.S., 2002.The QTRACER2 Program for Tracer-Breakthrough Curve Analysis for Tracer Tests in Karstic Aquifers and Other Hydrologic Systems.U.S.Environmental Protection Agency, U.S.A..
      Fiorillo, F., 2014.The Recession of Spring Hydrographs, Focused on Karst Aquifers.Water Resources Management, 28(7):1781-1805. https://doi.org/10.1007/s11269-014-0597-z
      Goldscheider, N., Drew, D., 2007.Methods in Karst Hydrogeology.Taylor & Francis, London.
      Guo, X.L., 2019.A Case Study on the Simulation of Precipitation and Runoff Process in Karst Basin Based on Modified SAC Model (Dissertation).China University of Geosciences, Wuhan, 3-9(in Chinese with English abstract).
      Jakada, H., Chen, Z., Luo, M., et al., 2019.Watershed Characterization and Hydrograph Recession Analysis:A Comparative Look at a Karst vs.Non-Karst Watershed and Implications for Groundwater Resources in Gaolan River Basin, Southern China.Water, 11(4):743. https://doi.org/10.3390/w11040743
      Kreft, A., Zuber, A., 1978.On the Phisical Meaning of the Dispersion Equation and Its Solution for Different Initial and Boundary Conditons.Chemical Engineering Science, 33(11):1471-1480. doi: 10.1016/0009-2509(78)85196-3
      Lauber, U., Ufrecht, W., Goldscheider, N., 2014.Spatially Resolved Information on Karst Conduit Flow from In-Cave Dye Tracing.Hydrology and Earth System Sciences, 18(2):435-445. https://doi.org/10.5194/hess-18-435-2014
      Liu, W., Wang, Z.J., Chen, Q.L., et al., 2020.An Interpretation of Water Recharge in Karst Trough Zone as Determined by High-Resolution Tracer Experiments in Western Hubei, China.Environmental Earth Sciences, 79(14):357. https://doi.org/10.1007/s12665-020-09056-6
      Luo, M.M., Chen, Z.H., Zhou, H., et al., 2016.Identifying Structure and Function of Karst Aquifer System Using Multiple Field Methods in Karst Trough Valley Area, South China.Environmental Earth Sciences, 75:824. https://doi.org/10.1007/s12665-016-5630-5
      Luo, M.M., Yin, D.C., Zhang, L., et al., 2015.Identifying Methods of Karst Aquifer System Structure in South China.Carsologica Sincia, 34(6):543-550(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGYR201506002.htm
      Lü, Q.B., Hu, X.N., Cao, J.H., et al., 2017.Aquifer Structure of Karst Areas Derived from Borehole Pumping and Tracer Tests.Carsologica Sincia, 36(5):727-735(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGYR201705017.htm
      Massei, N., Mahler, B.J., Bakalowicz, M., et al., 2007.Quantitative Interpretation of Specific Conductance Frequency Distributions in Karst.Ground Water, 45(3):288-293. https://doi.org/10.1111/j.1745-6584.2006.00291.x
      Minvielle, S., Lastennet, R., Denis, A., et al., 2015.Characterization of Karst Systems Using SIc-Pco2 Method Coupled with PCA and Frequency Distribution Analysis.Application to Karst Systems in the Vaucluse County (Southeastern France).Environmental Earth Sciences, 74(12):7593-7604. https://doi.org/10.1007/s12665-015-4389-4
      Şen, Z., 2020.General Modeling of Karst Spring Hydrographs and Development of a Dimensionless Karstic Hydrograph Concept.Hydrogeology Journal, 28(2):549-559. https://doi.org/10.1007/s10040-019-02085-x
      Su, C.L., Zhang, Y., Ma, Y.H., et al., 2019.Hydrochemical Evolution Processes of Karst Groundwater in Guiyang City:Evidences from Hydrochemistry and 87Sr/86Sr Ratios.Earth Science, 44(9):2829-2838(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909002.htm
      Wang, P.H., 2019.Study about a Typical Karst System in the Karst Fenglin Plain Area of South China (Dissertation).China University of Geosciences, Beijing, 28-30(in Chinese).
