Citation: | Liang Zhengwei, Tian Shihong, 2021. Uranium "Stable" Isotope Fractionation and Its Applications in Earth Science. Earth Science, 46(12): 4405-4426. doi: 10.3799/dqkx.2021.091 |
Abe, M., Suzuki, T., Fujii, Y., et al., 2008. An Ab Initio Molecular Orbital Study of the Nuclear Volume Effects in Uranium Isotope Fractionations. The Journal of Chemical Physics, 129: 164309. https://doi.org/10.1063/1.2992616
|
Algeo, T., Henderson, C.M., Ellwood, B., et al., 2012. Evidence for a Diachronous Late Permian Marine Crisis from the Canadian Arctic Region. Geological Society of America Bulletin, 124(9-10): 1424-1448. https://doi.org/10.1130/b30505.1 doi: 10.1130/B30505.1
|
Anbar, A.D., Knab, K.A., Barling, J., 2001. Precise Determination of Mass-Dependent Variations in the Isotopic Composition of Molybdenum Using MC-ICPMS. Analytical Chemistry, 73(7): 1425-1431. https://doi.org/10.1021/ac000829w
|
Andersen, M.B., Elliott, T., Freymuth, H., et al., 2015. The Terrestrial Uranium Isotope Cycle. Nature, 517: 356-359. https://doi.org/10.1038/nature14062
|
Andersen, M.B., Romaniello, S., Vance, D., et al., 2014. A Modern Framework for the Interpretation of 238U/235U in Studies of Ancient Ocean Redox. Earth and Planetary Science Letters, 400: 184-194. https://doi.org/10.1016/j.epsl.2014.05.051
|
Andersen, M.B., Stirling, C.H., Weyer, S., 2017. Uranium Isotope Fractionation. Reviews in Mineralogy and Geochemistry, 82(1): 799-850. https://doi.org/10.2138/rmg.2017.82.19
|
Andersen, M.B., Vance, D., Morford, J.L., et al., 2016. Closing in on the Marine 238U/235U Budget. Chemical Geology, 420: 11-22. https://doi.org/10.1016/j.chemgeo.2015.10.041
|
Anderson, R.F., Fleisher, M.Q., LeHuray, A.P., 1989. Concentration, Oxidation State, and Particulate Flux of Uranium in the Black Sea. Geochimica et Cosmochimica Acta, 53(9): 2215-2224. https://doi.org/10.1016/0016-7037(89)90345-1
|
Asael, D., Tissot, F.L.H., Reinhard, C.T., et al., 2013. Coupled Molybdenum, Iron and Uranium Stable Isotopes as Oceanic Paleoredox Proxies during the Paleoproterozoic Shunga Event. Chemical Geology, 362: 193-210. https://doi.org/10.1016/j.chemgeo.2013.08.003
|
Bach, W., Peucker-Ehrenbrink, B., Hart, S.R., et al., 2003. Geochemistry of Hydrothermally Altered Oceanic Crust: DSDP/ODP Hole 504B-Implications for Seawater-Crust Exchange Budgets and Sr- and Pb-Isotopic Evolution of the Mantle. Geochemistry, Geophysics, Geosystems, 4(3): 8904. https://doi.org/10.1029/2002gc000419
|
Barnes, C.E., Cochran, J.K., 1990. Uranium Removal in Oceanic Sediments and the Oceanic U Balance. Earth and Planetary Science Letters, 97(1-2): 94-101. https://doi.org/10.1016/0012-821x(90)90101-3 doi: 10.1016/0012-821X(90)90101-3
|
Basu, A., Sanford, R.A., Johnson, T.M., et al., 2014. Uranium Isotopic Fractionation Factors during U(Ⅵ) Reduction by Bacterial Isolates. Geochimica et Cosmochimica Acta, 136: 100-113. https://doi.org/10.1016/j.gca.2014.02.041
|
Basu, A., Wanner, C., Johnson, T.M., et al., 2020. Microbial U Isotope Fractionation Depends on the U(Ⅵ) Reduction Rate. Environmental Science & Technology, 54(4): 2295-2303. https://doi.org/10.1021/acs.est.9b05935
|
Bekker, A., Holland, H.D., 2012. Oxygen Overshoot and Recovery during the Early Paleoproterozoic. Earth and Planetary Science Letters, 317-318: 295-304. https://doi.org/10.1016/j.epsl.2011.12.012
|
Bell, E.A., Harrison, T.M., McCulloch, M.T., et al., 2011. Early Archean Crustal Evolution of the Jack Hills Zircon Source Terrane Inferred from Lu-Hf, 207Pb/206Pb, and δ18O Systematics of Jack Hills Zircons. Geochimica et Cosmochimica Acta, 75(17): 4816-4829. https://doi.org/10.1016/j.gca.2011.06.007
|
