Citation: | Zhu Yuanfeng, Dong Ge, Liu Xi, Sheng Xuefen, Wei Haizhen, 2021. Progress of Silver Isotopes Studies in Planetary and Earth Sciences. Earth Science, 46(12): 4390-4404. doi: 10.3799/dqkx.2021.080 |
Araújo, D.F., Boaventura, G.R., Machado, W., et al., 2017. Tracing of Anthropogenic Zinc Sources in Coastal Environments Using Stable Isotope Composition. Chemical Geology, 449: 226-235. https://doi.org/10.1016/j.chemgeo.2016.12.004
|
Argapadmi, W., Toth, E.R., Fehr, M.A., et al., 2018. Silver Isotopes as a Source and Transport Tracer for Gold: A Reconnaissance Study at the Sheba and New Consort Gold Mines in the Barberton Greenstone Belt, Kaapvaal Craton, South Africa. Economic Geology, 113(7): 1553-1570. https://doi.org/10.5382/econgeo.2018.4602
|
Arribas, A., Mathur, R., Megaw, P., et al., 2020. The Isotopic Composition of Silver in Ore Minerals. Geochemistry, Geophysics, Geosystems, 21(8): e2020GC009097. https://doi.org/10.1029/2020gc009097
|
Benedix, G.K., McCoy, T.J., Keil, K., et al., 2000. A Petrologic Study of the IAB Iron Meteorites: Constraints on the Formation of the IAB-Winonaite Parent Body. Meteoritics & Planetary Science, 35(6): 1127-1141. https://doi.org/10.1111/j.1945-5100.2000.tb01502.x
|
Bianchini, A., Bowles, K.C., Brauner, C.J., et al., 2002. Evaluation of the Effect of Reactive Sulfide on the Acute Toxicity of Silver (Ⅰ) to Daphnia Magna. Part 2: Toxicity Results. Environmental Toxicology and Chemistry, 21(6): 1294-1300. https://doi.org/10.1002/etc.5620210626
|
Carlson, R.W., Hauri, E.H., 2001. Extending the 107Pd-107Ag Chronometer to Low Pd/Ag Meteorites with Multicollector Plasma-Ionization Mass Spectrometry. Geochimica et Cosmochimica Acta, 65(11): 1839-1848. https://doi.org/10.1016/s0016-7037(01)00559-2 doi: 10.1016/S0016-7037(01)00559-2
|
Carlson, R.W., Lugmair, G.W., 2000. Timescales of Planetesimal Formation and Differentiation Based on Extinct and Extant Radioisotopes. Origin of the Earth and Moon. University of Arizona Press, Arizona, 25-44. https://doi.org/10.2307/j.ctv1v7zdrp.6
|
Chabot, N.L., Drake, M.J., 1997. An Experimental Study of Silver and Palladium Partitioning between Solid and Liquid Metal, with Applications to Iron Meteorites. Meteoritics & Planetary Science, 32(5): 637-645. https://doi.org/10.1111/j.1945-5100.1997.tb01549.x
|
Chabot, N.L., Haack, H., 2006. Evolution of Asteroidal Cores. Meteorites and the Early Solar System Ⅱ. University of Arizona Press, Arizona, 747-772.
