Citation: | Zhu Chenjing, Li Junxia, Xie Xianjun, 2021. Carbon and Sulfur Isotopic Features and Its Implications for Iodine Mobilization in Groundwater System at Datong Basin, Northern China. Earth Science, 46(12): 4480-4491. doi: 10.3799/dqkx.2021.090 |
Aucour, A.M., Sheppard, S.M.F., Guyomar, O., et al., 1999. Use of 13C to Trace Origin and Cycling of Inorganic Carbon in the Rhône River System. Chemical Geology, 159(1-4): 87-105. https://doi.org/10.1016/s0009-2541(99)00035-2
|
Barth, J.A.C., Cronin, A.A., Dunlop, J., et al., 2003. Influence of Carbonates on the Riverine Carbon Cycle in an Anthropogenically Dominated Catchment Basin: Evidence from Major Elements and Stable Carbon Isotopes in the Lagan River (N. Ireland). Chemical Geology, 200(3-4): 203-216. https://doi.org/10.1016/s0009-2541(03)00193-1
|
Cerling, T.E., Solomon, D.K., Quade, J., et al., 1991. On the Isotopic Composition of Carbon in Soil Carbon Dioxide. Pergamon, Geochimica et Cosmochimica Acta, 55(11): 3403-3405. https://doi.org/10.1016/0016-7037(91)90498-t
|
Clark, I.D., Fritz, P., 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, New York. https://doi.org/10.1201/9781482242911
|
Dai, J.L., Zhang, M., Hu, Q.H., et al., 2009. Adsorption and Desorption of Iodine by Various Chinese Soils: Ⅱ. Iodide and Iodate. Geoderma, 153(1-2): 130-135. https://doi.org/10.1016/j.geoderma.2009.07.020
|
Duan, L., Wang., W.K., Sun, Y.B., et al., 2020. Hydrogeochemical Characteristics and Health Effects of Iodine in Groundwater in Wei River Basin. Exposure and Health, 12(3): 369-383. https://doi.org/10.1007/s12403-020-00348-7
|
Guo, H.M., Wang, Y.X., 2005. Geochemical Characteristics of Shallow Groundwater in Datong Basin, Northwestern China. Journal of Geochemical Exploration, 87(3): 109-120. https://doi.org/10.1016/j.gexplo.2005.08.002
|
Hou, X.L., Hansen, V., Aldahan, A., et al., 2009. A Review on Speciation of Iodine-129 in the Environmental and Biological Samples. Analytica Chimica Acta, 632(2): 181-196. https://doi.org/10.1016/j.aca.2008.11.013
|
Hansen, V., Roos, P., Aldahan, A., et al., 2011. Partition of Iodine (129I and 127I) Isotopes in Soils and Marine Sediments. Journal of Environmental Radioactivity, 102(12): 1096-1104. https://doi.org/10.1016/j.jenvrad.2011.07.005
|
Kao, Y.H., Liu, C.W., Wang, P.L., et al., 2015. Effect of Sulfidogenesis Cycling on the Biogeochemical Process in Arsenic-Enriched Aquifers in the Lanyang Plain of Taiwan: Evidence from a Sulfur Isotope Study. Journal of Hydrology, 528: 523-536. https://doi.org/10.1016/j.jhydrol.2015.06.033
|
Li, J.X., Su, C.L., Xie, X.J., et al., 2010. Application of Multivariate Statistical Analysis to Research the Environment of Groundwater: A Case Study at Datong Basin, Northern China. Bulletin of Geological Science and Technology, 29(6): 94-100(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201006016.htm
|
Li, J.X., Wang, Y.X., Xie, X.J., et al., 2013. Hydrogeochemistry of High Iodine Groundwater: A Case Study at the Datong Basin, Northern China. Environmental Science. Processes & Impacts, 15(4): 848-859. https://doi.org/10.1039/c3em30841c
|
Li, J.X., Wang, Y.T., Xue, X.B., et al., 2020. Mechanistic Insights into Iodine Enrichment in Groundwater during the Transformation of Iron Minerals in Aquifer Sediments. Science of the Total Environment, 745: 140922. https://doi.org/10.1016/j.scitotenv.2020.140922
|
Li, J.X., Zhou, H.L., Wang, Y.X., et al., 2017. Sorption and Speciation of Iodine in Groundwater System: The Roles of Organic Matter and Organic-Mineral Complexes. Journal of Contaminant Hydrology, 201: 39-47. https://doi.org/10.1016/j.jconhyd.2017.04.008
|
