• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 6
    Jun.  2021
    Turn off MathJax
    Article Contents
    Tang Yuanlan, Shi Yu, Wang Yongqiang, Sun Yirong, Liu Xijun, 2021. Genesis and Tectonic Significance of Lamprophyre in Du'an-Mashan, Central Guangxi. Earth Science, 46(6): 2083-2116. doi: 10.3799/dqkx.2020.306
    Citation: Tang Yuanlan, Shi Yu, Wang Yongqiang, Sun Yirong, Liu Xijun, 2021. Genesis and Tectonic Significance of Lamprophyre in Du'an-Mashan, Central Guangxi. Earth Science, 46(6): 2083-2116. doi: 10.3799/dqkx.2020.306

    Genesis and Tectonic Significance of Lamprophyre in Du'an-Mashan, Central Guangxi

    doi: 10.3799/dqkx.2020.306
    • Received Date: 2020-09-20
    • Publish Date: 2021-06-15
    • In order to determine the formation age of lamprophyre accurately in Du'an-Mashan belt, Central Guangxi, and to discuss its source property, tectonic environment and dynamic setting, LA-ICP-MS zircon U-Pb dating, 40Ar-39Ar phlogopite dating, εHf isotope and whole-rock geochemistry were obtained. It shows that zircon U-Pb dating fails to determine the fomation age of lamprophyres, however, a mass of captured zircons ranging from 2 578 Ma to 1 650 Ma indicates the existence of the Archean-Paleoproterozoic metamorphic basement. The phlogopite 40Ar/39Ar age of 100.4±0.99 Ma displayes the formation age of the lamprophyres. Zircons yield both positive and negative εHf(t) values (with mostly positive), suggesting that the protolith was derived from newborn crust that incorporated a few evolved ancient continental crustal components. Geochemical data exhibit that lamprophyres have low SiO2 (47.66%-50.93%) and high K2O (4.98%-6.77%) contents, with relatively high LILE and LREE and low HFSE (such as Nb, Ta and Ti) contents, indicating the characteristics of enriched mantle and subducted fluid metasomatism. During the formation of lamprophyres in Central Guangxi, crustal contamination is very limited, and the main formation process is as follows: under the background of lithospheric extension in the Late Yanshanian, the enriched mantle which was metasomatic was partially melted to form lamprophyre magma, and the Nandan-Kunlunguan fault extending in the NNW direction provided a channel for the magma fluid. The lamprophyres formed under the dynamic setting of subduction and collision of Pacific and Indian plate to Eurasian plate.

       

    • loading
    • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x doi: 10.1016/S0009-2541(02)00195-X
      Bai, X.J., Qiu, H.N., Liu, W.G., et al., 2018. Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS VI Noble Gas Mass Spectrometer with Self-Made Peripheral Apparatus. Journal of Earth Science, 29(2): 408-415. https://doi.org/10.1007/s12583-017-0948-9
      Bernard-Griffiths, J., Fourcade, S., Dupuy, C., 1991. Isotopic Study (Sr, Nd, O and C) of Lamprophyres and Associated Dykes from Tamazert (Morroco): Crustal Contamination Processes and Source Characteristics. Earth and Planetary Science Letters, 103(1-4): 190-199. https://doi.org/10.1016/0012-821x(91)90160-J doi: 10.1016/0012-821X(91)90160-J
      Bi, S.J., Yang, Z., Li, W., et al., 2015. Discovery of Late Cretaceous Baoshan Porphyry Copper Deposit in Dayaoshan, Qinhang Metallogenic Belt: Constraints from Zircon U-Pb Age and Hf Isotope. Earth Science, 40(9): 1458-1479(in Chinese with English abstract).
      Bienvenu, P., Bougault, H., Joron, J.L., et al., 1990. MORB Alteration: Rare-Earth Element/Non-Rare-Earth Hygromagmaphile Element Fractionation. Chemical Geology, 82(1-2): 1-14. https://doi.org/10.1016/0009-2541(90)90070-n http://www.sciencedirect.com/science/article/pii/000925419090070N
      Blichert-Toft, J., Albarède, H., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and planetary Science Litters, 148(1-2): 243-258. https://doi.org/10.1016/s0012-821x(97)00040-x doi: 10.1016/S0012-821X(97)00040-X
      Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1-2): 48-57. https://doi.org/10.1016/j.epsl.2008.06.010
      Cai, M.H., Liang, T., Wei, K.L., et al., 2006. Rb-Sr Dating of the No. 92 Orebody of the Tongkeng-Changpo Deposit in the Dachang Tin-Polymetallic Ore Field, Guangxi, and Its Significance. Geology and Mineral Resources of South China, (2): 31-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC200602005.htm
      Cai, Y., Lu, J.J., Ma, D.S., et al., 2015. The Late Triassic Dengfuxian A-Type Granite, Hunan Province: Age, Petrogenesis, and Implications for Understanding the Late Indosinian Tectonic Transition in South China. International Geology Review, 57(4): 428-445. https://doi.org/10.1080/00206814.2015.1012565
      Carter, A., Roques, D., Bristow, C., et al., 2001. Understanding Mesozoic Accretion in Southeast Asia: Significance of Triassic Thermo Tectonism (Indosinian Orogeny) in Vietnam. Geology, 29(3): 211-214. https://doi.org/10.1130/0091-7613(2001)029<0211:umaisa>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0211:UMAISA>2.0.CO;2
      Chen, F.W., Li, H.Q., Mei, Y.P., 2008. Zircon SHRIMP U-Pb Chronology of Diagenetic Mineralization of the Longtoushan Porphyry Gold Orefield, Gui County, Guangxi. Acta Geologica Sinica, 82(7): 921-926(in Chinese with English abstract). http://www.researchgate.net/publication/285631496_Zircon_SHRIMP_U-Pb_chronology_of_diagenetic_mineralization_of_the_Longtoushan_porphyry_gold_orefield_Gui_County_Guangxi
      Chen, M.H., Lu, G., Li, X.H., 2012. Muscovite 40Ar/39Ar Dating of the Quartz Porphyry Veins from Northwest Guangxi, China, and Its Geological Significance. Geological Journal of China Universities, 18(1): 106-116(in Chinese with English abstract).
