• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 12
    Dec.  2021
    Turn off MathJax
    Article Contents
    Zhang Jianfeng, Liu Hanbin, Shi Xiao, Jin Guishan, Han Juan, Li Junjie, Zhang Jia, Guo Dongqiao, 2021. High Reaction Temperature Influence on Determination of Oxygen Isotopic Composition by BrF5 Method. Earth Science, 46(12): 4470-4479. doi: 10.3799/dqkx.2021.052
    Citation: Zhang Jianfeng, Liu Hanbin, Shi Xiao, Jin Guishan, Han Juan, Li Junjie, Zhang Jia, Guo Dongqiao, 2021. High Reaction Temperature Influence on Determination of Oxygen Isotopic Composition by BrF5 Method. Earth Science, 46(12): 4470-4479. doi: 10.3799/dqkx.2021.052

    High Reaction Temperature Influence on Determination of Oxygen Isotopic Composition by BrF5 Method

    doi: 10.3799/dqkx.2021.052
    • Received Date: 2021-01-12
    • Publish Date: 2021-12-15
    • Reaction temperature and reaction time are key factors for the determination of oxygen isotopic composition of oxides and silicate minerals by BrF5 method. This work aims to study the effect of the higher temperature (550-800℃) on the oxygen isotopic composition analysis by BrF5 method. The national standard sample GBW04409 for oxygen isotopic composition were prepared and analyzed at high reaction temperatures. The results show that sufficient yields of O2 could be achieved when sample was reacted with BrF5 at 550-675℃, under which condition the δ18O value fell in the range of 10.4‰-11.8‰ with high accuracy. However, when the reaction temperature was higher than 700℃, the yields of O2 were low, and the δ18O values were in the range of 10.8‰-26.8‰, which had a significant positive deviation to the given δ18O values. To solve the problem due to effect of the higher temperature, fractional fluorination was conducted. The results of oxygen isotopic composition obtained were consistent with the recommended value when the oxygen liberated after each time fluorination was all collected. The consumption of BrF5 by the nickel reactor at higher temperature results in the insufficient amount of BrF5 reacted with the sample, which causes the low yield of O2, thus the fractionation of oxygen isotope.

       

