• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 12
    Dec.  2021
    Turn off MathJax
    Article Contents
    Zhu Yuanfeng, Dong Ge, Liu Xi, Sheng Xuefen, Wei Haizhen, 2021. Progress of Silver Isotopes Studies in Planetary and Earth Sciences. Earth Science, 46(12): 4390-4404. doi: 10.3799/dqkx.2021.080
    Citation: Zhu Yuanfeng, Dong Ge, Liu Xi, Sheng Xuefen, Wei Haizhen, 2021. Progress of Silver Isotopes Studies in Planetary and Earth Sciences. Earth Science, 46(12): 4390-4404. doi: 10.3799/dqkx.2021.080

    Progress of Silver Isotopes Studies in Planetary and Earth Sciences

    doi: 10.3799/dqkx.2021.080
    • Received Date: 2021-04-15
    • Publish Date: 2021-12-15
    • The progresses of the radioactive Pd-Ag system in planetary sciences and the stable silver isotope in environmental sciences and ore-deposits are systematically reviewed in this paper. In the formation of solar nebula and planetary nucleus, 107Ag can be produced by 107Pd through β decay, and the dissipation of volatile elements will cause the early Pd/Ag differentiation, which makes the Pd-Ag system applicable to investigate various activities of the early solar system, such as defining the formation of planetary nucleus and the age of planetary formation. In the stable silver isotope system, it has been proved that the wide variation range of δ109Ag is -1.0‰ to +2.3‰ in terrestrial materials. Stable silver isotope has characteristics similar to "fingerprint" in environmental materials, which makes it possible to effectively determine pollutants sources and to track migration paths of pollutants. Much wider variations of δ109Ag in metallic ore-deposits have been observed, showing a great potential of silver isotope in studying the genesis and evolution mode of Au-Ag deposits. However, there are still many concerns remained to be resolved, such as the precise definition of 107Pd/108Pd ratio in the early solar system of radioactive Pd-Ag system, and the quantification of silver isotope fractionation in physiochemical processes (e.g., boiling/phase separation, multistage ore paragenesis, precipitation, redox, adsorption and remobilization etc.) involved in silver migration and deposition in environmental and ore-forming processes.

       

    • loading
    • Araújo, D.F., Boaventura, G.R., Machado, W., et al., 2017. Tracing of Anthropogenic Zinc Sources in Coastal Environments Using Stable Isotope Composition. Chemical Geology, 449: 226-235. https://doi.org/10.1016/j.chemgeo.2016.12.004
      Argapadmi, W., Toth, E.R., Fehr, M.A., et al., 2018. Silver Isotopes as a Source and Transport Tracer for Gold: A Reconnaissance Study at the Sheba and New Consort Gold Mines in the Barberton Greenstone Belt, Kaapvaal Craton, South Africa. Economic Geology, 113(7): 1553-1570. https://doi.org/10.5382/econgeo.2018.4602
      Arribas, A., Mathur, R., Megaw, P., et al., 2020. The Isotopic Composition of Silver in Ore Minerals. Geochemistry, Geophysics, Geosystems, 21(8): e2020GC009097. https://doi.org/10.1029/2020gc009097
      Benedix, G.K., McCoy, T.J., Keil, K., et al., 2000. A Petrologic Study of the IAB Iron Meteorites: Constraints on the Formation of the IAB-Winonaite Parent Body. Meteoritics & Planetary Science, 35(6): 1127-1141. https://doi.org/10.1111/j.1945-5100.2000.tb01502.x
      Bianchini, A., Bowles, K.C., Brauner, C.J., et al., 2002. Evaluation of the Effect of Reactive Sulfide on the Acute Toxicity of Silver (Ⅰ) to Daphnia Magna. Part 2: Toxicity Results. Environmental Toxicology and Chemistry, 21(6): 1294-1300. https://doi.org/10.1002/etc.5620210626
      Carlson, R.W., Hauri, E.H., 2001. Extending the 107Pd-107Ag Chronometer to Low Pd/Ag Meteorites with Multicollector Plasma-Ionization Mass Spectrometry. Geochimica et Cosmochimica Acta, 65(11): 1839-1848. https://doi.org/10.1016/s0016-7037(01)00559-2 doi: 10.1016/S0016-7037(01)00559-2
      Carlson, R.W., Lugmair, G.W., 2000. Timescales of Planetesimal Formation and Differentiation Based on Extinct and Extant Radioisotopes. Origin of the Earth and Moon. University of Arizona Press, Arizona, 25-44. https://doi.org/10.2307/j.ctv1v7zdrp.6
      Chabot, N.L., Drake, M.J., 1997. An Experimental Study of Silver and Palladium Partitioning between Solid and Liquid Metal, with Applications to Iron Meteorites. Meteoritics & Planetary Science, 32(5): 637-645. https://doi.org/10.1111/j.1945-5100.1997.tb01549.x
      Chabot, N.L., Haack, H., 2006. Evolution of Asteroidal Cores. Meteorites and the Early Solar System Ⅱ. University of Arizona Press, Arizona, 747-772.