      Chen, W.F., Chen, P.R., Xu, X.S., et al., 2005. Geochemical Characteristics of Cretaceous Basaltic Rocks in South China and Their Restriction on Pacific Plate Subduction. Science in China: Earth Science, 35(11): 1007-1018(in Chinese).
      Condie, K.C., 2003. Incompatible Element Ratios in Oceanic Basalts and Komatiites: Tracking Deep Mantle Sources and Continental Growth Rates with Time. Geochemistry, Geophysics, Geosystems, 4(1): 1-28. https://doi.org/10.1029/2002gc000333.
      Dai, L.Q., Zhao, Z.F., 2019. Mafic Igneous Rocks in Continental Collision Orogen Record Recycling of Subducted Paleo-Oceanic Crust. Earth Science, 44(12): 4128-4134(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912022.htm
      Dong, S.W., Zhang, Y.Q., Chen, X.H., et al., 2008. The Formation and Deformational Characteristics of East Asia Multi-Direction Convergent Tectonic System in Late Jurassic. Acta Geoscientica Sinica, 29(3): 306-317(in Chinese with English abstract).
      Duan, R.C., Ling, W.L., Li, Q., et al., 2011. Correlations of the Late Yanshanian Tectonomagmatic Events with Metallogenesis in South China: Geochemical Constraints from the Longtoushan Gold Ore Deposit of the Dayaoshan Area, Guangxi. Acta Geologica Sinica, 85(10): 1644-1658(in Chinese with English abstract).
      Duggen, S., Hoernle, K., Vand, B.P., et al., 2005. Post-Collisional Transition from Subduction to Intraplate-Type Magmatism in the Western Most Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere. Journal of Petrology, 46(6): 1155-1201. https://doi.org/10.1093/petrology/egi013
      Fan, W.M., Wang, Y.J., Guo, F., et al., 2003. Mesozoic Mafic Magmatism in Hunan-Jiangxi Provinces and the Lithospheric Extension. Earth Science Frontiers, 10(3): 159-169(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200303022.htm
      Foley, S.F., Jackson, S.E., Fryer, B.J., et al., 1996. Trace Element Partition Coefficients for Clinopyroxene and Phlogopite in an Alkaline Lamprophyre from Newfoundland by LAMICP-MS. Geochimica et Cosmochimica Acta, 60(4): 629-638. https://doi.org/10.1016/0016-7037(95)00422-x doi: 10.1016/0016-7037(95)00422-X
      Franzini, M., Leoni, L., Saitta, M., 1972. A Simple Method to Evaluate the Matrix Effects in X-Ray Fluorescence Analysis. X-Ray Spectrometry, 1(4): 151-154. https://doi.org/10.1002/xrs.130001 0406 doi: 10.1002/xrs.1300010406
      Furman, T., Graham, D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Lithos, 48(1-4): 237-262. https://doi.org/10.1016/s0024-4937(99)00031-6 doi: 10.1016/S0024-4937(99)00031-6
      Gao, J.F., Lu, J.J., Lai, M.Y., et al., 2003. Analysis of Trace Elements in Rock Samples Using HR-ICPMS. Journal of Nanjing University (Natural Sciences), 39(6): 844-850(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026140653
      Gao, Q., Yu, J.H., Zhu, G.L., 2019. Geochemistry of Certain Mantle-Derived Dykes: Constraint on the Western Boundary between the Yangtze and Cathaysia Blocks. Geochimica, 48(1): 9-29(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX201901002.htm
      Gao, S., Rudnick, R.L., Carlson, R.W., et al., 2002. Re-Os Evidence for Replacement of Ancient Mantle Lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 198(3-4): 307-322. https://doi.org/10.1016/s0012-821x(02)00489-2 doi: 10.1016/S0012-821X(02)00489-2
      Gilder, S.A., Keller, G.R., Luo, M., et al., 1991. Eastern Asia and the Western Pacific Timing and Spatial Distribution of Rifting in China. Tectonophysics, 197(2-4): 225-243. https://doi.org/10.1016/0040-1951(91)90043-r doi: 10.1016/0040-1951(91)90043-R
      Guangxi Zhuang Autonimous Region Bureau of Geology and Mineral Resources, 1985. Regional Geology of Guangxi Zhuang Autonimous Region. Geological Publishing House, Beijing(in Chinese).