|
Chen, J.H., Wasserburg, G.J., 1983. The Isotopic Composition of Silver and Lead in Two Iron Meteorites: Cape York and Grant. Geochimica et Cosmochimica Acta, 47(10): 1725-1737. https://doi.org/10.1016/0016-7037(83)90022-4
|
Chen, J.H., Wasserburg, G.J., 1990. The Isotopic Composition of Ag in Meteorites and the Presence of 107Pd in Protoplanets. Geochimica et Cosmochimica Acta, 54(6): 1729-1743. https://doi.org/10.1016/0016-7037(90)90404-9
|
Chen, J.H., Wasserburg, G.J., 1996. Live 107Pd in the Early Solar System and Implications for Planetary Evolution. Earth Processes: Reading the Isotopic Code. American Geophysical Union, Washington, D. C., 95: 1-20. https://doi.org/10.1029/gm095p0001
|
Chugaev, A.V., Chernyshev, I.V., 2012. High-Noble Measurement of 107Ag/109Ag in Native Silver and Gold by Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). Geochemistry International, 50(11): 899-910. https://doi.org/10.1134/s0016702912110055 doi: 10.1134/S0016702912110055
|
Desaulty, A.M., Albarede, F., 2013. Copper, Lead, and Silver Isotopes Solve a Major Economic Conundrum of Tudor and Early Stuart Europe. Geology, 41(2): 135-138. https://doi.org/10.1130/g33555.1 doi: 10.1130/G33555.1
|
Fabrega, J., Luoma, S.N., Tyler, C.R., et al., 2011. Silver Nanoparticles: Behaviour and Effects in the Aquatic Environment. Environment International, 37(2): 517-531. https://doi.org/10.1016/j.envint.2010.10.012
|
Flynn, K.F., Glendenin, L.E., 1969. Half-Life of 107Pd. Physical Review, 185(4): 1591-1593. https://doi.org/10.1103/physrev.185.1591 doi: 10.1103/PhysRev.185.1591
|
Fujii, T., Albarede, F., 2018. 109Ag-107Ag Fractionation in Fluids with Applications to Ore Deposits, Archeometry, and Cosmochemistry. Geochimica et Cosmochimica Acta, 234: 37-49. https://doi.org/10.1016/j.gca.2018.05.013
|
Fukuyama, M., Lee, D., 2010. Silver Isotope Variation in Ore Deposits by MC-ICP-MS. American Geophysical Union (AGU) Fall Meeting Abstracts, San Francisco.
|
Gammons, C.H., Williams-Jones, A.E., 1995. Hydrothermal Geochemistry of Electrum; Thermodynamic Constraints. Economic Geology, 90(2): 420-432. https://doi.org/10.2113/gsecongeo.90.2.420
|
Guo, Q., 2018. Accurate Determination of Stable Silver Isotopes and Its Application in Polymetallic Deposits in China (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
|
Guo, Q., Wei, H.Z., Jiang, S.Y., et al., 2017. Matrix Effects Originating from Coexisting Minerals and Accurate Determination of Stable Silver Isotopes in Silver Deposits. Analytical Chemistry, 89(24): 13634-13641. https://doi.org/10.1021/acs.analchem.7b04212
|
Hauri, E.H., Carlson, R.W., Bauer, J., 2000. The Timing of Core Formation and Volatile Depletion in Solar System Objects from High-Precision 107Pd-107Ag Isotope Systematics. Lunar and Planetary Science Conference Abstracts, Houston, Texas.
|
Heinrich, C.A., Günther, D., Audétat, A., et al., 1999. Metal Fractionation between Magmatic Brine and Vapor, Determined by Microanalysis of Fluid Inclusions. Geology, 27(8): 755. https://doi.org/10.1130/0091-7613(1999)0270755:mfbmba>2.3.co;2 doi: 10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2
|
Horan, M.F., Carlson, R.W., Blichert-Toft, J., 2012. Pd-Ag Chronology of Volatile Depletion, Crystallization and Shock in the Muonionalusta IVA Iron Meteorite and Implications for Its Parent Body. Earth and Planetary Science Letters, 351-352: 215-222. https://doi.org/10.1016/j.epsl.2012.07.028
|
Kaiser, T., Kelly, W.R., Wasserburg, G.J., 1980. Isotopically Anomalous Silver in the Santa Clara and Piñon Iron Meteorites. Geophysical Research Letters, 7(4): 271-274. https://doi.org/10.1029/gl007i004p00271 doi: 10.1029/GL007i004p00271
|
Kelly, W.R., Wasserburg, G.J., 1978. Evidence for the Existence of 107Pd in the Early Solar System. Geophysical Research Letters, 5(12): 1079-1082. https://doi.org/10.1029/gl005i012p01079 doi: 10.1029/GL005i012p01079
|
Kruijer, T.S., Fischer-Gödde, M., Kleine, T., et al., 2013. Neutron Capture on Pt Isotopes in Iron Meteorites and the Hf-W Chronology of Core Formation in Planetesimals. Earth and Planetary Science Letters, 361: 162-172. https://doi.org/10.1016/j.epsl.2012.10.014
|
Leeman, W.P., Vocke, R.D., McKibben, M.A., 1992. Boron Isotopic Fractionation between Coexisting Vapor and Liquid in Natural Geothermal Systems. International Association of GeoChemistry, 7th International Symposium on Water-Rock Interaction, Park City, Utah, 1007-1010.
