• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 12
    Dec.  2021
    Turn off MathJax
    Article Contents
    Xiao Yan, Pan Qiqi, Tang Dongmei, Mao Yajing, Tian Shihong, Chen Chen, Su Benxun, Liu Xia, 2021. Retrospects and Prospects on Li Isotope Geochemistry during Petrogenesis and Mineralization of Mafic-Ultramafic Rocks. Earth Science, 46(12): 4334-4345. doi: 10.3799/dqkx.2021.111
    Citation: Xiao Yan, Pan Qiqi, Tang Dongmei, Mao Yajing, Tian Shihong, Chen Chen, Su Benxun, Liu Xia, 2021. Retrospects and Prospects on Li Isotope Geochemistry during Petrogenesis and Mineralization of Mafic-Ultramafic Rocks. Earth Science, 46(12): 4334-4345. doi: 10.3799/dqkx.2021.111

    Retrospects and Prospects on Li Isotope Geochemistry during Petrogenesis and Mineralization of Mafic-Ultramafic Rocks

    doi: 10.3799/dqkx.2021.111
    • Received Date: 2021-04-30
    • Publish Date: 2021-12-15
    • In-situ Li isotope geochemistry has been better utilized to trace many complex processes including fractional crystallization, crust contamination and melt/fluid-mineral reaction during the petrogenesis and mineralization of mafic-ultramafic rocks. This study summarizes the major progresses in Li isotope geochemistry during petrogenesis and mineralization of mafic-ultramafic intrusions based on case studies. Firstly, the Li isotope study of Yellow Hill Alaskan-type intrusion reveal Li isotope fractionation during magma differentiation. Secondly, the studies on ophiolites from Turkey and Tibet indicate that Li isotope systematics have potential to constrain genesis of ophiolitic mantle section and evolution of chromitites. Thirdly, the Li isotope study of the ultramafic zone of the Stillwater complex demonstrates that hydrous fluids constrained mineral composition and acted as a critical medium of chemical exchange between minerals in the chromitites. Finally, Li isotope fractionation behavior in the formation of magmatic Ni-Cu sulfide deposits has been investigated.

       

    • loading
    • Chan, L.H., Alt, J.C., Teagle, D.A.H., 2002. Lithium and Lithium Isotope Profiles through the Upper Oceanic Crust: A Study of Seawater-Basalt Exchange at ODP Sites 504B and 896A. Earth and Planetary Science Letters, 201(1): 187-201. https://doi.org/10.1016/s0012-821x(02)00707-0 doi: 10.1016/S0012-821X(02)00707-0
      Chan, L.H., Edmond, J.M., Thompson, G., et al., 1992. Lithium Isotopic Composition of Submarine Basalts: Implications for the Lithium Cycle in the Oceans. Earth and Planetary Science Letters, 108(1-3): 151-160. https://doi.org/10.1016/0012-821x(92)90067-6 doi: 10.1016/0012-821X(92)90067-6
      Chen, C., de Hoog, J.C.M., Su, B.X., et al., 2020. Formation Process of Dunites and Chromitites in Orhaneli and Harmancık Ophiolites (NW Turkey): Evidence from In-Situ Li Isotopes and Trace Elements in Olivine. Lithos, 376-377: 105773. https://doi.org/10.1016/j.lithos.2020.105773
      Chen, C., Su, B.X., Xiao, Y., et al., 2019. Intermediate Chromitite in Kızıldağ Ophiolite (SE Turkey) Formed during Subduction Initiation in Neo-Tethys. Ore Geology Reviews, 104: 88-100. https://doi.org/10.1016/j.oregeorev.2018.10.004
      Cui, M.M., Bai, Y., Luo, Y., et al., 2020. Characteristics, Petrogenesis and Metallogenesis of Alaskan-Type Complexes. Mineral Deposits, 39(3): 397-418(in Chinese with English abstract).
      Deng, L.X., Liu, Y.S., Zong, K.Q., et al., 2019. Carbonate Metasomatism and Its Identification Characteristics in Mantle Peridotite. Earth Science, 44(4): 1113-1127(in Chinese with English abstract).