    • loading
    • Chen, Z.M., 1990. Preliminary Experiment in Analyzing Oxygen Isotope in Minerals and Rocks by BrF5 Method. Geological Laboratory, 6(6): 377-379(in Chinese).
      Clayton, R.N., 1986. High Temperature Isotope Effects in the Early Solar System. Review in Mineralogy and Geochemistry, 16: 129-139.
      Clayton, R.N., Mayeda, T.K., 1963. The Use of Bromine Pentafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis. Geochimica et Cosmochimica Acta, 27(1): 43-52. https://doi.org/10.1016/0016-7037(63)90071-1
      Ding, T.P., Wan, D.F., Li, J.C., et al., 1988. The Analytic Method of Silicon Isotopes and Its Geological Application. Mineral Deposits, 7(4): 90-96(in Chinese with English abstract).
      Gao, J.F., Ding, T.P., 2008. Laser Microprobe Oxygen Isotope Analysis Method and Geology Applications. Geological Review, 54(1): 139-144(in Chinese with English abstract).
      Garlick, G.D., Epstein, S., 1967. Oxygen Isotope Ratios in Coexisting Minerals of Regionally Metamorphosed Rocks. Geochimica et Cosmochimica Acta, 31(2): 181-214. https://doi.org/10.1016/s0016-7037(67)80044-9
      Gong, B., Zheng, Y.F., 2003. A CO2-Laser Technique for Oxygen Isotope Analysis of Silicates. Earth Science Frontiers, 10(2): 279-286(in Chinese with English abstract).
      Hao, G.M., Xie, H.Q., Liu, Y.S., et al., 2020. SHRIMP Zircon U-Pb Ages, Geochemistry, Nd-Hf-O Isotopic Compositions of the Huai'an Complex in the Northwest of Hebei Province and Its Geological Significance. Earth Science, 45(9): 3353-3371(in Chinese with English abstract).
      Jiang, J.S., Zheng, Y.Y., Gao, S.B., et al., 2015. Genesis of Chazangcuo Cu-Pb-Zn Deposit, Tibet: Constrains from C-H-O-S-Pb Isotope Geochemistry. Earth Science, 40(6): 1006-1016(in Chinese with English abstract).
      Li, Y.H., Wan, D.F., Zhang, G.B., et al., 1992. A Study on BrF5Method of Oxygen Isotope Analyses of Oxides and Silicates: Progress of Analytic Methods of Stable Isotopes. Science and Technology Publishing House, Beijing, 37-43(in Chinese).
      Liang, W., 2019. Characteristics of Ore-Forming Fluids in Himalayan Au-Sb-Pb-Zn Polymetallic Belt: Constraints from H-O Isotopes. Earth Science, 44(7): 2308-2321(in Chinese with English abstract).
      Liu, X., Deng, W.F., Wei, J.X., et al., 2016. Analysis of Triple Oxygen Isotopic Compositions of Silicate Minerals by Using Laser Fluorination System. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 448-453(in Chinese with English abstract).
      Lu, Q.Y., Zheng, Y., Wang, C.M., et al., 2018. S-Pb-Sr-Nd-C-H-O Isotopic Geochemistry of the Wulasigou Cu Deposit in the South Altay: Constraints for the Fluid and Metal Sources. Earth Science, 43(9): 3141-3153(in Chinese with English abstract).
      Mattey, D., MacPherson, C., 1993. High-Precision Oxygen Isotope Microanalysis of Ferromagnesian Minerals by Laser-Fluorination. Chemical Geology, 105(4): 305-318. https://doi.org/10.1016/0009-2541(93)90133-4
      Pan, Z.L., Zhao, A.X., Pan, T.H., 1994. Crystallography and Mineralogy II (Third Edition). Geological Publishing House, Beijing, 50-102(in Chinese).
      Sharp, Z. D, 1990. A Laser-Based Microanalytical Method for the In-Situ Determination of Oxygen Isotope Ratios of Silicates and Oxides. Geochimica et Cosmochimica Acta, 54(5): 1353-1357. https://doi.org/10.1016/0016-7037(90)90160-m
      Shi, X., Liu, H. B, Zhang, J.F., et al., 2018. Study on Reaction Temperature of Oxygen Isotopes Composition of Refractory Minerals Using BrF5 Method. World Nuclear Geoscience, 35(1): 52-59(in Chinese with English abstract).
      Valley, J.W., Kinny, P.D., Schulze, D.J., et al., 1998. Zircon Megacrysts from Kimberlite: Oxygen Isotope Variability among Mantle Melts. Contributions to Mineralogy and Petrology, 133(1-2): 1-11. https://doi.org/10.1007/s004100050432
      Wan, D.F., Li, Y.H., 2006. Analytical Method of Oxygen Isotope Composition in Sulphates. Geological Journal of China Universitis, 12(3): 378-383(in Chinese with English abstract).