Bellefroid, E.J., Hood, A.V.S., Hoffman, P.F., et al., 2018. Constraints on Paleoproterozoic Atmospheric Oxygen Levels. Proceedings of the National Academy of Sciences of the United States of America, 115(32): 8104-8109. https://doi.org/10.1073/pnas.1806216115
|
Bigeleisen, J., 1996a. Nuclear Size and Shape Effects in Chemical Reactions. Isotope Chemistry of the Heavy Elements. Journal of the American Chemical Society, 118(15): 3676-3680. https://doi.org/10.1021/ja954076k
|
Bigeleisen, J., 1996b. Temperature Dependence of the Isotope Chemistry of the Heavy Elements. Proceedings of the National Academy of Sciences, 93(18): 9393-9396. https://doi.org/10.1073/pnas.93.18.9393
|
Blichert-Toft, J., Albarède, F., 2008. Hafnium Isotopes in Jack Hills Zircons and the Formation of the Hadean Crust. Earth and Planetary Science Letters, 265(3-4): 686-702. https://doi.org/10.1016/j.epsl.2007.10.054
|
Bopp, C.J., Lundstrom, C.C., Johnson, T.M., et al., 2009. Variations in 238U/235U in Uranium Ore Deposits: Isotopic Signatures of the U Reduction Process? Geology, 37(7): 611-614. https://doi.org/10.1130/g25550a.1 doi: 10.1130/G25550A.1
|
Brennecka, G.A., Borg, L.E., Hutcheon, I.D., et al., 2010. Natural Variations in Uranium Isotope Ratios of Uranium Ore Concentrates: Understanding the 238U/235U Fractionation Mechanism. Earth and Planetary Science Letters, 291(1-4): 228-233. https://doi.org/10.1016/j.epsl.2010.01.023
|
Brennecka, G.A., Herrmann, A.D., Algeo, T.J., et al., 2011a. Rapid Expansion of Oceanic Anoxia Immediately before the End-Permian Mass Extinction. Proceedings of the National Academy of Sciences of the United States of America, 108(43): 17631-17634. https://doi.org/10.1073/pnas.1106039108
|
Brennecka, G.A., Wasylenki, L.E., Bargar, J.R., et al., 2011b. Uranium Isotope Fractionation during Adsorption to Mn-Oxyhydroxides. Environmental Science & Technology, 45(4): 1370-1375. https://doi.org/10.1021/es103061v
|
Brown, S.T., Basu, A., Ding, X., et al., 2018. Uranium Isotope Fractionation by Abiotic Reductive Precipitation. Proceedings of the National Academy of Sciences, 115(35): 8688-8693. https://doi.org/10.1073/pnas.1805234115
|
Brüske, A., Martin, A.N., Rammensee, P., et al., 2020. The Onset of Oxidative Weathering Traced by Uranium Isotopes. Precambrian Research, 338: 105583. https://doi.org/10.1016/j.precamres.2019.105583
|
Burnham, A.D., Berry, A.J., 2017. Formation of Hadean Granites by Melting of Igneous Crust. Nature Geoscience, 10(6): 457-461. https://doi.org/10.1038/ngeo2942
|
Canfield, D.E., Poulton, S.W., Narbonne, G.M., 2007. Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life. Science, 315(5808): 92-95. https://doi.org/10.1126/science.1135013
|
Cao, C.Q., Love, G.D., Hays, L.E., et al., 2009. Biogeochemical Evidence for Euxinic Oceans and Ecological Disturbance Presaging the End-Permian Mass Extinction Event. Earth and Planetary Science Letters, 281(3-4): 188-201. https://doi.org/10.1016/j.epsl.2009.02.012
|
Chase, C.G., 1981. Oceanic Island Pb: Two-Stage Histories and Mantle Evolution. Earth and Planetary Science Letters, 52(2): 277-284. https://doi.org/10.1016/0012-821x(81)90182-5 doi: 10.1016/0012-821X(81)90182-5
|
Chen, J.H., Wasserburg, G.J., 1980. A Search for Isotopic Anomalies in Uranium. Geophysical Research Letters, 7(4): 275-278. https://doi.org/10.1029/gl007i004p00275 doi: 10.1029/GL007i004p00275
|
Chen, X.M., Romaniello, S.J., Anbar, A.D., 2017. Uranium Isotope Fractionation Induced by Aqueous Speciation: Implications for U Isotopes in Marine CaCO3 as a Paleoredox Proxy. Geochimica et Cosmochimica Acta, 215: 162-172. https://doi.org/10.1016/j.gca.2017.08.006
|
Chen, X.M., Romaniello, S.J., Herrmann, A.D., et al., 2016. Uranium Isotope Fractionation during Coprecipitation with Aragonite and Calcite. Geochimica et Cosmochimica Acta, 188: 189-207. https://doi.org/10.1016/j.gca.2016.05.022