|
Leya, I., Masarik, J., 2013. Thermal Neutron Capture Effects in Radioactive and Stable Nuclide Systems. Meteoritics & Planetary Science, 48(4): 665-685. https://doi.org/10.1111/maps.12090
|
Li, W., Gou, W.X., Li, W.Q., et al., 2019. Environmental Applications of Metal Stable Isotopes: Silver, Mercury and Zinc. Environmental Pollution, 252: 1344-1356. https://doi.org/10.1016/j.envpol.2019.06.037
|
Lodders, K., 2003. Solar System Abundances and Condensation Temperatures of the Elements. The Astrophysical Journal Letters, 591(2): 1220-1247. https://doi.org/10.1086/375492
|
Lu, D.W., Liu, Q., Zhang, T.Y., et al., 2016. Stable Silver Isotope Fractionation in the Natural Transformation Process of Silver Nanoparticles. Nature Nanotechnology, 11(8): 682-686. https://doi.org/10.1038/nnano.2016.93
|
Lugmair, G.W., Shimamura, T., Lewis, R.S., et al., 1983. Samarium-146 in the Early Solar System: Evidence from Neodymium in the Allende Meteorite. Science, 222(4627): 1015-1018. https://doi.org/10.1126/science.222.4627.1015
|
Lugmair, G.W., Shukolyukov, A., 1998. Early Solar System Timescales according to 53Mn-53Cr Systematics. Geochimica et Cosmochimica Acta, 62(16): 2863-2886. https://doi.org/10.1016/s0016-7037(98)00189-6 doi: 10.1016/S0016-7037(98)00189-6
|
Luo, Y., Dabek-Zlotorzynska, E., Celo, V., et al., 2010. Accurate and Precise Determination of Silver Isotope Fractionation in Environmental Samples by Multicollector-ICPMS. Analytical Chemistry, 82(9): 3922-3928. https://doi.org/10.1021/ac100532r
|
Mathur, R., Arribas, A., Megaw, P., et al., 2018. Fractionation of Silver Isotopes in Native Silver Explained by Redox Reactions. Geochimica et Cosmochimica Acta, 224: 313-326. https://doi.org/10.1016/j.gca.2018.01.011
|
Matthes, M., Fischer-Gödde, M., Kruijer, T.S., et al., 2015. Pd-Ag Chronometry of Iron Meteorites: Correction of Neutron Capture-Effects and Application to the Cooling History of Differentiated Protoplanets. Geochimica et Cosmochimica Acta, 169: 45-62. https://doi.org/10.1016/j.gca.2015.07.027
|
Matthes, M., van Orman, J.A., Kleine, T., 2020. Closure Temperature of the Pd-Ag System and the Crystallization and Cooling History of ⅢAB Iron Meteorites. Geochimica et Cosmochimica Acta, 285: 193-206. https://doi.org/10.1016/j.gca.2020.07.009
|
McCoy, T.J., Walker, R.J., Goldstein, J.I., et al., 2011. Group IVA Irons: New Constraints on the Crystallization and Cooling History of an Asteroidal Core with a Complex History. Geochimica et Cosmochimica Acta, 75(22): 6821-6843. https://doi.org/10.1016/j.gca.2011.09.006
|
Migdisov, A.A., Williams-Jones, A.E., 2013. A Predictive Model for Metal Transport of Silver Chloride by Aqueous Vapor in Ore-Forming Magmatic-Hydrothermal Systems. Geochimica et Cosmochimica Acta, 104: 123-135. https://doi.org/10.1016/j.gca.2012.11.020
|
Moynier, F., Yin, Q.Z., Jacobsen, B., 2007. Dating the First Stage of Planet Formation. The Astrophysical Journal Letters, 671(2): L181-L183. https://doi.org/10.1086/525527
|
Podosek, F.A., Cassen, P., 1994. Theoretical, Observational, and Isotopic Estimates of the Lifetime of the Solar Nebula. Meteoritics, 29(1): 6-25. https://doi.org/10.1111/j.1945-5100.1994.tb00649.x
|
Powell, L.J., Murphy, T.J., Gramlich, J.W., 1982. The Absolute Isotopic Abundance and Atomic Weight of a Reference Sample of Silver. Journal of Research of the National Bureau of Standards, 87(1): 9. https://doi.org/10.6028/jres.087.002