      Elliott, T., Jeffcoate, A., Bouman, C., 2004. The Terrestrial Li Isotope Cycle: Light-Weight Constraints on Mantle Convection. Earth and Planetary Science Letters, 220(3-4): 231-245. https://doi.org/10.1016/s0012-821x(04)00096-2 doi: 10.1016/S0012-821X(04)00096-2
      Elliott, T., Thomas, A., Jeffcoate, A., et al., 2006. Lithium Isotope Evidence for Subduction-Enriched Mantle in the Source of Mid-Ocean-Ridge Basalts. Nature, 443(7111): 565-568. https://doi.org/10.1038/nature05144
      Gao, Y.J., Snow, J.E., Casey, J.F., et al., 2011. Cooling-Induced Fractionation of Mantle Li Isotopes from the Ultraslow-Spreading Gakkel Ridge. Earth and Planetary Science Letters, 301(1-2): 231-240. https://doi.org/10.1016/j.epsl.2010.11.003
      Ireland, R.H.P., Penniston-Dorland, S.C., 2015. Chemical Interactions between a Sedimentary Diapir and Surrounding Magma: Evidence from the Phepane Dome and Bushveld Complex, South Africa. American Mineralogist, 100(8): 1985-2000. https://doi.org/10.2138/am-2015-5196
      Jing, J.J., Su, B.X., Xiao, Y., et al., 2019. Reactive Origin of Mantle Harzburgite: Evidence from Orthopyroxene-Spinel Association. Lithos, 342/343: 175-186. https://doi.org/10.1016/j.lithos.2019.05.011
      Košler, J., Magna, T., Mlčoch, B., et al., 2009. Combined Sr, Nd, Pb and Li Isotope Geochemistry of Alkaline Lavas from Northern James Ross Island (Antarctic Peninsula) and Implications for Back-Arc Magma Formation. Chemical Geology, 258(3-4): 207-218. https://doi.org/10.1016/j.chemgeo.2008.10.006
      Liang, Z., 2018. Petrological and Geochemical Studies of Mafic-Ultramafic Complexes from Southeastern Alaska, United States (Dissertation). Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 41-53(in Chinese with English abstract).
      Li, D.Y., Xiao Y.L., Wang, Y.Y., et al., 2019. Mg-Li-Fe-Cr Isotopic Fractionation during Subduction. Earth Science, 44(12): 4081-4085(in Chinese with English abstract).
      Li, X.H., Liu, Y., Tang, Y.J., et al., 2015. In-Situ Li Isotopic Microanalysis Using SIMS and Its Applications. Earth Science Frontiers, 22(5): 160-170(in Chinese with English abstract).
      Lundstrom, C.C., Chaussidon, M., Hsui, A.T., et al., 2005. Observations of Li Isotopic Variations in the Trinity Ophiolite: Evidence for Isotopic Fractionation by Diffusion during Mantle Melting. Geochimica et Cosmochimica Acta, 69(3): 735-751. https://doi.org/10.1016/j.gca.2004.08.004
      Magna, T., Wiechert, U., Grove, T.L., et al., 2006. Lithium Isotope Fractionation in the Southern Cascadia Subduction Zone. Earth and Planetary Science Letters, 250(3-4): 428-443. https://doi.org/10.1016/j.epsl.2006.08.019
      Mao, Y.J., Schoneveld, L., Barnes, S.J., et al., 2021. Coupled Li-P Zoning and Trace Element Composition of Olivine from Magmatic Ni-Cu Deposits: Implications for Postcumulus Re-Equilibration of Olivine. Journal of Petrology(in review).