Li, X., Tang, C.Y., Cao, Y.J., et al., 2019. Carbon, Nitrogen and Sulfur Isotopic Features and the Associated Geochemical Processes in a Coastal Aquifer System of the Pearl River Delta, China. Journal of Hydrology, 575: 986-998. https://doi.org/10.1016/j.jhydrol.2019.05.092
|
Li, X.Q., Zhou, A.G., Gan, Y.Q., et al., 2011. Controls on the δ34S and δ18O of Dissolved Sulfate in the Quaternary Aquifers of the North China Plain. Journal of Hydrology, 400(3-4): 312-322. https://doi.org/10.1016/j.jhydrol.2011.01.034
|
Nagata, T., Fukushi, K., 2010. Prediction of Iodate Adsorption and Surface Speciation on Oxides by Surface Complexation Modeling. Geochimica et Cosmochimica Acta, 74(21): 6000-6013. https://doi.org/10.1016/j.gca.2010.08.002
|
Otosaka, S., Schwehr, K.A., Kaplan, D.L., et al., 2011. Factors Controlling Mobility of 127I and 129I Species in an Acidic Groundwater Plume at the Savannah River Site. Science of the Total Environment, 409(19): 3857-3865. https://doi.org/10.1016/j.scitotenv.2011.05.018
|
Qian, K., Li, J.X., Xie, X.J., et al., 2017. Organic and Inorganic Colloids Impacting Total Iodine Behavior in Groundwater from the Datong Basin, China. Science of the Total Environment, 601-602: 380-390. https://doi.org/10.1016/j.scitotenv.2017.05.127
|
Robinove, C.J., Langford, R.H., Brookhart, J.W., 1958. Saline-Water Resources of North Dakota. U.S. Government Printing Office, Washington, D.C., 1428. https://doi.org/10.3133/wsp1428
|
Su, C.L., Wang, Y.X., 2008. A Study of Zonality of Hydrochemistry of Groundwater in Unconsolidated Sediments in Datong Basin. Hydrogeology & Engineering Geology, 35(1): 83-89(in Chinese with English abstract). http://www.researchgate.net/publication/288911610_A_study_of_zonality_of_hydrochemistry_of_groundwater_in_unconsolidated_sediments_in_Datong_basin
|
Schwehr, K.A., Santschi, P.H., Kaplan, D.I., et al., 2009. Organo-Iodine Formation in Soils and Aquifer Sediments at Ambient Concentrations. Environmental Science & Technology, 43(19): 7258-7264. https://doi.org/10.1021/es900795k
|
Shimamoto, Y.S., Takahashi, Y., Terada, Y., et al., 2011. Formation of Organic Iodine Supplied as Iodide in a Soil-Water System in Chiba, Japan. Environmental Science & Technology, 45(6): 2086-2092. https://doi.org/10.1021/es1032162
|
Truesdell, A.H., Hulston, J.R., 1980. Isotopic Evidence on Environments of Geothermal Systems, Handbook of Environmental Isotope Geochemistry, The Terrestrial Environment, A. 1: 179-226. https://doi.org/10.1016/B978-0-444-41780-0.50011-0
|
Tuttle, M.L.W., Breit, G.N., Cozzarelli, I.M., 2009. Processes Affecting δ34S and δ18O Values of Dissolved Sulfate in Alluvium along the Canadian River, Central Oklahoma, USA. Chemical Geology, 265(3-4): 455-467. https://doi.org/10.1016/j.chemgeo.2009.05.009
|
Wachniew, P., 2006. Isotopic Composition of Dissolved Inorganic Carbon in a Large Polluted River: The Vistula, Poland. Chemical Geology, 233(3-4): 293-308. https://doi.org/10.1016/j.chemgeo.2006.03.012
|
Wang, M.Y., Zhang, S., Li, X.Z., 1983. Iodine in Environment and Endemic Goiter. Acta Scientiae Circumstantiae, (4): 283-288(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJXX198304000.htm
|
Wang, Y.X., Li, J.X., Ma, T., et al., 2020. Genesis of Geogenic Contaminated Groundwater: As, F and I. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643389.2020.1807452
|
Wang, Y.X., Shvartsev, S.L., Su, C.L., 2009. Genesis of Arsenic/Fluoride-Enriched Soda Water: A Case Study at Datong, Northern China. Applied Geochemistry, 24(4): 641-649. https://doi.org/10.1016/j.apgeochem.2008.12.015
|