      Wang, Z.J., Chen, Q.L., Yan, Z.Q., et al., 2019.Method for Identifying and Estimating Karst Groundwater Runoff Components Based on the Frequency Distributions of Conductivity and Discharge.Water, 11(12):2494. https://doi.org/10.3390/w11122494
      Wang, Z.J., Zhou, H., Luo, M.M., et al., 2019.Variations in Discharge Processes and Runoff Components between Small Karst Watersheds and Non-Karst Watersheds in Southern China.Hydrogeology & Engineering Geology, 46(3):27-32, 39(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SWDG201903004.htm
      Winston, W.E., Criss, R.E., 2004.Dynamic Hydrologic and Geochemical Response in a Perennial Karst Spring.Water Resources Research, 40(5):W05106. https://doi.org/10.1029/2004wr003054
      Xie, G.W., 2019.A Methodological Research on the Identification of a Typical Karst Aquifer Media in Southwest China (Dissertation).Southwest University, Chongqing, 17-20(in Chinese with English abstract).
      Yang, P.H., Zhang, Y., Tian, P., et al., 2016.A Methodological Research on the Identification of a Typical Karst Aquifer Media in the Paralleled Ridge-Valley of East Sichuan:A Case Study of Qingmuguan Karst Groundwater System, Chongqing.Journal of Southwest University (Natural Science Edition), 38(2):90-97(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XNND201602015.htm
      Ye, H.J., Zhang, R.X., Wu, P., et al., 2019.Characteristics and Driving Factor of Hydrochemical Evolution in Karst Water in the Critical Zone of Liupanshui Mining Area.Earth Science, 44(9):2887-2898(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909007.htm
      Yin, D.C., Luo, M.M., Zhou, H., et al., 2015.Water Resources Composition and Structure Characteristics of the Underground River System in the Karst Ridge-Trough in the Western Hubei Province.Hydrogeology & Engineering Geology, 42(3):13-18(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SWDG201503005.htm
      Yuan, D.X., Zhang, C., 2008.Karst Dynamics Theory in China and Its Practice.Acta Geoscientica Sinica, 29(3):355-365(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dqxb200803009.aspx
      Zhang, L., Chen, Z.H., Zhou, H., et al., 2015.Investigation and Analysis of the Hydrogeological Characteristics of the Typical Karst Spring in the Xiangxi River Basin:Exemplified by the Bailong Spring in Xingshan County of Hubei.Hydrogeology & Engineering Geology, 42(2):31-37(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SWDG201502006.htm
      郭绪磊, 2019.基于SAC改进模型的岩溶流域降水-径流过程模拟研究(硕士学位论文).武汉: 中国地质大学, 3-9.
      罗明明, 尹德超, 张亮, 等, 2015.南方岩溶含水系统结构识别方法初探.中国岩溶, 34(6):543-550. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201506002.htm
      吕全标, 胡晓农, 曹建华, 等, 2017.基于钻孔抽水试验和示踪试验的岩溶地区含水层结构研究.中国岩溶, 36(5):727-735. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201705017.htm
      苏春利, 张雅, 马燕华, 等, 2019.贵阳市岩溶地下水水化学演化机制:水化学和锶同位素证据.地球科学, 44(9):2829-2838. doi: 10.3799/dqkx.2019.214
      王朋辉, 2019.中国南方典型峰林平原岩溶水系统研究(博士学位论文).北京: 中国地质大学.
      王泽君, 周宏, 罗明明, 等, 2019.南方小型岩溶流域与非岩溶流域的释水过程及径流组分差异.水文地质工程地质, 46(3):27-32, 39. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201903004.htm
      谢国文, 2019.西南典型岩溶含水介质特征识别方法研究(硕士学位论文).重庆: 西南大学, 17-20.
      杨平恒, 张宇, 田萍, 等, 2016.川东平行岭谷典型岩溶含水介质特征的识别方法探讨:以重庆青木关地下水系统为例.西南大学学报(自然科学版), 38(2):90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201602015.htm
      叶慧君, 张瑞雪, 吴攀, 等, 2019.六盘水矿区关键带岩溶水水化学演化特征及驱动因子.地球科学, 44(9):2887-2898. doi: 10.3799/dqkx.2019.201
      尹德超, 罗明明, 周宏, 等, 2015.鄂西岩溶槽谷区地下河系统水资源构成及其结构特征.水文地质工程地质, 42(3):13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201503005.htm
      袁道先, 章程, 2008.岩溶动力学的理论探索与实践.地球学报, 29(3):355-365. doi: 10.3321/j.issn:1006-3021.2008.03.009
      张亮, 陈植华, 周宏, 等, 2015.典型岩溶泉水文地质条件的调查与分析:以香溪河流域白龙泉为例.水文地质工程地质, 42(2):31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201502006.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(2)

      Article views (1785) PDF downloads(88) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return