      Guangxi Zhuang Autonimous Region Bureau of Geology and Mineral Resources, 1992. Redional Geological Survey Report of 1: 50 000 in Jinya-Lingyun Area. Guangxi Zhuang Autonimous Region Bureau of Geology and Mineral Resources, Guangxi, 135-143(in Chinese).
      Guo, F., Fan, W.M., Wang, Y.J., et al., 2003. Geochemistry of Late Mesozoic Mafic Magmatism in West Shandong Province, Eastern China: Characterizing the Lost Lithospheric Mantle beneath the North China Block. Geochemical Journal, 37(1): 63-77. https://doi.org/10.2343/geochemj.37.63
      Gutscher, M.A., Maury, R., Eissen, J.P., et al., 2000. Can Slab Melting be Caused by Flat Subduction? Geology, 28(6): 535-538. https://doi.org/10.1130/0091-7613(2000)28535:csmbcb>2.0.co;2 doi: 10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2
      Hardarson, B.S., Fitton, G.J., 1991. Increased Mantle Melting beneath Snaefellsjökull Volcano during Late Pleistocene Deglaciation. Nature, 353: 62-64. https://doi.org/10.1038/353062a0
      Hermann, J., Spandler, C.J., 2008. Sediment Melts at Sub-Arc Depths: An Experimental Study. Journal of Petrology, 49(4): 717-740. https://doi.org/10.1093/petrology/egm073
      Hofmann, A.W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/0012-821x(88)90132-x doi: 10.1016/0012-821X(88)90132-X
      Hu, A.X., Peng, J.T., 2016. Mesozoic Lamprophyre and Its Origin in the Xikuangshan District, Central Hunan. Acta Petrologica Sinica, 32(7): 2041-2056(in Chinese with English abstract).
      Hu, S.Q., Zhou, G.F., Peng, S.B., et al., 2012. Chronology and Geochemical Characteristics of Quartz Monzonite (Porphyry) in the Dali Copper-Molybdenum Deposit and Its Geological Significance. Acta Geoscientica Sinica, 33(1): 23-37(in Chinese with English abstract).
      Hua, R.M., 2005. Differences between Rock-Forming and Related Ore-Forming Times for the Mesozoic Granitoids of Crust Remelting Types in the Nanling Range, South China, and Its Geological Significance. Geological Review, 51(6): 633-639(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200506005.htm
      Humphris, S.E., Thompson, G., 1978. Trace Element Mobility during Hydrothermal Alteration of Oceanic Basalts. Geochimica et Cosmochimica Acta, 42(1): 127-136. https://doi.org/10.1016/0016-7037(78)90222-3
      Imaoka, T., Nakashima, K., Kamei, A., et al., 2014. Episodic Magmatism at 105 Ma in the Kinki District, SW Japan: Petrogenesis of Nb-Rich Lamprophyres and Adakites, and Geodynamic Implications. Lithos, 184-187: 105-131. https://doi.org/10.1016/j.lithos.2013.10.014
      Jia, D.C., Hu, R.Z., Lu, Y., et al., 2004. Characteristics of the Mantle Source Region of Sodium Lamprophyres and Petrogenetic Tectonic Setting in Northeastern Hunan, China. Science China: Earth Sciences, 47(6): 559-569. https://doi.org/10.1360/02yd0174
      Jia, Z.B., 2017. The Mantle Evolution of South China from Mesozoic to Cenozoic: A Causal Link with the Subduction of the Pacific Plate (Dissertation). University of Science and Technology of China, Hefei(in Chinese with English abstract).
      Jiang, Y.H., Jiang, S.Y., Ling, H.F., et al., 2010. Petrogenesis and Tectonic Implications of Late Jurassic Shoshonitic Lamprophyre Dikes from the Liaodong Peninsula, NE China. Mineralogy and Petrology, 100(3-4): 127-151. https://doi.org/10.1007/s00710-010-0124-8
      Jiang, Y.H., Zhao, P., Zhou, Q., et al., 2011. Petrogenesis and Tectonic Implications of Early Cretaceous S- and A-Type Granites in the Northwest of the Gan-Hang Rift, SE China. Lithos, 121(1-4): 55-73. https://doi.org/10.1016/j.lithos.2010.10.001
      La Tourrette, T., Hervig, R.L., Holloway, J.R., 1995. Trace Element Partitioning between Amphibole, Phlogopite, and Basanite Melt. Earth and Planetary Science Letters, 135(1-4): 13-30. https://doi.org/10.1016/0012-821x(95)00146-4 doi: 10.1016/0012-821X(95)00146-4
      Le Maitre. R.W., Bateman, P., Dudek, A., et al., 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications, Oxford, 193.
      Lei, Z.L., Zeng, G., Wang, X.J., et al., 2019. Mantle Source Lithology of Late Mesozoic Mafic Dikes in Southeastern China. Earth Science, 44(4): 1159-1170(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904008.htm
      Li, J.H., 2013. The Mesozoic Tectonic Evolution of South China (Dissertation). Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract).
      Li, J.H., Zhang, Y.Q., Dong, S.W., et al., 2013. The Hengshan Low-Angle Normal Fault Zone: Structural and Geochronological Constraints on the Late Mesozoic Crustal Extension in South China. Tectonophysics, 606: 97-115. https://doi.org/10.1016/j.tecto.2013.05.013
      Li, S.B., Wang, Y.J., 2016. The Fission Track Record of Meso-Cenozoic Tectonic Thermal Evolution Pattern in Eastern China. Collections of the China Earth Science Joint Scientific Annual Conference, Beijing(in Chinese).