|
Rasmussen, K.L., 1989. Cooling Rates of ⅢAB Iron Meteorites. Icarus, 80(2): 315-325. https://doi.org/10.1016/0019-1035(89)90142-5
|
Rasmussen, K.L., Ulff-Møller, F., Haack, H., 1995. The Thermal Evolution of IVA Iron Meteorites: Evidence from Metallographic Cooling Rates. Geochimica et Cosmochimica Acta, 59(14): 3049-3059. https://doi.org/10.1016/0016-7037(95)00194-8
|
Righter, K., Schönbächler, M., Pando, K., et al., 2020. Ag Isotopic and Chalcophile Element Evolution of the Terrestrial and Martian Mantles during Accretion: New Constraints from Bi and Ag Metal-Silicate Partitioning. Earth and Planetary Science Letters, 552: 116590. https://doi.org/10.1016/j.epsl.2020.116590
|
Schauble, E.A., 2007. Role of Nuclear Volume in Driving Equilibrium Stable Isotope Fractionation of Mercury, Thallium, and Other very Heavy Elements. Geochimica et Cosmochimica Acta, 71(9): 2170-2189. https://doi.org/10.1016/j.gca.2007.02.004
|
Schönbächler, M., Carlson, R.W., Horan, M.F., et al., 2007. High Precision Ag Isotope Measurements in Geologic Materials by Multiple-Collector ICPMS: An Evaluation of Dry versus Wet Plasma. International Journal of Mass Spectrometry, 261(2-3): 183-191. https://doi.org/10.1016/j.ijms.2006.09.016
|
Schönbächler, M., Carlson, R.W., Horan, M.F., et al., 2008. Silver Isotope Variations in Chondrites: Volatile Depletion and the Initial 107Pd Abundance of the Solar System. Geochimica et Cosmochimica Acta, 72(21): 5330-5341. https://doi.org/10.1016/j.gca.2008.07.032
|
Schulz, T., Münker, C., Palme, H., et al., 2009. Hf-W Chronometry of the IAB Iron Meteorite Parent Body. Earth and Planetary Science Letters, 280(1-4): 185-193. https://doi.org/10.1016/j.epsl.2009.01.033
|
Scott, E.R.D., Haack, H., McCoy, T.J., 1996. Core Crystallization and Silicate-Metal Mixing in the Parent Body of the IVA Iron and Stony-Iron Meteorites. Geochimica et Cosmochimica Acta, 60(9): 1615-1631. https://doi.org/10.1016/0016-7037(96)00031-2
|
Seward, T.M., 1976. The Stability of Chloride Complexes of Silver in Hydrothermal Solutions up to 350℃. Geochimica et Cosmochimica Acta, 40(11): 1329-1341. https://doi.org/10.1016/0016-7037(76)90122-8
|
Seward, T.M., Williams-Jones, A.E., Migdisov, A.A., 2014. The Chemistry of Metal Transport and Deposition by Ore-Forming Hydrothermal Fluids. Treatise on Geochemistry, 13: 29-57. https://doi.org/10.1016/b978-0-08-095975-7.01102-5
|
Stefánsson, A., Seward, T.M., 2003. Experimental Determination of the Stability and Stoichiometry of Sulphide Complexes of Silver (Ⅰ) in Hydrothermal Solutions to 400℃. Geochimica et Cosmochimica Acta, 67(7): 1395-1413. https://doi.org/10.1016/s0016-7037(02)01093-1 doi: 10.1016/S0016-7037(02)01093-1
|
Sugiura, N., Hoshino, H., 2003. Mn-Cr Chronology of Five ⅢAB Iron Meteorites. Meteoritics & Planetary Science, 38(1): 117-143. https://doi.org/10.1111/j.1945-5100.2003.tb01050.x
|
Tessalina, S.G., Rankenburg, K., Naumo, V.E., et al., 2015. The Ag Isotope Systematics in Native Silver from Some Hydrothermal Deposits: Toward a New Tool for Mineral Deposits Studies. Mineral Resources in a Sustainable World, 13th Society for Geology Applied to Mineral Deposits (SGA) Biennial Meeting, Nancy, France, 647-650.