|
Chen, X.M., Romaniello, S.J., Herrmann, A.D., et al., 2018a. Biological Effects on Uranium Isotope Fractionation (238U/235U) in Primary Biogenic Carbonates. Geochimica et Cosmochimica Acta, 240: 1-10. https://doi.org/10.1016/j.gca.2018.08.028
|
Chen, X.M., Romaniello, S.J., Herrmann, A.D., et al., 2018b. Diagenetic Effects on Uranium Isotope Fractionation in Carbonate Sediments from the Bahamas. Geochimica et Cosmochimica Acta, 237: 294-311. https://doi.org/10.1016/j.gca.2018.06.026
|
Chen, X.M., Zheng, W., Anbar, A.D., 2020. Uranium Isotope Fractionation (238U/235U) during U(Ⅵ) Uptake by Freshwater Plankton. Environmental Science & Technology, 54(5): 2744-2752. https://doi.org/10.1021/acs.est.9b06421
|
Chernyshev, I.V., Dubinina, E.O., Golubev, V.N., 2014. Fractionation Factor of 238U and 235U Isotopes in the Process of Hydrothermal Pitchblende Formation: A Numerical Estimate. Geology of Ore Deposits, 56(5): 315-321. https://doi.org/10.1134/s1075701514050031 doi: 10.1134/S1075701514050031
|
Condon, D.J., McLean, N., Noble, S.R., et al., 2010. Isotopic Composition (238U/235U) of Some Commonly Used Uranium Reference Materials. Geochimica et Cosmochimica Acta, 74(24): 7127-7143. https://doi.org/10.1016/j.gca.2010.09.019
|
Cowan, G.A., Adler, H.H., 1976. The Variability of the Natural Abundance of 235U. Geochimica et Cosmochimica Acta, 40(12): 1487-1490. https://doi.org/10.1016/0016-7037(76)90087-9
|
Cuney, M., 2010. Evolution of Uranium Fractionation Processes through Time: Driving the Secular Variation of Uranium Deposit Types. Economic Geology, 105(3): 553-569. https://doi.org/10.2113/gsecongeo.105.3.553
|
Dahl, T.W., Boyle, R.A., Canfield, D.E., et al., 2014. Uranium Isotopes Distinguish Two Geochemically Distinct Stages during the Later Cambrian SPICE Event. Earth and Planetary Science Letters, 401: 313-326. https://doi.org/10.1016/j.epsl.2014.05.043
|
Dang, D.H., Novotnik, B., Wang, W., et al., 2016. Uranium Isotope Fractionation during Adsorption, (Co) Precipitation, and Biotic Reduction. Environmental Science & Technology, 50(23): 12695-12704. https://doi.org/10.1021/acs.est.6b01459
|
Djogić, R., Sipos, L., Branica, M., 1986. Characterization of Uranium (Ⅵ) in Seawater. Limnology and Oceanography, 31(5): 1122-1131. https://doi.org/10.4319/lo.1986.31.5.1122
|
Dunk, R.M., Mills, R.A., Jenkins, W.J., 2002. A Reevaluation of the Oceanic Uranium Budget for the Holocene. Chemical Geology, 190(1-4): 45-67. https://doi.org/10.1016/s0009-2541(02)00110-9 doi: 10.1016/S0009-2541(02)00110-9
|
Edwards, C.T., Saltzman, M.R., Royer, D.L., et al., 2017. Oxygenation as a Driver of the Great Ordovician Biodiversification Event. Nature Geoscience, 10(12): 925-929. https://doi.org/10.1038/s41561-017-0006-3
|
Ellis, A.S., Johnson, T.M., Bullen, T.D., 2002. Chromium Isotopes and the Fate of Hexavalent Chromium in the Environment. Science, 295(5562): 2060-2062. https://doi.org/10.1126/science.1068368
|
Ellis, A.S., Johnson, T.M., Herbel, M.J., et al., 2003. Stable Isotope Fractionation of Selenium by Natural Microbial Consortia. Chemical Geology, 195(1-4): 119-129. https://doi.org/10.1016/s0009-2541(02)00391-1 doi: 10.1016/S0009-2541(02)00391-1
|
Elrick, M., Polyak, V., Algeo, T.J., et al., 2017. Global-Ocean Redox Variation during the Middle-Late Permian through Early Triassic Based on Uranium Isotope and Th/U Trends of Marine Carbonates. Geology, 45(2): 163-166. https://doi.org/10.1130/g38585.1 doi: 10.1130/G38585.1
|
Feng, Q.Q., Qiu, N.S., Chang, J., et al., 2018. Tectonothermal Evolution of Fangshan Pluton: Constraints from (U-Th)/He Ages. Earth Science, 43(6): 1972-1982(in Chinese with English abstract).