      Li, X.H., Hu, R.Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China. Geochimica, 26(2): 14-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX702.003.htm
      Li, X.H., Zhou, H.W., Liu, Y., et al., 1999. Petrologic and Geochemical Characteristics of Potassic Intrusive Rock Zone in Southeast Guangxi. Chinese Science Bulletin. 44(18): 1992-1998(in Chinese). doi: 10.1360/csb1999-44-18-1992
      Li, X.Y., Zheng, J.P., Ma, Q., et al., 2014. From Enriched to Depleted Mantle: Evidence from Cretaceous Lamprophyres and Paleogene Basaltic Rocks in Eastern and Central Guangxi Province, Western Cathaysia Block of South China. Lithos, 184-187: 300-313. https://doi.org/10.1016/j.lithos.2013.10.039
      Li, Z.C., Lu, Y.F., Huang, G.C., 2004. Methods and Advances Radioisotope Geology. China University of Geosciences Press, Wuhan(in Chinese).
      Li, Z.X., Li, X.H., 2007. Formation of the 1 300 km Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1 doi: 10.1130/G23193A.1
      Liu, B., Wu, J.H., Li, H., et al., 2020. Geochronology, Geochemistry and Petrogenesis of the Dengfuxian Lamprophyres: Implications for the Early Cretaceous Tectonic Evolution of the South China Block. Geochemistry, 80(2): 209-225. https://doi.org/10.1016/j.chemer.2020.125598 http://www.sciencedirect.com/science/article/pii/S0009281920300015
      Liu, F., Li, K., Huang, G.C., et al., 2018. Zircon U-Pb Geochronology and Geochemical Characteristics of the Kunlunguan A-Type Granite in Central Guangxi. Earth Science, 43(7): 2313-2329(in Chinese with English abstract).
      Liu, J., Zhou, Y., Xie, D.G., et al., 2016. Geochronology, Geochemistry and Geological Implications of the Lamprophyre in Jianshui, East Yunnan Province. Geology in China, 43(6): 1977-1991(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201606010.htm
      Liu, R., Li, J.W., Bi, S.J., et al., 2013. Magma Mixing Revealed from In Situ Zircon U-Pb-Hf Isotope Analysis of the Muhuguan Granitoid Pluton, Eastern Qinling Orogen, China: Implications for Late Mesozoic Tectonic Evolution. International Journal of Earth Sciences, 102(6): 1583-1602. https://doi.org/10.1007/s00531-013-0900-x
      Liu, S., 2004. The Mesozoic Magmatism and Crustal Extension in Shandong Province, China: Additionally Discussing the Relationship between Lamprophyres and Gold Mineralization (Dissertation). Graduate School, Chinese Academy of Sciences, Beijing(in Chinese with English abstract).
      Liu, S., Hu, R.Z., Gao, S., et al., 2009. Petrogenesis of Late Mesozoic Mafic Dykes in the Jiaodong Peninsula, Eastern North China Craton and Implications for the Foundering of Lower Crust. Lithos, 113(3-4): 621-639. https://doi.org/10.1016/j.lithos.2009.06.035
      Lu, F.X., Shu, X.X., Zhao, C.H., 1991. A Suggestion on Classification of Lamprophyres. Geological Science and Technology Information, 10(Suppl. 1): 55-62(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10016752820
      Lu, G., Huang, X.L., Li, W.Q., et al., 2013.1: 250 000 Nandan Regional Geological Survey Report. Guangxi Zhuang Autonimous Region Geological Survey Institute, Nanning(in Chinese).
      Mao, J.R., Gao, Q.H., Li, Z.L., et al., 2009. Correlation of Meso-Cenozoic Tectono-Magmatism between SE China and Japan. Geological Bulletin of China, 28(7): 844-856(in Chinese with English abstract). http://www.researchgate.net/publication/279603536_Correlation_of_Meso-Cenozoic_tectono-magmatism_between_SE_China_and_Japan
      Mao, J.R., Li, Z.L., Ye, H.M., 2014. Mesozoic Tectono-Magmatic Activities in South China: Retrospect and Prospect. Science in China: Earth Sciences, 57(12): 2853-2877. https://doi.org/10.1007/s11430-014-5006-1
      Mao, J.R., Ye, H.M., Liu, K., et al., 2013. The Indosinian Collision-Extension Event between the South China Block and the Palaeo-Pacific Plate: Evidence from Indosinian Alkaline Granitic Rocks in Dashuang, Eastern Zhejiang, South China. Lithos, 172-173: 81-97. https://doi.org/10.1016/j.lithos.2013.04.004
      Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004. Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China. Earth Science Frontiers, 11(1): 45-55(in Chinese with English abstract).
      Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
      Münker, C., 1998. Nb/Ta Fractionation in a Cambrian Arc/back Arc System, New Zealand: Source Constraints and Application of Refined ICP-MS Techniques. Chemical Geology, 144(1-2): 23-45. https://doi.org/10.1016/s0009-2541(97)00105-8 doi: 10.1016/S0009-2541(97)00105-8
      Pearce, J.A., Peate, D.W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23: 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
      Pearce, J.A., Stern, R.J., Bloomer, S.H., et al., 2005. Geochemical Mapping of the Mariana Arc-Basin System: Implications for the Nature and Distribution of Subduction Components. Geochemistry, Geophysics, Geosystems, 6(7): Q07006. https://doi.org/10.1029/2004gc000895 doi: 10.1029/2004GC000895/full
      Plank, T., Langmuir, C.H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3-4): 325-394. https://doi.org/10.1016/s0009-2541(97)00150-2 doi: 10.1016/S0009-2541(97)00150-2
      Prelević, D., Foley, S.F., Cvetković, V., et al., 2004. Origin of Minette by Mixing of Lamproite and Dacite Magmas in Veliki Majdan, Serbia. Journal of Petrology, 45(4): 759-792. https://doi.org/10.1093/petrology/egg109
      Qin, S.C., 2007. Geochronology and Geochemistry of Cretaceous Mafic Volcanic Rocks from Zhejiang and Fujian Provinces, SE China: Petrogenesis and Geodynamic Implications for Lithospheric Extension (Dissertation). Graduate School, Chinese Academy of Sciences, Guangzhou(in Chinese with English abstract).
      Qin, S.C., Fan, W.M., Guo, F., 2019. Petrogenesis and Geodynamic Implications of Late Mesozoic Mafic Volcanic Rocks along the Jiangshan-Shaoxing Fault in SE China. Acta Petrologica Sinica, 35(6): 1892-1906(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.06.16
      Qin, S.X., Li, Y.X., Li, X.H., et al., 2019. Paleomagnetic Results of Cretaceous Cherts from Zhongba, Southern Tibet: New Constraints on the India-Asia Collision. Journal of Asian Earth Sciences, 173: 42-53. https://doi.org/10.1016/j.jseaes.2019.01.012
      Rock, N.M.S., 1987. The Nature and Origin of the Lamprophyres: An Overview. Geological Society, London, Special Publications, 30: 191-226. doi: 10.1144/GSL.SP.1987.030.01.09
      Rock, N.M.S., 1991. Lamprophyres. Thomson LithoLtd., East Kilbride. https://doi.org/10.1016/0098-3004(91)90069-p
      Sayab, M., Shah, S.Z., Aerden, D., 2016. Metamorphic Record of the NW Himalayan Orogeny between the Indian Plate-Kohistan Ladakh Arc and Asia: Revelations from Foliation Intersection Axis (FIA) Controlled P-T-t-d Paths. Tectonophysics, 671: 110-126. https://doi.org/10.1016/j.tecto.2015.12.032
      Schiano, P., Clocchiatti, R., Joron, J.L., 1992. Melt and Fluid Inclusions in Basalts and Xenoliths from Tahaa Island, Society Archipelago: Evidence for a Metasomatized Upper Mantle. Earth and Planetary Science Letters, 111(1): 69-82. https://doi.org/10.1016/0012-821x(92)90170-z doi: 10.1016/0012-821X(92)90170-Z
      Shi, Y., Pei, X.L., Castillo, P.R., et al., 2017. Petrogenesis of the ~500 Ma Fushui Mafic Intrusion and Early Paleozoic Tectonic Evolution of the Northern Qinling Belt, Central China. Journal of Asian Earth Sciences, 141: 74-96. https://doi.org/10.1016/j.jseaes.2016.09.003
      Shu, L.S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract). http://www.researchgate.net/publication/279561053_An_analysis_of_principal_features_of_tectonic_evolution_in_South_China_Block
      Shu, L.S., Zhou, X.M., 2002. Late Mesozoic Tectonism of Southeast China. Geological Review, 48(3): 249-260(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200203004.htm
      Stolper, E., Newman, S., 1994. The Role of Water in the Petrogenesis of Mariana Trough Magmas. Earth and Planetary Science Letters, 121(3-4): 293-325. https://doi.org/10.1016/0012-821x(94)90074-4 doi: 10.1016/0012-821X(94)90074-4
      Sun, M.D., Xu, Y.G., Wilde, S.A., et al., 2015. The Permian Dongfanghong Island-Arc Gabbro of the Wandashan Orogen, NE China: Implications for Paleo-Pacific Subduction. Tectonophysics, 659: 122-136. https://doi.org/10.1016/j.tecto.2015.07.034
      Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
      Tan, J., Wei, J.H., Li, S.R., et al., 2008. Geochemical Characteristics and Tectonic Significance of Kunlunguan A-Type Granite, Guangxi. Earth Science, 33(6): 743-754(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dqkx200806002
      Wang, L., Jin, X.B., Wang, X.Y., et al., 2015. Forming Process of Lamprophyre from Leidong in Luocheng, Northern Guangxi: Constrains from Geochemistry, Geochronology and Sr-Nd-Pb Isotopes. Geological Science and Technology Information, 34(1): 10-19(in Chinese with English abstract). http://or.nsfc.gov.cn/handle/00001903-5/456613
      Wang, Q., Zhao, Z.H., Jian, P., et al., 2005. Geochronology of Cretaceous A-Type Granitoids or Alkaline Intrusive Rocks in the Hinterland, South China: Constraints for Late-Mesozoic Tectonic Evolution. Acta Petrologica Sinica, 21(3): 795-808(in Chinese with English abstract). http://www.oalib.com/paper/1472202
      Wang, X.Y., Wu, X.K., He, C., et al., 2019. Phlogopite 40Ar/39Ar Dating of the Lamproite Veins in Du'an County, Central Guangxi and Its Tectonic Significance. Geological Bulletin of China, 38(4): 680-688(in Chinese with English abstract).