      Chen, J.H., Wasserburg, G.J., 1983. The Isotopic Composition of Silver and Lead in Two Iron Meteorites: Cape York and Grant. Geochimica et Cosmochimica Acta, 47(10): 1725-1737. https://doi.org/10.1016/0016-7037(83)90022-4
      Chen, J.H., Wasserburg, G.J., 1990. The Isotopic Composition of Ag in Meteorites and the Presence of 107Pd in Protoplanets. Geochimica et Cosmochimica Acta, 54(6): 1729-1743. https://doi.org/10.1016/0016-7037(90)90404-9
      Chen, J.H., Wasserburg, G.J., 1996. Live 107Pd in the Early Solar System and Implications for Planetary Evolution. Earth Processes: Reading the Isotopic Code. American Geophysical Union, Washington, D. C., 95: 1-20. https://doi.org/10.1029/gm095p0001
      Chugaev, A.V., Chernyshev, I.V., 2012. High-Noble Measurement of 107Ag/109Ag in Native Silver and Gold by Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). Geochemistry International, 50(11): 899-910. https://doi.org/10.1134/s0016702912110055 doi: 10.1134/S0016702912110055
      Desaulty, A.M., Albarede, F., 2013. Copper, Lead, and Silver Isotopes Solve a Major Economic Conundrum of Tudor and Early Stuart Europe. Geology, 41(2): 135-138. https://doi.org/10.1130/g33555.1 doi: 10.1130/G33555.1
      Fabrega, J., Luoma, S.N., Tyler, C.R., et al., 2011. Silver Nanoparticles: Behaviour and Effects in the Aquatic Environment. Environment International, 37(2): 517-531. https://doi.org/10.1016/j.envint.2010.10.012
      Flynn, K.F., Glendenin, L.E., 1969. Half-Life of 107Pd. Physical Review, 185(4): 1591-1593. https://doi.org/10.1103/physrev.185.1591 doi: 10.1103/PhysRev.185.1591
      Fujii, T., Albarede, F., 2018. 109Ag-107Ag Fractionation in Fluids with Applications to Ore Deposits, Archeometry, and Cosmochemistry. Geochimica et Cosmochimica Acta, 234: 37-49. https://doi.org/10.1016/j.gca.2018.05.013
      Fukuyama, M., Lee, D., 2010. Silver Isotope Variation in Ore Deposits by MC-ICP-MS. American Geophysical Union (AGU) Fall Meeting Abstracts, San Francisco.