      Wang, R., Chen, J.B., Zhao, L.S., et al., 2013. In-Situ Oxygen Isotope Analysis of Conodonts by SIMS and Its Implication for Paleo-Sea Surface Temperature. Global Geology, 2013, 32(4): 652-658(in Chinese with English abstract).
      Yuan, W.L., Pan, F.Y., 1996. Experiment Study of BrF5 Method: An Analysis Method of Oxygen Isotope. Mineral Resources and Geology, 10(5): 356-361(in Chinese with English abstract).
      Zhang, J.F., Liu, H.B., Shi, X., et al., 2019. Study on Influence Factors for Determination of Oxygen Isotopic Composition of Silicates and Oxide Minerals by BrF5 Method. Rock and Mineral Analysis, 38(1): 45-54(in Chinese with English abstract).
      Zhang, J.F., Liu, H.B., Jin, G.S., et al., 2021. Improvement of Analysis Device and Method of Oxygen Isotopic Compositions in Rocks and Minerals. World Nuclear Geoscience, 38(1): 97-105(in Chinese with English abstract).
      Zhao, R.Y., Chen, Y.C., Chen, Y.J., et al., 2020. Geological Characteristics and Its Genesis of the Jiling Na-Metasomatic Uranium Deposit in Longshou Mountains, Gansu Province. Earth Science, 45(1): 90-107(in Chinese with English abstract).
      Zheng, S.H., Zheng, S.C., Mo, Z.C., 1986. Stable Isotope Analyses of Geochemistry. Peking University Press, Beijing, 194-216(in Chinese).
      Zhou, L.Q., Williams, I.S., Liu, J.H., et al., 2012. Methodology of SHRIMP In-Situ O Isotope Analysis on Conodont. Acta Geologica Sinica, 86(4): 611-618(in Chinese with English abstract).
      陈忠民, 1990. BrF5法分析岩石矿物中氧同位素的条件试验. 地质实验室, 6(6): 377-379.
      丁悌平, 万德芳, 李金城, 等, 1988. 硅同位素测量方法及其地质应用. 矿床地质, 7(4): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198804011.htm
      高建飞, 丁悌平, 2008. 激光熔蚀微量氧同位素分析方法及其地质应用. 地质论评, 54(1): 139-144. doi: 10.3321/j.issn:0371-5736.2008.01.016
      龚冰, 郑永飞, 2003. 硅酸盐矿物氧同位素组成的激光分析. 地学前缘, 10(2): 279-286. doi: 10.3321/j.issn:1005-2321.2003.02.003
      郝光明, 颉颃强, 刘永顺, 等, 2020. 冀西北怀安杂岩的年代学、地球化学、Nd-Hf-O同位素组成及其地质意义. 地球科学, 45(9): 3353-3371. doi: 10.3799/dqkx.2020.188
      姜军胜, 郑有业, 高顺宝, 等, 2015. 西藏查藏错铜铅锌矿床成因: C-H-O-S-Pb同位素制约. 地球科学, 40(6): 1006-1016. doi: 10.3799/dqkx.2015.084
      李延河, 万德芳, 张国柄, 等, 1992. 氧化物、硅酸盐矿物的氧同位素分析方法: BrF5法: 稳定同位素分析方法研究进展. 北京: 科学技术出版社, 37-43.
      梁维, 2019. 特提斯喜马拉雅金锑铅锌多金属成矿带成矿流体特征: 来自H-O同位素的约束. 地球科学, 44(7): 2308-2321. doi: 10.3799/dqkx.2019.172
      刘熙, 邓文峰, 魏静娴, 等, 2016. 利用激光氟化系统分析硅酸盐矿物的三氧同位素组成. 矿物岩石地球化学通报, 35(3): 448-453. doi: 10.3969/j.issn.1007-2802.2016.03.006
      卢琦园, 郑义, 王成明, 等, 2018. 阿尔泰南缘乌拉斯沟铜矿床S-Pb-Sr-Nd-C-H-O同位素特征及其对成矿物质和流体来源限定. 地球科学, 43(9): 3141-3153. doi: 10.3799/dqkx.2018.135
      潘兆橹, 赵爱醒, 潘铁虹, 1994. 结晶学及矿物学下册(第三版). 北京: 地质出版社, 50-102.
      石晓, 刘汉彬, 张建锋, 等, 2018. BrF5法分析难熔矿物氧同位素组成的反应温度探讨. 世界核地质科学, 35(1): 52-59. doi: 10.3969/j.issn.1672-0636.2018.01.008
      万德芳, 李延河, 2006. 硫酸盐的氧同位素测量方法. 高校地质学报, 12(3): 378-383. doi: 10.3969/j.issn.1006-7493.2006.03.010
      王润, 陈剑波, 赵来时, 等, 2013. 二次离子质谱微区原位牙形石氧同位素分析及其在古海表水温记录中的应用. 世界地质, 32(4): 652-658. doi: 10.3969/j.issn.1004-5589.2013.04.002
      袁维玲, 潘飞云, 1996. 氧同位素分析方法: BrF5法的实验研究. 矿产与地质, 10(5): 356-361. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD605.011.htm
      张建锋, 刘汉彬, 金贵善, 等, 2021. 岩石和矿物中氧同位素组成分析制样装置改进及分析方法. 世界核地质科学, 38(1): 97-105. doi: 10.3969/j.issn.1672-0636.2021.01.011
      张建锋, 刘汉彬, 石晓, 等, 2019. 五氟化溴法测定硅酸盐及氧化物矿物氧同位素组成的影响因素研究. 岩矿测试, 38(1): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201901005.htm
      赵如意, 陈毓川, 陈云杰, 等, 2020. 甘肃省龙首山芨岭钠交代型铀矿床地质特征与成因. 地球科学, 45(1): 90-107. doi: 10.3799/dqkx.2018.287
      郑淑蕙, 郑斯成, 莫志超, 1986. 稳定同位素地球化学分析. 北京: 北京大学出版社, 194-216.
      周丽芹, Williams, I.S., 刘建辉, 等, 2012. 牙形石SHRIMP微区原位氧同位素分析方法. 地质学报, 86(4): 611-618. doi: 10.3969/j.issn.0001-5717.2012.04.007
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(2)

      Article views (1280) PDF downloads(54) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return