      Wang, Y.L., Zhang, C.J., Xiu, S.Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3): 413-421(in Chinese with English abstract).
      Wu, G.Y., Wu, H.R., Zhong, D.L., et al., 2000. Volcanic Rocks of Paleotethyan Oceanic Island and Island-Arc Bordering Yunnan and Guangxi, China. Geoscience, 14(4): 393-400(in Chinese with English abstract). http://www.researchgate.net/publication/284486374_Volcanic_rocks_of_Paleotethyan_oceanic_island_and_island-arc_bordering_Yunnan_and_Guangxi_China/download
      Wu, F.Y., Ge, W.C., Sun, D.Y., et al., 2003. Discussions on the Lithospheric Thinning in Eastern China. Earth Science Frontiers, 10(3): 51-60(in Chinese with English abstract).
      Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract). http://www.oalib.com/paper/1492671
      Wu, G.G., Zhang, D., Chen, B.L., et al., 2000. Transformation of Mesozoic Tectonic Domain and Its Relation to Mineralization in Southeastern China: An Evidence of Southwestern Fujian Province. Earth Science, 25(4): 390-396(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx200004011
      Wu, Y.M., Guo, F., Wang, X.C., et al., 2020. Derivation of Jurassic HIMU-Like Intraplate Basalts from Mantle Transition Zone in South China: New Geochemical Constraints from Olivine-Hosted Melt Inclusion. Lithos, 354-355: 105337. https://doi.org/10.1016/j.lithos.2019.105337
      Xiao, C.H., Shen, Y.K., Wei, C.S., et al., 2018. LA-ICP-MS Zircon U-Pb Dating, Hf Isotopic Composition and Ce4+/Ce3+ Characteristics of the Yanshanian Acid Magma in the Xidamingshan Cluster, Southeastern Margin of the Youjiang Fold Belt, Guangxi. Geoscience, 32(2): 289-304(in Chinese with English abstract).
      Xiao, Q.R., 2018. Diagenetic Tectonic Setting and Mineralization Response of Magmatic Rocks in Yanshanian in Western Zhejiang Province. Collections of the China Earth Science Joint Scientific Annual Conference, Beijing(in Chinese).
      Xie, G.Q., Hu, R.Z., Zhao, J.H., et al., 2001. Mantle Plume and the Relationship between It and Mesozoic Large-Scale Metallogenesis in Southeastern China: A Preliminary Discussion. Geotectonica et Metallogenia, 25(2): 179-186(in Chinese with English abstract). http://www.researchgate.net/publication/284981848_Mantle_plume_and_the_relationship_between_it_and_Mesozoic_large-scale_metallogenesis_in_southeastern_China_A_preliminary_discussion
      Xu, J.W., Zhu, G., Tong, W.X., et al., 1987. Formation and Evolution of the Tancheng-Lujiang Wrench Fault System: A Major Shear System to the Northwest of the Pacific Ocean. Tectonophysics, 134(4): 273-310. https://doi.org/10.1016/0040-1951(87)90342-8
      Yang, J.H., Cawood, P.A., Du, Y.S., et al., 2012. Detrital Record of Indosinian Mountain Building in SW China: Provenance of the Middle Triassic Turbidites in the Youjiang Basin. Tectonophysics, 574-575: 105-117. https://doi.org/10.1016/j.tecto.2012.08.027
      Zhang, B., Guo, F., Zhang, X.B., 2020. Petrogenesis of Granitic Rocks in the Pingtan Island, Fujian Province: Constraints from Zircon U-Pb Dating, O-Hf Isotopes and Biotite Mineral Chemistry. Acta Petrologica Sinica, 36(4): 995-1014(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.04.02
      Zhang, G.W., Guo, A.L., Wang, Y.J., et al., 2013. Structure and Problems of South China Continent. Science in China: Earth Science, 43(10): 1553-1582(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1367912012003525
      Zhang, Q., Qian, Q., Wang, Y., et al., 1999. Late Paleozoic Basic Magmatism from SW Yangtze Massif and Evolution of the Paleo- Tethyan Ocean. Acta Petrologica Sinica, 15(4): 576-583(in Chinese with English abstract). http://www.oalib.com/paper/1471860