|
Theis, K.J., Schönbächler, M., Benedix, G.K., et al., 2010. Chronology of IAB Iron Meteorites Using the Pd-Ag Decay System. Meteoritics & Planetary Science, 73(7): 433-436. https://doi.org/10.1111/j.1945-5100.2010.01084.x
|
Theis, K.J., Schönbächler, M., Benedix, G.K., et al., 2013. Palladium-Silver Chronology of IAB Iron Meteorites. Earth and Planetary Science Letters, 361: 402-411. https://doi.org/10.1016/j.epsl.2012.11.004
|
Tolaymat, T.M., El Badawy, A.M., Genaidy, A., et al., 2010. An Evidence-Based Environmental Perspective of Manufactured Silver Nanoparticle in Syntheses and Applications: A Systematic Review and Critical Appraisal of Peer-Reviewed Scientific Papers. The Science of the Total Environment, 408(5): 999-1006. https://doi.org/10.1016/j.scitotenv.2009.11.003
|
Truesdell, A.H., Rye, R.O., Pearson, F.J.J., et al., 1979. Preliminary Isotopic Studies of Fluids from the Cerro Prieto Geothermal Field. Geothermics, 8(3-4): 223-229. https://doi.org/10.1016/0375-6505(79)90044-0
|
Voisey, C.R., Maas, R., Tomkins, A.G., et al., 2019. Extreme Silver Isotope Variation in Orogenic Gold Systems Implies Multistaged Metal Remobilization during Ore Genesis. Economic Geology, 114(2): 233-242. https://doi.org/10.5382/econgeo.2019.4629
|
Wasserburg, G.J., 1985. Short-Lived Nuclei in the Early Solar System. University of Arizona Press, Arizona, 703-737.
|
Wasson, J.T., Richardson, J.W., 2001. Fractionation Trends among IVA Iron Meteorites: Contrasts with ⅢAB Trends. Geochimica et Cosmochimica Acta, 65(6): 951-970. https://doi.org/10.1016/S0016-7037(00)00597-4
|
Wiederhold, J.G., Cramer, C.J., Daniel, K., et al., 2010. Equilibrium Mercury Isotope Fractionation between Dissolved Hg(Ⅱ) Species and Thiol-Bound Hg. Environmental Science & Technology, 44(11): 4191-4197. https://doi.org/10.1021/es100205t
|
Windeati, A., Eniko, R.T., Manuela, A.F., et al., 2018. Silver Isotopes as a Source and Transport Tracer for Gold: A Reconnaissance Study at the Sheba and New Consort Gold Mines in the Barberton Greenstone Belt, Kaapvaal Craton, South Africa. Economic Geology, 113(7): 1553-1570. https://doi.org/10.5382/econgeo.2018.4602
|
Wittig, N., Humayun, M., Brandon, A.D., et al., 2013. Coupled W-Os-Pt Isotope Systematics in IVB Iron Meteorites: In Situ Neutron Dosimetry for W Isotope Chronology. Earth and Planetary Science Letters, 361: 152-161. https://doi.org/10.1016/j.epsl.2012.10.013
|
Woodland, S.J., Rehkämper, M., Halliday, A.N., 2004. Further Analysis of the Pd-Ag Systematics of Sulphides from the Group Ia Iron Meteorite Canyon Diablo. American Journal of Bioethics Ajob, 16(1): 53-56.
|
Woodland, S.J., Rehkämper, M., Halliday, A.N., et al., 2005. Accurate Measurement of Silver Isotopic Compositions in Geological Materials Including Low Pd/Ag Meteorites. Geochimica et Cosmochimica Acta, 69(8): 2153-2163. https://doi.org/10.1016/j.gca.2004.10.012
|
Woodrow Wilson Database, 2009. Consumer Products Inventory Project on Emerging Nanotechnologies. A Project of the Woodrow Wilson International Center for Scholars.
|
Yang, L., Dabek-Zlotorzynska, E., Celo, V., 2009.High Precision Determination of Silver Isotope Ratios in Commercial Products by MC-ICP-MS.Journal of Analytical Atomic Spectrometry, 24(11): 1564-1569. https://doi.org/10.1039/b911554d
|
Zhang, T., Lu, D., Zeng, L., et al., 2017.Role of Secondary Particle Formation in the Persistence of Silver Nanoparticles in Humic Acid Containing Water under Light Irradiation.Environmental Science & Technology, 51(24): 14164-14172. https://doi.org/10.1021/acs.est.7b04115
|
郭琦, 2018. 银同位素分析方法及在多金属矿床中的应用(硕士论文). 南京: 南京大学.
|