      Gammons, C.H., Williams-Jones, A.E., 1995. Hydrothermal Geochemistry of Electrum; Thermodynamic Constraints. Economic Geology, 90(2): 420-432. https://doi.org/10.2113/gsecongeo.90.2.420
      Guo, Q., 2018. Accurate Determination of Stable Silver Isotopes and Its Application in Polymetallic Deposits in China (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
      Guo, Q., Wei, H.Z., Jiang, S.Y., et al., 2017. Matrix Effects Originating from Coexisting Minerals and Accurate Determination of Stable Silver Isotopes in Silver Deposits. Analytical Chemistry, 89(24): 13634-13641. https://doi.org/10.1021/acs.analchem.7b04212
      Hauri, E.H., Carlson, R.W., Bauer, J., 2000. The Timing of Core Formation and Volatile Depletion in Solar System Objects from High-Precision 107Pd-107Ag Isotope Systematics. Lunar and Planetary Science Conference Abstracts, Houston, Texas.
      Heinrich, C.A., Günther, D., Audétat, A., et al., 1999. Metal Fractionation between Magmatic Brine and Vapor, Determined by Microanalysis of Fluid Inclusions. Geology, 27(8): 755. https://doi.org/10.1130/0091-7613(1999)0270755:mfbmba>2.3.co;2 doi: 10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2
      Horan, M.F., Carlson, R.W., Blichert-Toft, J., 2012. Pd-Ag Chronology of Volatile Depletion, Crystallization and Shock in the Muonionalusta IVA Iron Meteorite and Implications for Its Parent Body. Earth and Planetary Science Letters, 351-352: 215-222. https://doi.org/10.1016/j.epsl.2012.07.028
      Kaiser, T., Kelly, W.R., Wasserburg, G.J., 1980. Isotopically Anomalous Silver in the Santa Clara and Piñon Iron Meteorites. Geophysical Research Letters, 7(4): 271-274. https://doi.org/10.1029/gl007i004p00271 doi: 10.1029/GL007i004p00271
      Kelly, W.R., Wasserburg, G.J., 1978. Evidence for the Existence of 107Pd in the Early Solar System. Geophysical Research Letters, 5(12): 1079-1082. https://doi.org/10.1029/gl005i012p01079 doi: 10.1029/GL005i012p01079
      Kruijer, T.S., Fischer-Gödde, M., Kleine, T., et al., 2013. Neutron Capture on Pt Isotopes in Iron Meteorites and the Hf-W Chronology of Core Formation in Planetesimals. Earth and Planetary Science Letters, 361: 162-172. https://doi.org/10.1016/j.epsl.2012.10.014
      Leeman, W.P., Vocke, R.D., McKibben, M.A., 1992. Boron Isotopic Fractionation between Coexisting Vapor and Liquid in Natural Geothermal Systems. International Association of GeoChemistry, 7th International Symposium on Water-Rock Interaction, Park City, Utah, 1007-1010.
      Leya, I., Masarik, J., 2013. Thermal Neutron Capture Effects in Radioactive and Stable Nuclide Systems. Meteoritics & Planetary Science, 48(4): 665-685. https://doi.org/10.1111/maps.12090
      Li, W., Gou, W.X., Li, W.Q., et al., 2019. Environmental Applications of Metal Stable Isotopes: Silver, Mercury and Zinc. Environmental Pollution, 252: 1344-1356. https://doi.org/10.1016/j.envpol.2019.06.037
      Lodders, K., 2003. Solar System Abundances and Condensation Temperatures of the Elements. The Astrophysical Journal Letters, 591(2): 1220-1247. https://doi.org/10.1086/375492