      Zhang, Y.Q., Dong, S.W., 2019. East Asia Multi-Plate Convergence in Late Mesozoic and the Development of Continental Tectonic Systems. Journal of Geomechanics, 25(5): 613-641(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905004.htm
      Zhang, Y.Q., Xu, X.B., Jia, D., et al., 2009. Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic. Earth Science Frontiers, 16(1): 234-247(in Chinese with English abstract). http://www.researchgate.net/publication/284573329_Deformation_record_of_the_change_from_Indosinian_collision-related_tectonic_system_to_Yanshanian_subduction-related_tectonic_system_in_South_China_during_the_Early_Mesozoic
      Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
      Zhou, Y.Z., Li, X.Y., Zheng, Y., et al., 2017. Geological Settings and Metallogenesis of Qinzhou Bay-Hangzhou Bay Orogenic Juncture Belt, South China. Acta Petrologica Sinica, 33(3): 667-681(in Chinese with English abstract). http://www.researchgate.net/publication/316279671_Geological_settings_and_metallogenesis_of_Qinzhou_Bay-Hangzhou_Bay_orogenic_juncture_belt_South_China
      毕诗健, 杨振, 李巍, 等, 2015. 钦杭成矿带大瑶山地区晚白垩世斑岩型铜矿床: 锆石U-Pb定年及Hf同位素制约. 地球科学, 40(9): 1458-1479. doi: 10.3799/dqkx.2015.132
      蔡明海, 梁婷, 韦可利, 等, 2006. 大厂锡多金属矿田铜坑-长坡92号矿体Rb-Sr测年及其地质意义. 华南地质与矿产, (2): 31-36. doi: 10.3969/j.issn.1007-3701.2006.02.006
      陈富文, 李华芹, 梅玉萍, 2008. 广西龙头山斑岩型金矿成岩成矿锆石SHRIMP U-Pb年代学研究. 地质学报, 82(7): 921-926. doi: 10.3321/j.issn:0001-5717.2008.07.009
      陈懋弘, 陆刚, 李新华, 2012. 桂西北地区石英斑岩脉白云母40Ar/39Ar年龄及其地质意义. 高校地质学报, 18(1): 106-116. doi: 10.3969/j.issn.1006-7493.2012.01.009
      陈卫锋, 陈培荣, 徐夕生, 等, 2005. 华南白垩纪玄武质岩石的地球化学特征及其对太平洋板块俯冲作用的制约. 中国科学: 地球科学, 35(11): 1007-1018. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200511000.htm
      戴立群, 赵子福, 2019. 大陆碰撞造山带镁铁质岩浆岩记录俯冲古洋壳物质再循环. 地球科学, 44(12): 4128-4134. doi: 10.3799/dqkx.2019.240
      董树文, 张岳桥, 陈宣华, 等, 2008. 晚侏罗世东亚多向汇聚构造体系的形成与变形特征. 地球学报, 29(3): 306-317. doi: 10.3321/j.issn:1006-3021.2008.03.005
      段瑞春, 凌文黎, 李青, 等, 2011. 华南燕山晚期构造-岩浆事件与成矿作用: 来自广西大瑶山龙头山金矿床的地球化学约束. 地质学报, 85(10): 1644-1658. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201110009.htm
      范蔚茗, 王岳军, 郭锋, 等, 2003. 湘赣地区中生代镁铁质岩浆作用与岩石圈伸展. 地学前缘, 10(3): 159-169. doi: 10.3321/j.issn:1005-2321.2003.03.015
      高剑峰, 陆建军, 赖鸣远, 等, 2003. 岩石样品中微量元素的高分辨率等离子质谱分析. 南京大学学报(自然科学版), 39(6): 844-850. doi: 10.3321/j.issn:0469-5097.2003.06.014
      高秦, 于津海, 朱光磊, 2019. 地幔组成差异对扬子地块和华夏地块西延边界的限定: 来自幔源岩脉的地球化学证据. 地球化学, 48(1): 9-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201901002.htm
      广西壮族自治区地质矿产局, 1985. 广西壮族自治区区域地质志. 北京: 地质出版社.
      广西壮族自治区地质矿产局, 1992. 广西金牙-凌云地区1: 5万区域地质调查报告. 广西: 广西壮族自治区地质矿产局, 135-143.
      胡阿香, 彭建堂, 2016. 湘中锡矿山中生代煌斑岩及其成因研究. 岩石学报, 32(7): 2041-2056. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201607008.htm
      胡升奇, 周国发, 彭松柏, 等, 2012. 广西大黎铜钼矿石英二长(斑)岩年代学、地球化学特征及其地质意义. 地球学报, 33(1): 23-37. doi: 10.3975/cagsb.2012.01.04
      华仁民, 2005. 南岭中生代陆壳重熔型花岗岩类成岩-成矿的时间差及其地质意义. 地质论评, 51(6): 633-639. doi: 10.3321/j.issn:0371-5736.2005.06.004
      贾祖冰, 2017. 华南中新生代地幔性质的演化及其与太平洋板块俯冲之间的关系(博士学位论文). 合肥: 中国科学技术大学.
      雷祝梁, 曾罡, 王小均, 等, 2019. 中国东南部晚中生代基性岩脉地幔源区的岩性演化历史. 地球科学, 44(4): 1159-1170. doi: 10.3799/dqkx.2019.021
      李建华, 2013. 华南中生代大地构造过程-源于北部大巴山和中部沅麻盆地、衡山的构造变形及年代学约束(博士学位论文). 北京: 中国地质科学院.
      李庶波, 王岳军, 2016. 华南东部中-新生代构造热演化格局的裂变径迹记录. 北京: 中国地球科学联合学术年会论文集.
      李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004
      李献华, 周汉文, 刘颖, 等, 1999. 桂东南钾玄质侵入岩带及其岩石学和地球化学特征. 科学通报, 44(18): 1992-1998. doi: 10.3321/j.issn:0023-074X.1999.18.017
      李志昌, 路远发, 黄圭成, 2004. 放射性同位素地质学方法与进展. 武汉: 中国地质大学出版社.