|
Fike, D.A., Grotzinger, J.P., Pratt, L.M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444: 744-747. https://doi.org/10.1038/nature05345
|
Freymuth, H., Andersen, M.B., Elliott, T., 2019. Uranium Isotope Fractionation during Slab Dehydration beneath the Izu Arc. Earth and Planetary Science Letters, 522: 244-254. https://doi.org/10.1016/j.epsl.2019.07.006
|
Gilleaudeau, G.J., Romaniello, S.J., Luo, G.M., et al., 2019. Uranium Isotope Evidence for Limited Euxinia in Mid-Proterozoic Oceans. Earth and Planetary Science Letters, 521: 150-157. https://doi.org/10.1016/j.epsl.2019.06.012
|
Goldmann, A., Brennecka, G., Noordmann, J., et al., 2015. The Uranium Isotopic Composition of the Earth and the Solar System. Geochimica et Cosmochimica Acta, 148: 145-158. https://doi.org/10.1016/j.gca.2014.09.008
|
Goto, K.T., Anbar, A.D., Gordon, G.W., et al., 2014. Uranium Isotope Systematics of Ferromanganese Crusts in the Pacific Ocean: Implications for the Marine 238U/235U Isotope System. Geochimica et Cosmochimica Acta, 146: 43-58. https://doi.org/10.1016/j.gca.2014.10.003
|
Grice, K., Cao, C.Q., Love, G.D., et al., 2005. Photic Zone Euxinia during the Permian-Triassic Superanoxic Event. Science, 307(5710): 706-709. https://doi.org/10.1126/science.1104323.
|
Guo, J.L., Gao, S., Wu, Y.B., et al., 2014.3.45 Ga Granitic Gneisses from the Yangtze Craton, South China: Implications for Early Archean Crustal Growth. Precambrian Research, 242: 82-95. https://doi.org/10.1016/j.precamres.2013.12.018
|
Hazen, R.M., Ewing, R.C., Sverjensky, D.A., 2009. Evolution of Uranium and Thorium Minerals. American Mineralogist, 94(10): 1293-1311. https://doi.org/10.2138/am.2009.3208
|
He, D.T., Liu, Y.S., Moynier, F., et al., 2020. Platinum Group Element Mobilization in the Mantle Enhanced by Recycled Sedimentary Carbonate. Earth and Planetary Science Letters, 541: 116262. https://doi.org/10.1016/j.epsl.2020.116262
|
Hinojosa, J.L., Stirling, C.H., Reid, M.R., et al., 2016. Trace Metal Cycling and 238U/235U in New Zealand's Fjords: Implications for Reconstructing Global Paleoredox Conditions in Organic-Rich Sediments. Geochimica et Cosmochimica Acta, 179: 89-109. https://doi.org/10.1016/j.gca.2016.02.006
|
Holmden, C., Amini, M., Francois, R., 2015. Uranium Isotope Fractionation in Saanich Inlet: A Modern Analog Study of a Paleoredox Tracer. Geochimica et Cosmochimica Acta, 153: 202-215. https://doi.org/10.1016/j.gca.2014.11.012
|
Hood, A.V.S., Planavsky, N.J., Wallace, M.W., et al., 2016. Integrated Geochemical-Petrographic Insights from Component-Selective δ238U of Cryogenian Marine Carbonates. Geology, 44(11): 935-938. https://doi.org/10.1130/g38533.1 doi: 10.1130/G38533.1
|
Horwitz, E.P., Dietz, M.L., Chiarizia, R., et al., 1992. Separation and Preconcentration of Uranium from Acidic Media by Extraction Chromatography. Analytica Chimica Acta, 266(1): 25-37. https://doi.org/10.1016/0003-2670(92)85276-c doi: 10.1016/0003-2670(92)85276-C
|
Isozaki, Y., 1997. Permo-Triassic Boundary Superanoxia and Stratified Superocean: Records from Lost Deep Sea. Science, 276(5310): 235-238. https://doi.org/10.1126/science.276.5310.235
|
Jaffey, A.H., Flynn, K.F., Glendenin, L.E., et al., 1971. Precision Measurement of Half-Lives and Specific Activities of 235U and 238U. Physical Review C, 4(5): 1889-1906. https://doi.org/10.1103/physrevc.4.1889 doi: 10.1103/PhysRevC.4.1889
|
Jemison, N.E., Johnson, T.M., Shiel, A.E., et al., 2016. Uranium Isotopic Fractionation Induced by U(Ⅵ) Adsorption Onto Common Aquifer Minerals. Environmental Science & Technology, 50(22): 12232-12240. https://doi.org/10.1021/acs.est.6b03488
|
Johnson, T.M., Bullen, T.D., 2003. Selenium Isotope Fractionation during Reduction by Fe(Ⅱ)-Fe(Ⅲ) Hydroxide-Sulfate (Green Rust). Geochimica et Cosmochimica Acta, 67(3): 413-419. https://doi.org/10.1016/s0016-7037(02)01137-7 doi: 10.1016/S0016-7037(02)01137-7