      Lu, D.W., Liu, Q., Zhang, T.Y., et al., 2016. Stable Silver Isotope Fractionation in the Natural Transformation Process of Silver Nanoparticles. Nature Nanotechnology, 11(8): 682-686. https://doi.org/10.1038/nnano.2016.93
      Lugmair, G.W., Shimamura, T., Lewis, R.S., et al., 1983. Samarium-146 in the Early Solar System: Evidence from Neodymium in the Allende Meteorite. Science, 222(4627): 1015-1018. https://doi.org/10.1126/science.222.4627.1015
      Lugmair, G.W., Shukolyukov, A., 1998. Early Solar System Timescales according to 53Mn-53Cr Systematics. Geochimica et Cosmochimica Acta, 62(16): 2863-2886. https://doi.org/10.1016/s0016-7037(98)00189-6 doi: 10.1016/S0016-7037(98)00189-6
      Luo, Y., Dabek-Zlotorzynska, E., Celo, V., et al., 2010. Accurate and Precise Determination of Silver Isotope Fractionation in Environmental Samples by Multicollector-ICPMS. Analytical Chemistry, 82(9): 3922-3928. https://doi.org/10.1021/ac100532r
      Mathur, R., Arribas, A., Megaw, P., et al., 2018. Fractionation of Silver Isotopes in Native Silver Explained by Redox Reactions. Geochimica et Cosmochimica Acta, 224: 313-326. https://doi.org/10.1016/j.gca.2018.01.011
      Matthes, M., Fischer-Gödde, M., Kruijer, T.S., et al., 2015. Pd-Ag Chronometry of Iron Meteorites: Correction of Neutron Capture-Effects and Application to the Cooling History of Differentiated Protoplanets. Geochimica et Cosmochimica Acta, 169: 45-62. https://doi.org/10.1016/j.gca.2015.07.027
      Matthes, M., van Orman, J.A., Kleine, T., 2020. Closure Temperature of the Pd-Ag System and the Crystallization and Cooling History of ⅢAB Iron Meteorites. Geochimica et Cosmochimica Acta, 285: 193-206. https://doi.org/10.1016/j.gca.2020.07.009
      McCoy, T.J., Walker, R.J., Goldstein, J.I., et al., 2011. Group IVA Irons: New Constraints on the Crystallization and Cooling History of an Asteroidal Core with a Complex History. Geochimica et Cosmochimica Acta, 75(22): 6821-6843. https://doi.org/10.1016/j.gca.2011.09.006
      Migdisov, A.A., Williams-Jones, A.E., 2013. A Predictive Model for Metal Transport of Silver Chloride by Aqueous Vapor in Ore-Forming Magmatic-Hydrothermal Systems. Geochimica et Cosmochimica Acta, 104: 123-135. https://doi.org/10.1016/j.gca.2012.11.020
      Moynier, F., Yin, Q.Z., Jacobsen, B., 2007. Dating the First Stage of Planet Formation. The Astrophysical Journal Letters, 671(2): L181-L183. https://doi.org/10.1086/525527
      Podosek, F.A., Cassen, P., 1994. Theoretical, Observational, and Isotopic Estimates of the Lifetime of the Solar Nebula. Meteoritics, 29(1): 6-25. https://doi.org/10.1111/j.1945-5100.1994.tb00649.x
      Powell, L.J., Murphy, T.J., Gramlich, J.W., 1982. The Absolute Isotopic Abundance and Atomic Weight of a Reference Sample of Silver. Journal of Research of the National Bureau of Standards, 87(1): 9. https://doi.org/10.6028/jres.087.002
      Rasmussen, K.L., 1989. Cooling Rates of ⅢAB Iron Meteorites. Icarus, 80(2): 315-325. https://doi.org/10.1016/0019-1035(89)90142-5