      Marschall, H.R., Wanless, V.D., Shimizu, N., et al., 2017. The Boron and Lithium Isotopic Composition of Mid-Ocean Ridge Basalts and the Mantle. Geochimica et Cosmochimica Acta, 207: 102-138. https://doi.org/10.1016/j.gca.2017.03.028
      Pogge von Strandmann, P.A.E., Elliott, T., Marschall, H.R., et al., 2011. Variations of Li and Mg Isotope Ratios in Bulk Chondrites and Mantle Xenoliths. Geochimica et Cosmochimica Acta, 75(18): 5247-5268. https://doi.org/10.1016/j.gca.2011.06.026
      Rudnick, R.L., Ionov, D.A., 2007. Lithium Elemental and Isotopic Disequilibrium in Minerals from Peridotite Xenoliths from Far-East Russia: Product of Recent Melt/Fluid-Rock Reaction. Earth and Planetary Science Letters, 256(1-2): 278-293. https://doi.org/10.1016/j.epsl.2007.01.035
      Seitz, H.M., Brey, G.P., Stachel, T., et al., 2003. Li Abundances in Inclusions in Diamonds from the Upper and Lower Mantle. Chemical Geology, 201(3-4): 307-318. https://doi.org/10.1016/j.chemgeo.2003.08.001
      Su, B.X., 2017. Applications of Li Isotopes in Mantle Geochemistry. Bulletin of Mnieralogy, Petrology and Geochemistry. 36(1): 6-13(in Chinese with English abstract).
      Su, B.X., Bai, Y., Cui, M.M., et al., 2020. Petrogenesis of the Ultramafic Zone of the Stillwater Complex in North America: Constraints from Mineral Chemistry and Stable Isotopes of Li and O. Contributions to Mineralogy and Petrology, 175(7): 1-20. https://doi.org/10.1007/s00410-020-01707-y
      Su, B.X., Chen, C., Bai, Y., et al., 2017. Lithium Isotopic Composition of Alaskan-Type Intrusion and Its Implication. Lithos, 286-287: 363-368. https://doi.org/10.1016/j.lithos.2017.06.024
      Su, B.X., Chen, C., Pang, K.N., et al., 2018a. Melt Penetration in Oceanic Lithosphere: Li Isotope Records from the Pozantı-Karsantı Ophiolite in Southern Turkey. Journal of Petrology, 59(1): 191-205. https://doi.org/10.1093/petrology/egy023
      Su, B.X., Zhou, X.H., Sun, Y., et al., 2018b. Carbonatite-Metasomatism Signatures Hidden in Silicate-Metasomatized Mantle Xenoliths from NE China. Geological Journal, 53(2): 682-691. https://doi.org/10.1002/gj.2920
      Su, B.X., Gu, X.Y., Deloule, E., et al., 2015. Potential Orthopyroxene, Clinopyroxene and Olivine Reference Materials for In-Situ Lithium Isotope Determination. Geostandards and Geoanalytical Research, 39(3): 357-369. https://doi.org/10.1111/j.1751-908x.2014.00313.x doi: 10.1111/j.1751-908X.2014.00313.x
      Su, B.X., Zhang, H.F., Deloule, E., et al., 2014. Distinguishing Silicate and Carbonatite Mantle Metasomatism by Using Lithium and Its Isotopes. Chemical Geology, 381: 67-77. https://doi.org/10.1016/j.chemgeo.2014.05.016
      Su, B.X., Zhou, M.F., Robinson, P.T., 2016. Extremely Large Fractionation of Li Isotopes in a Chromitite-Bearing Mantle Sequence. Scientific Reports, 6: 22370. https://doi.org/10.1038/srep22370
      Tang, D.M., Qin, K.Z., Su, B.X., et al., 2021. Addition of H2O at the Baishiquan and Tianyu Magmatic Ni-Cu Sulfide Deposits, Southern Central Asian Orogenic Belt, China: Evidence from Isotopic Geochemistry of Olivine and Zircon. Mineralium Deposita. https://doi.org/10.1007/s00126-021-01063-2