|
Kelley, K.A., Plank, T., Farr, L., et al., 2005. Subduction Cycling of U, Th, and Pb. Earth and Planetary Science Letters, 234(3-4): 369-383. https://doi.org/10.1016/j.epsl.2005.03.005
|
Kendall, B., Brennecka, G.A., Weyer, S., et al., 2013. Uranium Isotope Fractionation Suggests Oxidative Uranium Mobilization at 2.50 Ga. Chemical Geology, 362: 105-114. https://doi.org/10.1016/j.chemgeo.2013.08.010
|
Kendall, B., Komiya, T., Lyons, T.W., et al., 2015. Uranium and Molybdenum Isotope Evidence for an Episode of Widespread Ocean Oxygenation during the Late Ediacaran Period. Geochimica et Cosmochimica Acta, 156: 173-193. https://doi.org/10.1016/j.gca.2015.02.025
|
Krause, A.J., Mills, B.J.W., Zhang, S., et al., 2018. Stepwise Oxygenation of the Paleozoic Atmosphere. Nature Communications, 9: 4081. https://doi.org/10.1038/s41467-018-06383-y
|
Kump, L.R., 2008. The Rise of Atmospheric Oxygen. Nature, 451: 277-278. https://doi.org/10.1038/nature06587
|
Kump, L.R., Kasting, J.F., Barley, M.E., 2001. Rise of Atmospheric Oxygen and the "Upside-Down" Archean Mantle. Geochemistry, Geophysics, Geosystems, 2(1): 1025. https://doi.org/10.1029/2000gc000114
|
Kyser, K., 2014. Uranium Ore Deposits. In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry (Second Edition). Elsevier, Oxford, 489-513. https://doi.org/10.1016/b978-0-08-095975-7.01122-0
|
Lau, K.V., Lyons, T.W., Maher, K., 2020. Uranium Reduction and Isotopic Fractionation in Reducing Sediments: Insights from Reactive Transport Modeling. Geochimica et Cosmochimica Acta, 287: 65-92. https://doi.org/10.1016/j.gca.2020.01.021
|
Lau, K.V., MacDonald, F.A., Maher, K., et al., 2017. Uranium Isotope Evidence for Temporary Ocean Oxygenation in the Aftermath of the Sturtian Snowball Earth. Earth and Planetary Science Letters, 458: 282-292. https://doi.org/10.1016/j.epsl.2016.10.043
|
Lau, K.V., Maher, K., Altiner, D., et al., 2016. Marine Anoxia and Delayed Earth System Recovery after the End-Permian Extinction. Proceedings of the National Academy of Sciences, 113(9): 2360-2365. https://doi.org/10.1073/pnas.1515080113
|
Li, C., Francois, R., Yang, S.Y., et al., 2016. Constraining the Transport Time of Lithogenic Sediments to the Okinawa Trough (East China Sea). Chemical Geology, 445: 199-207. https://doi.org/10.1016/j.chemgeo.2016.04.010
|
Li, G.J., Li, L.F., Li, L., et al., 2019. Controling Mechanism of Riverine Uranium Isotope and Its Implication for Weathering Limitation Theory. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1): 11-17, 203(in Chinese with English abstract).
|
Li, L., Chen, J., Chen, Y., et al., 2018. Uranium Isotopic Constraints on the Provenance of Dust on the Chinese Loess Plateau. Geology, 46(9): 747-750. https://doi.org/10.1130/g45130.1 doi: 10.1130/G45130.1
|
Li, L., Liu, X.J., Li, T., et al., 2017. Uranium Comminution Age Tested by the Eolian Deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters, 467: 64-71. https://doi.org/10.1016/j.epsl.2017.03.014
|
Luo, X.Z., Rehkämper, M., Lee, D.C., et al., 1997. High Precision 230Th/232Th and 234U/238U Measurements Using Energy Filtered ICP Magnetic Sector Multiple Collector Mass Spectrometry. International Journal of Mass Spectrometry and Ion Processes, 171(1-3): 105-117. https://doi.org/10.1016/s0168-1176(97)00136-5 doi: 10.1016/S0168-1176(97)00136-5
|
Lyons, T.W., Reinhard, C.T., Planavsky, N.J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506: 307-315. https://doi.org/10.1038/nature13068
|
McDonough, W.F., 2014. Compositional Model for the Earth's Core. In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry (Second Edition). Elsevier, Oxford, 559-577. https://doi.org/10.1016/b978-0-08-095975-7.00215-1
|
