Citation: | Wang Detao, Chen Guoxiong, 2022. Seismic Wave Impedance Inversion Based on Temporal Convolutional Network. Earth Science, 47(4): 1492-1506. doi: 10.3799/dqkx.2021.070 |
Alfarraj, M., AlRegib, G., 2018. Petrophysical-Property Estimation from Seismic Data Using Recurrent Neural Networks. SEG Technical Program Expanded Abstracts 2018, 2141-2146. https://doi.org/10.1190/segam2018-2995752.1
|
Alfarraj, M., Alregib, G., 2019. Semi-supervised Learning for Acoustic Impedance Inversion. SEG Technical Program Expanded Abstracts 2019. https://doi.org/10.1190/segam2019-3215902.1
|
Alregib, G., Deriche, M., Long, Z. L., et al., 2018. Subsurface Structure Analysis Using Computational Interpretation and Learning: A Visual Signal Processing Perspective. IEEE Signal Processing Magazine, 35(2): 82-98. https://doi.org/10.1109/MSP.2017.2785979
|
Badrinarayanan, V., Kendall, A., Cipolla, R., 2017. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12): 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615
|
Bai, S. J., Kolter, J.Z., Koltun, V., 2018. An Empirical Evaluation of Generic Convolutional and Recurrent Networks Forsequence Modeling. arXiv Preprint arXiv: 1803.01271
|
Bing, P.P., Cao, S.Y., Lu, J.T., 2012. Non-Linear AVO Inversion Based on Support Vector Machine. Chinese Journal of Geophysics, 55(3): 1025-1032(in Chinese with English abstract).
|
Buland, A., Omre, H., 2003. Bayesian Linearized AVO Inversion. Geophysics, 68(1): 185-198. https://doi.org/10.1190/1.1543206
|
Calderon-Macias, C., Sen, M.K., 1993. Geophysical Interpretation by Artificial Neural Systems: A Feasibility Study SEG Technical Program Expanded Abstracts 1993. Society of Exploration Geophysicists, 254-257. https://doi.org/10.1190/1.1822453
|
Das, V., Pollack, A., Wollner, U., et al., 2019. Convolutional Neural Network for Seismic Impedance Inversion. Geophysics, 84(6): R869-R880. https://doi.org/10.1190/geo2018-0838.1
|
Duijndam, A.J.W., 1988. Bayesian Estimation in Seismic Inversion. Part Ⅰ: Principles. Geophysical Prospecting, 36(8): 878-898. https://doi.org/10.1111/j.1365-2478.1988.tb02198.x
|
Gholami, A., 2015. Nonlinear Multichannel Impedance Inversion by Total-Variation Regularization. Geophysics, 80(5): R217-R224. https://doi.org/10.1190/geo2015-0004.1
|
Gu, Y., Zhu, P.M., Rong, H., et al., 2013. Seismic Facies Classification Based on Bayesian Networks. Earth Science, 38(5): 1143-1152(in Chinese with English abstract).
|
He, K. M., Zhang, X. Y., Ren, S. Q., et al., 2015. Delving Deep into Rectifiers: Surpassing Human-Level Performance on Image Net Classification. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 1026-1034. https://doi.org/10.1109/ICCV.2015.123
|
He, K. M., Zhang, X. Y., Ren, S. Q., et al., 2016. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 770-778. https://doi.org/10.1109/CVPR.2016.90
|
He, Q.L., Wang, Y.F., 2021. Reparameterized Full-Waveform Inversion Using Deep Neural Networks. Geophysics, 86(1): V1-V13. https://doi.org/10.1190/geo2019-0382.1
|
Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computation, 9(8): 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
|
LeCun, Y., Bottou, L., Bengio, Y., et al., 1998. Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11): 2278-2324. https://doi.org/10.1109/5.726791
|
Li, M., Li, Y., Wu, N., et al., 2020a. Desert Seismic Random Noise Reduction Framework Based on Improved PSO-SVM. Acta Geodaetica et Geophysica, 55(1): 101-117. https://doi.org/10.1007/s40328-019-00283-3
|
Li, S.C., Liu, B., Ren, Y.X., et al., 2020b. Deep-Learning Inversion of Seismic Data. IEEE Transactions on Geoscience and Remote Sensing, 58(3): 2135-2149. https://doi.org/10.1109/TGRS.2019.2953473
|
Li, X.G., Wu, X., 2020. Progresses of Artificial Intelligence on Seismic Data Processing and Interpretation Reviewed from SEG Annual Meetings. World Petroleum Industry, 27(4): 27-35(in Chinese with English abstract).
|
Liu, Z.L., Lu, Z.W., Jia, J.L., et al., 2019. Using Deep Seismic Reflection to Profile Deep Structure of Ore Concentrated Area: Current Status and Case Histories. Earth Science, 44(6): 2084-2105(in Chinese with English abstract).
|
Martin, G.S., Wiley, R., Marfurt, K.J., 2006. Marmousi2: An Elastic Upgrade for Marmousi. The Leading Edge Nair, 25(2): 156-166. https://doi.org/10.1190/1.2172306
|
Nair, V., Hinton, G.E., 2010. Rectified Linear Units Improve Restricted Boltzmann Machines. Proceedings of the 27th International Conference on Machine Learning (ICML-10), Israel, 807-814.
|
Puzyrev, V., Egorov, A., Pirogova, A., et al., 2019. Seismic Inversion with Deep Neural Networks: A Feasibility Analysis 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, London, UK, 1-5. https://doi.org/10.3997/2214-4609.201900765
|
Srivastava, N., Hinton, G., Krizhevsky, A., et al., 2014. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15: 1929-1958.
|
Tan, F.Q., Li, H.Q., Xu, C.F., et al., 2012. Reservoir Classification of Conglomerate Reservoir Base on Clustering Analysis Method. Progress in Geophysics, 27(1): 246-254(in Chinese with English abstract).
|
Xu, P., Lu, W., Tang, J., et al., 2019. High-Resolution Reservoir Prediction Using Convolutional Neural Networks 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, London, UK, 1-5. https://doi.org/10.3997/2214-4609.201901392
|
Yang, P.J., Yin, X.Y., 2008. Prestack Seismic Inversion Method Based on Support Vector Machine. Journal of China University of Petroleum (Edition of Natural Science), 32(1): 37-41(in Chinese with English abstract).
|
邴萍萍, 曹思远, 路交通, 2012. 基于支持向量机的非线性AVO反演. 地球物理学报, 55(3): 1025-1032. doi: 10.6038/j.issn.0001-5733.2012.03.033
|
顾元, 朱培民, 荣辉, 等, 2013. 基于贝叶斯网络的地震相分类. 地球科学, 38(5): 1143-1152. doi: 10.3799/dqkx.2013.114
|
李晓光, 吴潇, 2020. 从SEG年会看人工智能在地震数据处理与解释中的新进展. 世界石油工业, 27(4): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SSYY202004007.htm
|
刘子龙, 卢占武, 贾君莲, 等, 2019. 利用深地震反射剖面开展矿集区深部结构的探测: 现状与实例. 地球科学, 44(6): 2084-2105. doi: 10.3799/dqkx.2019.020
|
谭锋奇, 李洪奇, 许长福, 等, 2012. 基于聚类分析方法的砾岩油藏储层类型划分. 地球物理学进展, 27(1): 246-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201201028.htm
|
杨培杰, 印兴耀, 2008. 基于支持向量机的叠前地震反演方法. 中国石油大学学报(自然科学版), 32(1): 37-41. doi: 10.3321/j.issn:1673-5005.2008.01.008
|