      Tang, Y.J., Zhang, H.F., Nakamura, E., et al., 2007. Lithium Isotopic Systematics of Peridotite Xenoliths from Hannuoba, North China Craton: Implications for Melt-Rock Interaction in the Considerably Thinned Lithospheric Mantle. Geochimica et Cosmochimica Acta, 71(17): 4327-4341. https://doi.org/10.1016/j.gca.2007.07.006
      Teng, F.Z., Rudnick, R.L., McDonough, W.F., et al., 2008. Lithium Isotopic Composition and Concentration of the Deep Continental Crust. Chemical Geology, 255(1-2): 47-59. https://doi.org/10.1016/j.chemgeo.2008.06.009
      Tomascak, P.B., Magna, T.S., Dohmen, R., 2016. Advances in Lithium Isotope Geochemistry. Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-01430-2
      Tomascak, P.B., Tera, F., Helz, R.T., et al., 1999. The Absence of Lithium Isotope Fractionation during Basalt Differentiation: New Measurements by Multicollector Sector ICP-MS. Geochimica et Cosmochimica Acta, 63(6): 907-910. https://doi.org/10.1016/s0016-7037(98)00318-4 doi: 10.1016/S0016-7037(98)00318-4
      Tomascak, P.B., Widom, E., Benton, L.D., et al., 2002. The Control of Lithium Budgets in Island Arcs. Earth and Planetary Science Letters, 196(3-4): 227-238. https://doi.org/10.1016/s0012-821x(01)00614-8 doi: 10.1016/S0012-821X(01)00614-8
      Tian, S.H., Lu, N., Hou, Z.Q., et al., 2021. Lithium Isotopic Solution Analysis Using MC-ICP-MS and Its Applications. Geological Review, 67(5): 1441-1464 (in Chinese with English abstract).
      Xiao, Y., Zhang, H.F., Su, B.X., et al., 2017. Partial Melting Control of Lithium Concentrations and Isotopes in the Cenozoic Lithospheric Mantle beneath Jiande Area, the Cathaysia Block of SE China. Chemical Geology, 466: 750-761. https://doi.org/10.1016/j.chemgeo.2017.07.024
      Xiao, Y., Zhang, H.F., Su, B.X., et al., 2019. Subduction-Driven Heterogeneity of the Lithospheric Mantle beneath the Cathaysia Block, South China. Journal of Asian Earth Sciences, 186: 104062. https://doi.org/10.1016/j.jseaes.2019.104062
      Xu, R., Liu, Y.S., Tong, X.R., et al., 2013. In-Situ Trace Elements and Li and Sr Isotopes in Peridotite Xenoliths from Kuandian, North China Craton: Insights into Pacific Slab Subduction-Related Mantle Modification. Chemical Geology, 354: 107-123. https://doi.org/10.1016/j.chemgeo.2013.06.022
      Zhang, P.F., Zhou, M.F., Robinson, P.T., et al., 2019. Evolution of Nascent Mantle Wedges during Subduction Initiation: Li-O Isotopic Evidence from the Luobusa Ophiolite, Tibet. Geochimica et Cosmochimica Acta, 245: 35-58. https://doi.org/10.1016/j.gca.2018.09.037
      崔梦萌, 白洋, 罗扬, 等, 2020. 阿拉斯加型岩体的基本特征、成岩过程及成矿作用. 矿床地质, 39: 397-418. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202003001.htm
      邓黎旭, 刘勇胜, 宗克清, 等, 2019. 地幔橄榄岩中碳酸盐熔体交代作用及其鉴定特征. 地球科学, 44(4): 1113-1127. doi: 10.3799/dqkx.2018.357
      李东永, 肖益林, 王洋洋, 等, 2019. 板块俯冲过程中的Mg-Li-Fe-Cr同位素分馏. 地球科学, 44: 4081-4085. doi: 10.3799/dqkx.2019.255
      李献华, 刘宇, 汤艳杰, 等, 2015. 离子探针Li同位素微区原位分析技术与应用. 地学前缘, 22(5): 160-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505016.htm
      梁子, 2018. 阿拉斯加东南部镁铁-超镁铁杂岩体岩石学和地球化学(硕士学位论文). 北京: 中国科学院大学.
      苏本勋, 2017. 锂同位素在地幔地球化学中的应用. 矿物岩石地球化学通报, 36(1): 6-13. doi: 10.3969/j.issn.1007-2802.2017.01.002
      田世洪, 路娜, 侯增谦, 等, 2021. MC-ICP-MS锂同位素溶液分析技术与应用. 地质论评, 67(5): 1441-1464. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202105020.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (1779) PDF downloads(119) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return