Meyer, K.M., Kump, L.R., Ridgwell, A., 2008. Biogeochemical Controls on Photic-Zone Euxinia during the End-Permian Mass Extinction. Geology, 36(9): 747-750. https://doi.org/10.1130/g24618a.1 doi: 10.1130/G24618A.1
|
Montoya-Pino, C., Weyer, S., Anbar, A.D., et al., 2010. Global Enhancement of Ocean Anoxia during Oceanic Anoxic Event 2: A Quantitative Approach Using U Isotopes. Geology, 38(4): 315-318. https://doi.org/10.1130/g30652.1 doi: 10.1130/G30652.1
|
Morford, J.L., Emerson, S., 1999. The Geochemistry of Redox Sensitive Trace Metals in Sediments. Geochimica et Cosmochimica Acta, 63(11-12): 1735-1750. https://doi.org/10.1016/s0016-7037(99)00126-x doi: 10.1016/S0016-7037(99)00126-X
|
Murphy, M.J., Stirling, C.H., Kaltenbach, A., et al., 2014. Fractionation of 238U/235U by Reduction during Low Temperature Uranium Mineralisation Processes. Earth and Planetary Science Letters, 388: 306-317. https://doi.org/10.1016/j.epsl.2013.11.034
|
Noordmann, J., Weyer, S., Georg, R.B., et al., 2016. 238U/235U Isotope Ratios of Crustal Material, Rivers and Products of Hydrothermal Alteration: New Insights on the Oceanic U Isotope Mass Balance. Isotopes in Environmental and Health Studies, 52(1-2): 141-163. https://doi.org/10.1080/10256016.2015.1047449
|
Noordmann, J., Weyer, S., Montoya-Pino, C., et al., 2015. Uranium and Molybdenum Isotope Systematics in Modern Euxinic Basins: Case Studies from the Central Baltic Sea and the Kyllaren Fjord (Norway). Chemical Geology, 396: 182-195. https://doi.org/10.1016/j.chemgeo.2014.12.012
|
Noordmann, J., Weyer, S., Sharma, M., et al., 2012. Fractionation of 238U/235U during Weathering and Hydrothermal Alteration. Mineral Magazine, 75: 1548
|
Nier, A.O., 1939. The Isotopic Constitution of Uranium and the Half-Lives of the Uranium Isotopes. I. Physical Review, 55(2): 150-153. https://doi.org/10.1103/physrev.55.150 doi: 10.1103/PhysRev.55.150
|
Partin, C.A., Bekker, A., Planavsky, N.J., et al., 2013a. Large-Scale Fluctuations in Precambrian Atmospheric and Oceanic Oxygen Levels from the Record of U in Shales. Earth and Planetary Science Letters, 369-370: 284-293. https://doi.org/10.1016/j.epsl.2013.03.031
|
Partin, C.A., Lalonde, S.V., Planavsky, N.J., et al., 2013b. Uranium in Iron Formations and the Rise of Atmospheric Oxygen. Chemical Geology, 362: 82-90. https://doi.org/10.1016/j.chemgeo.2013.09.005
|
Penn, J.L., Deutsch, C., Payne, J.L., et al., 2019. Temperature-Dependent Hypoxia Explains Biogeography and Severity of End-Permian Marine Mass Extinction. Yearbook of Paediatric Endocrinology. https://doi.org/10.1530/ey.16.14.8
|
Planavsky, N.J., Reinhard, C.T., Wang, X.L., et al., 2014. Low Mid-Proterozoic Atmospheric Oxygen Levels and the Delayed Rise of Animals. Science, 346(6209): 635-638. https://doi.org/10.1126/science.1258410
|
Rademacher, L.K., Lundstrom, C.C., Johnson, T.M., et al., 2006. Experimentally Determined Uranium Isotope Fractionation during Reduction of Hexavalent U by Bacteria and Zero Valent Iron. Environmental Science & Technology, 40(22): 6943-6948. https://doi.org/10.1021/es0604360
|
Richter, S., Alonso-Munoz, A., Eykens, R., et al., 2008. The Isotopic Composition of Natural Uranium Samples: Measurements Using the New n(233U)/n(236U) Double Spike IRMM-3636. International Journal of Mass Spectrometry, 269(1-2): 145-148. https://doi.org/10.1016/j.ijms.2007.09.012
|
Rolison, J.M., Stirling, C.H., Middag, R., et al., 2017. Uranium Stable Isotope Fractionation in the Black Sea: Modern Calibration of the 238U/235U Paleo-Redox Proxy. Geochimica et Cosmochimica Acta, 203: 69-88. https://doi.org/10.1016/j.gca.2016.12.014
|
Romaniello, S., Brennecka, G., Anbar, A., et al., 2009. Natural Isotopic Fractionation of 238U/235U in the Water Column of the Black Sea. AGU Fall Meeting Abstracts, San Francisco.