      刘飞, 李堃, 黄圭成, 等, 2018. 桂中昆仑关A型花岗岩锆石U-Pb年代学与地球化学特征. 地球科学, 43(7): 2313-2329. doi: 10.3799/dqkx.2018.180
      刘娇, 周洋, 谢德根, 等, 2016. 云南建水煌斑岩年代学和地球化学及其构造意义. 中国地质, 43(6): 1977-1991. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201606010.htm
      刘燊, 2004. 山东地区中生代岩浆作用与地壳拉张-兼论煌斑岩与金成矿的关系(博士学位论文). 北京: 中国科学院研究生院.
      路凤香, 舒小辛, 赵崇贺, 1991. 有关煌斑岩分类的建议. 地质科技情报, 10(增刊1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ1991S1006.htm
      陆刚, 黄祥林, 李文强, 等, 2013.1: 25万南丹幅区域地质调查报告. 南宁: 广西壮族自治区地质调查院.
      毛建仁, 高桥浩, 厉子龙, 等, 2009. 中国东南部与日本中-新生代构造-岩浆作用对比研究. 地质通报, 28(7): 844-856. doi: 10.3969/j.issn.1671-2552.2009.07.004
      毛景文, 谢桂青, 李晓峰, 等, 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45-55. doi: 10.3321/j.issn:1005-2321.2004.01.003
      秦社彩, 2007. 浙闽白垩纪镁铁质火山岩地球化学特征及其深部动力学意义(博士学位论文). 广州: 中国科学院研究生院.
      秦社彩, 范蔚茗, 郭锋, 2019. 江绍断裂带晚中生代镁铁质火山岩成因及其深部过程意义. 岩石学报, 35(6): 1892-1906. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201906016.htm
      舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003
      舒良树, 周新民, 2002. 中国东南部晚中生代构造作用. 地质论评, 48(3): 249-260. doi: 10.3321/j.issn:0371-5736.2002.03.004
      谭俊, 魏俊浩, 李水如, 等, 2008. 广西昆仑关A型花岗岩地球化学特征及构造意义. 地球科学, 33(6): 743-754. doi: 10.3321/j.issn:1000-2383.2008.06.002
      汪云亮, 张成江, 修淑芝, 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103008.htm
      王磊, 金鑫镖, 王新宇, 等, 2015. 桂北罗城垒洞煌斑岩形成过程: 地球化学、年代学和Sr-Nd-Pb同位素约束. 地质科技情报, 34(1): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501003.htm
      王强, 赵振华, 简平, 等, 2005. 华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约. 岩石学报, 21(3): 795-808. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503020.htm
      王新宇, 吴祥珂, 何川, 等, 2019. 桂中都安钾镁煌斑岩金云母40Ar/39Ar年龄及其构造意义. 地质通报, 38(4): 680-688. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201904018.htm
      吴福元, 葛文春, 孙德有, 等, 2003. 中国东部岩石圈减薄研究中的几个问题. 地学前缘, 10(3): 51-60. doi: 10.3321/j.issn:1005-2321.2003.03.004
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      吴淦国, 张达, 陈柏林, 等, 2000. 中国东南大陆中生代构造域的转换及其与成矿的关系: 以闽西南地区为例. 地球科学, 25(4): 390-396. doi: 10.3321/j.issn:1000-2383.2000.04.011
      吴根耀, 吴浩若, 钟大赉, 等, 2000. 滇桂交界处古特提斯的洋岛和岛弧火山岩. 现代地质, 14(4): 393-400. doi: 10.3969/j.issn.1000-8527.2000.04.002
      肖昌浩, 申玉科, 韦昌山, 等, 2018. 广西右江褶皱带东南缘西大明山矿集区燕山期酸性岩浆锆石U-Pb年龄、Hf同位素和Ce(Ⅳ)/Ce(Ⅲ)特征. 现代地质, 32(2): 289-304. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201802008.htm
      肖倩茹, 2018. 浙西燕山期岩浆岩成岩构造背景及成矿响应. 北京: 中国地球科学联合学术年会论文集.
      谢桂青, 胡瑞忠, 赵军红, 等, 2001. 中国东南部地幔柱及其与中生代大规模成矿关系初探. 大地构造与成矿学, 25(2): 179-186. doi: 10.3969/j.issn.1001-1552.2001.02.010
      张博, 郭锋, 张晓兵, 2020. 福建平潭岛花岗质岩石成因: 来自锆石U-Pb定年、O-Hf同位素及黑云母矿物化学的约束. 岩石学报, 36(4): 995-1014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202004002.htm
      张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm
      张旗, 钱青, 王焰, 等, 1999. 扬子地块西南缘晚古生代基性岩浆岩的性质与古特提斯洋的演化. 岩石学报, 15(4): 576-583. doi: 10.3321/j.issn:1000-0569.1999.04.010
      张岳桥, 董树文, 2019. 晚中生代东亚多板块汇聚与大陆构造体系的发展. 地质力学学报, 25(5): 613-641. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905004.htm
      张岳桥, 徐先兵, 贾东, 等, 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘, 16(1): 234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026
      周永章, 李兴远, 郑义, 等, 2017. 钦杭结合带成矿地质背景及成矿规律. 岩石学报, 33(3): 667-681. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201703001.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(19)  / Tables(5)

      Article views (2299) PDF downloads(114) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return