      Rasmussen, K.L., Ulff-Møller, F., Haack, H., 1995. The Thermal Evolution of IVA Iron Meteorites: Evidence from Metallographic Cooling Rates. Geochimica et Cosmochimica Acta, 59(14): 3049-3059. https://doi.org/10.1016/0016-7037(95)00194-8
      Righter, K., Schönbächler, M., Pando, K., et al., 2020. Ag Isotopic and Chalcophile Element Evolution of the Terrestrial and Martian Mantles during Accretion: New Constraints from Bi and Ag Metal-Silicate Partitioning. Earth and Planetary Science Letters, 552: 116590. https://doi.org/10.1016/j.epsl.2020.116590
      Schauble, E.A., 2007. Role of Nuclear Volume in Driving Equilibrium Stable Isotope Fractionation of Mercury, Thallium, and Other very Heavy Elements. Geochimica et Cosmochimica Acta, 71(9): 2170-2189. https://doi.org/10.1016/j.gca.2007.02.004
      Schönbächler, M., Carlson, R.W., Horan, M.F., et al., 2007. High Precision Ag Isotope Measurements in Geologic Materials by Multiple-Collector ICPMS: An Evaluation of Dry versus Wet Plasma. International Journal of Mass Spectrometry, 261(2-3): 183-191. https://doi.org/10.1016/j.ijms.2006.09.016
      Schönbächler, M., Carlson, R.W., Horan, M.F., et al., 2008. Silver Isotope Variations in Chondrites: Volatile Depletion and the Initial 107Pd Abundance of the Solar System. Geochimica et Cosmochimica Acta, 72(21): 5330-5341. https://doi.org/10.1016/j.gca.2008.07.032
      Schulz, T., Münker, C., Palme, H., et al., 2009. Hf-W Chronometry of the IAB Iron Meteorite Parent Body. Earth and Planetary Science Letters, 280(1-4): 185-193. https://doi.org/10.1016/j.epsl.2009.01.033
      Scott, E.R.D., Haack, H., McCoy, T.J., 1996. Core Crystallization and Silicate-Metal Mixing in the Parent Body of the IVA Iron and Stony-Iron Meteorites. Geochimica et Cosmochimica Acta, 60(9): 1615-1631. https://doi.org/10.1016/0016-7037(96)00031-2
      Seward, T.M., 1976. The Stability of Chloride Complexes of Silver in Hydrothermal Solutions up to 350℃. Geochimica et Cosmochimica Acta, 40(11): 1329-1341. https://doi.org/10.1016/0016-7037(76)90122-8
      Seward, T.M., Williams-Jones, A.E., Migdisov, A.A., 2014. The Chemistry of Metal Transport and Deposition by Ore-Forming Hydrothermal Fluids. Treatise on Geochemistry, 13: 29-57. https://doi.org/10.1016/b978-0-08-095975-7.01102-5
      Stefánsson, A., Seward, T.M., 2003. Experimental Determination of the Stability and Stoichiometry of Sulphide Complexes of Silver (Ⅰ) in Hydrothermal Solutions to 400℃. Geochimica et Cosmochimica Acta, 67(7): 1395-1413. https://doi.org/10.1016/s0016-7037(02)01093-1 doi: 10.1016/S0016-7037(02)01093-1
      Sugiura, N., Hoshino, H., 2003. Mn-Cr Chronology of Five ⅢAB Iron Meteorites. Meteoritics & Planetary Science, 38(1): 117-143. https://doi.org/10.1111/j.1945-5100.2003.tb01050.x
      Tessalina, S.G., Rankenburg, K., Naumo, V.E., et al., 2015. The Ag Isotope Systematics in Native Silver from Some Hydrothermal Deposits: Toward a New Tool for Mineral Deposits Studies. Mineral Resources in a Sustainable World, 13th Society for Geology Applied to Mineral Deposits (SGA) Biennial Meeting, Nancy, France, 647-650.