|
Romaniello, S.J., Herrmann, A.D., Anbar, A.D., 2013. Uranium Concentrations and 238U/235U Isotope Ratios in Modern Carbonates from the Bahamas: Assessing a Novel Paleoredox Proxy. Chemical Geology, 362: 305-316. https://doi.org/10.1016/j.chemgeo.2013.10.002
|
Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Heinrich, D.H., Karl, K.T., eds., Treatise on Geochemistry. Pergamon, Oxford. https://doi.org/10.1016/b0-08-043751-6/03016-4
|
Schauble, E.A., 2007. Role of Nuclear Volume in Driving Equilibrium Stable Isotope Fractionation of Mercury, Thallium, and Other Very Heavy Elements. Geochimica et Cosmochimica Acta, 71(9): 2170-2189. https://doi.org/10.1016/j.gca.2007.02.004
|
Stanley, S.M., 2007. An Analysis of the History of Marine Animal Diversity. Paleobiology, 33(6): 1-55. https://doi.org/10.1666/06020.1
|
Staudigel, H., Davies, G.R., Hart, S.R., et al., 1995. Large Scale Isotopic Sr, Nd and O Isotopic Anatomy of Altered Oceanic Crust: DSDP/ODP Sites 417/418. Earth and Planetary Science Letters, 130(1-4): 169-185. https://doi.org/10.1016/0012-821x(94)00263-x doi: 10.1016/0012-821X(94)00263-X
|
Steiger, R.H., Jäger, E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362. https://doi.org/10.1016/0012-821x(77)90060-7 doi: 10.1016/0012-821X(77)90060-7
|
Stirling, C.H., Andersen, M.B., Potter, E.K., et al., 2007. Low-Temperature Isotopic Fractionation of Uranium. Earth and Planetary Science Letters, 264(1-2): 208-225. https://doi.org/10.1016/j.epsl.2007.09.019
|
Stirling, C.H., Andersen, M.B., Warthmann, R., et al., 2015. Isotope Fractionation of 238U and 235U during Biologically-Mediated Uranium Reduction. Geochimica et Cosmochimica Acta, 163: 200-218. https://doi.org/10.1016/j.gca.2015.03.017
|
Stylo, M., Neubert, N., Wang, Y.H., et al., 2015. Uranium Isotopes Fingerprint Biotic Reduction. Proceedings of the National Academy of Sciences of the United States of America, 112(18): 5619-5624. https://doi.org/10.1073/pnas.1421841112
|
Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Physics of the Earth and Planetary Interiors, 42(3): 196-197. https://doi.org/10.1016/0031-9201(86)90093-2
|
Telus, M., Dauphas, N., Moynier, F., et al., 2012. Iron, Zinc, Magnesium and Uranium Isotopic Fractionation during Continental Crust Differentiation: The Tale from Migmatites, Granitoids, and Pegmatites. Geochimica et Cosmochimica Acta, 97: 247-265. https://doi.org/10.1016/j.gca.2012.08.024
|
Tissot, F.L.H., Dauphas, N., 2015. Uranium Isotopic Compositions of the Crust and Ocean: Age Corrections, U Budget and Global Extent of Modern Anoxia. Geochimica et Cosmochimica Acta, 167: 113-143. https://doi.org/10.1016/j.gca.2015.06.034
|
Uvarova, Y.A., Kyser, T.K., Geagea, M.L., et al., 2014. Variations in the Uranium Isotopic Compositions of Uranium Ores from Different Types of Uranium Deposits. Geochimica et Cosmochimica Acta, 146: 1-17. https://doi.org/10.1016/j.gca.2014.09.034
|
Valley, J.W., Cavosie, A.J., Ushikubo, T., et al., 2014. Hadean Age for a Post-Magma-Ocean Zircon Confirmed by Atom-Probe Tomography. Nature Geoscience, 7(3): 219-223. https://doi.org/10.1038/ngeo2075
|
Wang, X.L., Johnson, T.M., Lundstrom, C.C., 2015a. Isotope Fractionation during Oxidation of Tetravalent Uranium by Dissolved Oxygen. Geochimica et Cosmochimica Acta, 150: 160-170. https://doi.org/10.1016/j.gca.2014.12.007
|
Wang, X.L., Johnson, T.M., Lundstrom, C.C., 2015b. Low Temperature Equilibrium Isotope Fractionation and Isotope Exchange Kinetics between U(Ⅳ) and U(Ⅵ). Geochimica et Cosmochimica Acta, 158: 262-275. https://doi.org/10.1016/j.gca.2015.03.006
|
Wang, X.L., Ossa, F.O., Hofmann, A., et al., 2020. Uranium Isotope Evidence for Mesoarchean Biological Oxygen Production in Shallow Marine and Continental Settings. Earth and Planetary Science Letters, 551: 116583. https://doi.org/10.1016/j.epsl.2020.116583