Wang, Y.X., Xie, X.J., Johnson, T.M., et al., 2014. Coupled Iron, Sulfur and Carbon Isotope Evidences for Arsenic Enrichment in Groundwater. Journal of Hydrology, 519: 414-422. https://doi.org/10.1016/j.jhydrol.2014.07.028
|
Wang, Y.T., Li, J.X., Xue, X.B., et al., 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1): 308-320(in Chinese with English abstract). http://www.mdpi.com/2073-4441/13/19/2724
|
Wen, J., Tang, C.Y., Cao, Y.J., et al., 2020. Understanding the Inorganic Carbon Transport and Carbon Dioxide Evasion in Groundwater with Multiple Sulfate Sources during Different Seasons Using Isotope Records. Science of the Total Environment, 710: 134480. https://doi.org/10.1016/j.scitotenv.2019.134480
|
Xie, X.J., Ellis, A., Wang, Y.X., et al., 2009. Geochemistry of Redox-Sensitive Elements and Sulfur Isotopes in the High Arsenic Groundwater System of Datong Basin, China. Science of the Total Environment, 407(12): 3823-3835. https://doi.org/10.1016/j.scitotenv.2009.01.041
|
Xie, X.J., Wang, Y.X., Ellis, A., et al., 2013. Multiple Isotope (O, S and C) Approach Elucidates the Enrichment of Arsenic in the Groundwater from the Datong Basin, Northern China. Journal of Hydrology, 498: 103-112. https://doi.org/10.1016/j.jhydrol.2013.06.024
|
Xu, C., Zhong, J.Y., Hatcher, P.G., et al., 2012. Molecular Environment of Stable Iodine and Radioiodine(I-129) in Natural Organic Matter: Evidence Inferred from NMR and Binding Experiments at Environmentally Relevant Concentrations. Geochimica et Cosmochimica Acta, 97: 166-182. https://doi.org/10.1016/j.gca.2012.08.030
|
Xue, X.B., Li, J.X., Xie, X.J., et al., 2019. Effects of Depositional Environment and Organic Matter Degradation on the Enrichment and Mobilization of Iodine in the Groundwater of the North China Plain. Science of the Total Environment, 686: 50-62. https://doi.org/10.1016/j.scitotenv.2019.05.391
|
Xue, J.K., Deng, Y.M., Du, Y., et al., 2021. Molecular Characterization of Dissolved Organic Matter (DOM) in Shallow Aquifer along the Middle Reaches of Yangtze River and Its Implications for Iodine Enrichment. Earth Science, 42(2): 298-306(in Chinese with English abstract).
|
Yuan, F.S., Mayer, B., 2012. Chemical and Isotopic Evaluation of Sulfur Sources and Cycling in the Pecos River, New Mexico, USA. Chemical Geology, 291: 13-22. https://doi.org/10.1016/j.chemgeo.2011.11.014
|
Yang, Y.J., Yuan, X.F., Deng, Y.M., et al., 2020. Seasonal Dynamics of Dissolved Organic Matter in High Arsenic Shallow Groundwater Systems. Journal of Hydrology, 589: 125120. https://doi.org/10.1016/j.jhydrol.2020.125120
|
Zhou, H.L., 2018. Study on the Migration and Enrichment of Iodine and the Impact of Exogenous Organic Carbon in the Groundwater System of Datong Basin, China (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
|
Zhang, Y.J., Chen, L.N., Cao, S.W., et al., 2021. Iodine Enrichment and the Underlying Mechanism in Deep Groundwater in the Cangzhou Region, North China. Environmental Science and Pollution Research, 28(9): 10552-10563. https://doi.org/10.1007/s11356-020-11159-3
|
李俊霞, 苏春利, 谢先军, 等, 2010. 多元统计方法在地下水环境研究中的应用: 以山西大同盆地为例. 地质科技情报, 29(6): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201006016.htm
|
苏春利, 王焰新, 2008. 大同盆地孔隙地下水化学场的分带规律性研究. 水文地质工程地质, 35(1): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200801021.htm
|
王明远, 章申, 李象志, 1983. 环境中的碘与地方性甲状腺肿. 环境科学学报, 3(4): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX198304000.htm
|
王雨婷, 李俊霞, 薛肖斌, 等, 2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学, 46(1): 308-320. doi: 10.3799/dqkx.2019.261
|
薛江凯, 邓娅敏, 杜尧, 等, 2021. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示. 地球科学, 42(2): 298-306. doi: 10.3799/dqkx.2020.398
|
周海玲, 2018. 大同盆地地下水系统中碘的迁移富集过程和外源有机碳输入的影响(硕士学位论文). 武汉: 中国地质大学.
|