      Theis, K.J., Schönbächler, M., Benedix, G.K., et al., 2010. Chronology of IAB Iron Meteorites Using the Pd-Ag Decay System. Meteoritics & Planetary Science, 73(7): 433-436. https://doi.org/10.1111/j.1945-5100.2010.01084.x
      Theis, K.J., Schönbächler, M., Benedix, G.K., et al., 2013. Palladium-Silver Chronology of IAB Iron Meteorites. Earth and Planetary Science Letters, 361: 402-411. https://doi.org/10.1016/j.epsl.2012.11.004
      Tolaymat, T.M., El Badawy, A.M., Genaidy, A., et al., 2010. An Evidence-Based Environmental Perspective of Manufactured Silver Nanoparticle in Syntheses and Applications: A Systematic Review and Critical Appraisal of Peer-Reviewed Scientific Papers. The Science of the Total Environment, 408(5): 999-1006. https://doi.org/10.1016/j.scitotenv.2009.11.003
      Truesdell, A.H., Rye, R.O., Pearson, F.J.J., et al., 1979. Preliminary Isotopic Studies of Fluids from the Cerro Prieto Geothermal Field. Geothermics, 8(3-4): 223-229. https://doi.org/10.1016/0375-6505(79)90044-0
      Voisey, C.R., Maas, R., Tomkins, A.G., et al., 2019. Extreme Silver Isotope Variation in Orogenic Gold Systems Implies Multistaged Metal Remobilization during Ore Genesis. Economic Geology, 114(2): 233-242. https://doi.org/10.5382/econgeo.2019.4629
      Wasserburg, G.J., 1985. Short-Lived Nuclei in the Early Solar System. University of Arizona Press, Arizona, 703-737.
      Wasson, J.T., Richardson, J.W., 2001. Fractionation Trends among IVA Iron Meteorites: Contrasts with ⅢAB Trends. Geochimica et Cosmochimica Acta, 65(6): 951-970. https://doi.org/10.1016/S0016-7037(00)00597-4
      Wiederhold, J.G., Cramer, C.J., Daniel, K., et al., 2010. Equilibrium Mercury Isotope Fractionation between Dissolved Hg(Ⅱ) Species and Thiol-Bound Hg. Environmental Science & Technology, 44(11): 4191-4197. https://doi.org/10.1021/es100205t
      Windeati, A., Eniko, R.T., Manuela, A.F., et al., 2018. Silver Isotopes as a Source and Transport Tracer for Gold: A Reconnaissance Study at the Sheba and New Consort Gold Mines in the Barberton Greenstone Belt, Kaapvaal Craton, South Africa. Economic Geology, 113(7): 1553-1570. https://doi.org/10.5382/econgeo.2018.4602
      Wittig, N., Humayun, M., Brandon, A.D., et al., 2013. Coupled W-Os-Pt Isotope Systematics in IVB Iron Meteorites: In Situ Neutron Dosimetry for W Isotope Chronology. Earth and Planetary Science Letters, 361: 152-161. https://doi.org/10.1016/j.epsl.2012.10.013
      Woodland, S.J., Rehkämper, M., Halliday, A.N., 2004. Further Analysis of the Pd-Ag Systematics of Sulphides from the Group Ia Iron Meteorite Canyon Diablo. American Journal of Bioethics Ajob, 16(1): 53-56.
      Woodland, S.J., Rehkämper, M., Halliday, A.N., et al., 2005. Accurate Measurement of Silver Isotopic Compositions in Geological Materials Including Low Pd/Ag Meteorites. Geochimica et Cosmochimica Acta, 69(8): 2153-2163. https://doi.org/10.1016/j.gca.2004.10.012
      Woodrow Wilson Database, 2009. Consumer Products Inventory Project on Emerging Nanotechnologies. A Project of the Woodrow Wilson International Center for Scholars.
      Yang, L., Dabek-Zlotorzynska, E., Celo, V., 2009.High Precision Determination of Silver Isotope Ratios in Commercial Products by MC-ICP-MS.Journal of Analytical Atomic Spectrometry, 24(11): 1564-1569. https://doi.org/10.1039/b911554d
      Zhang, T., Lu, D., Zeng, L., et al., 2017.Role of Secondary Particle Formation in the Persistence of Silver Nanoparticles in Humic Acid Containing Water under Light Irradiation.Environmental Science & Technology, 51(24): 14164-14172. https://doi.org/10.1021/acs.est.7b04115
      郭琦, 2018. 银同位素分析方法及在多金属矿床中的应用(硕士论文). 南京: 南京大学.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)

      Article views (1574) PDF downloads(89) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return