|
Wang, X.L., Planavsky, N.J., Hofmann, A., et al., 2018. A Mesoarchean Shift in Uranium Isotope Systematics. Geochimica et Cosmochimica Acta, 238: 438-452. https://doi.org/10.1016/j.gca.2018.07.024
|
Wang, X.L., Planavsky, N.J., Reinhard, C.T., et al., 2016. A Cenozoic Seawater Redox Record Derived from238U/235U in Ferromanganese Crusts. American Journal of Science, 316(1): 64-83. https://doi.org/10.2475/01.2016.02
|
Wei, G.Y., Planavsky, N.J., Tarhan, L.G., et al., 2018. Marine Redox Fluctuation as a Potential Trigger for the Cambrian Explosion. Geology, 46(7): 587-590. https://doi.org/10.1130/g40150.1 doi: 10.1130/G40150.1
|
Weyer, S., Anbar, A.D., Gerdes, A., et al., 2008. Natural Fractionation of 238U/235U. Geochimica et Cosmochimica Acta, 72(2): 345-359. https://doi.org/10.1016/j.gca.2007.11.012
|
Wignall, P.B., Twitchett, R.J., 1996. Oceanic Anoxia and the End Permian Mass Extinction. Science, 272(5265): 1155-1158. https://doi.org/10.1126/science.272.5265.1155
|
Wohlers, A., Wood, B.J., 2017. Uranium, Thorium and REE Partitioning into Sulfide Liquids: Implications for Reduced S-Rich Bodies. Geochimica et Cosmochimica Acta, 205: 226-244. https://doi.org/10.1016/j.gca.2017.01.050
|
Wood, B.J., Blundy, J.D., Robinson, J.A.C., 1999. The Role of Clinopyroxene in Generating U-Series Disequilibrium during Mantle Melting. Geochimica et Cosmochimica Acta, 63(10): 1613-1620. https://doi.org/10.1016/s0016-7037(98)00302-0 doi: 10.1016/S0016-7037(98)00302-0
|
Xiang, L., Zhang, H., Schoepfer, S.D., et al., 2020. Oceanic Redox Evolution around the End-Permian Mass Extinction at Meishan, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 544: 109626. https://doi.org/10.1016/j.palaeo.2020.109626
|
Zhang, F.F., Algeo, T.J., Romaniello, S.J., et al., 2018a. Congruent Permian-Triassic δ238U Records at Panthalassic and Tethyan Sites: Confirmation of Global-Oceanic Anoxia and Validation of the U-Isotope Paleoredox Proxy. Geology, 46(4): 327-330. https://doi.org/10.1130/g39695.1 doi: 10.1130/G39695.1
|
Zhang, F.F., Dahl, T.W., Lenton, T.M., et al., 2020a. Extensive Marine Anoxia Associated with the Late Devonian Hangenberg Crisis. Earth and Planetary Science Letters, 533: 115976. https://doi.org/10.1016/j.epsl.2019.115976
|
Zhang, F.F., Lenton, T.M., del Rey, Á., et al., 2020b. Uranium Isotopes in Marine Carbonates as a Global Ocean Paleoredox Proxy: A Critical Review. Geochimica et Cosmochimica Acta, 287: 27-49. https://doi.org/10.1016/j.gca.2020.05.011
|
Zhang, F.F., Romaniello, S.J., Algeo, T.J., et al., 2018b. Multiple Episodes of Extensive Marine Anoxia Linked to Global Warming and Continental Weathering Following the Latest Permian Mass Extinction. Science Advances, 4(4): e1602921. https://doi.org/10.1126/sciadv.1602921
|
Zhang, F.F., Shen, S.Z., Cui, Y., et al., 2020c. Two Distinct Episodes of Marine Anoxia during the Permian-Triassic Crisis Evidenced by Uranium Isotopes in Marine Dolostones. Geochimica et Cosmochimica Acta, 287: 165-179. https://doi.org/10.1016/j.gca.2020.01.032
|
Zhang, X., Zhao, X.Y., Yang, Z.S., 2019. Thermal History of Nianzha Gold Deposit: Constraints from Zircon U-Pb, (U-Th)/He and Apatite Fission Track Geochronology. Earth Science, 44(6): 2039-2051(in Chinese with English abstract).
|
冯乾乾, 邱楠生, 常健, 等, 2018. 房山岩体构造-热演化: 来自(U-Th)/He年龄的约束. 地球科学, 43(6): 1972-1982. doi: 10.3799/dqkx.2018.562
|
李高军, 李来峰, 李乐, 等, 2019. 河流铀同位素的控制机理及其对风化限制理论的启示意义. 矿物岩石地球化学通报, 38(1): 11-17, 203. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201901002.htm
|
张雄, 赵晓燕, 杨竹森, 2019. 念扎金矿床热历史: 锆石U-Pb、(U-Th)/He及磷灰石裂变径迹年代学的制约. 地球科学, 44(6): 2039-2051. doi: 10.3799/dqkx.2018.379
|