• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 9
    Sep.  2022
    Turn off MathJax
    Article Contents
    Yang Fuquan, Geng Xinxia, Wu Feng, Zhang Zhixin, Cheng Xihui, Zhang Zhenlong, Li Ning, 2022. VMS Deposits in the Northern Xinjiang: Geological Characteristics and Metallogeny. Earth Science, 47(9): 3147-3173. doi: 10.3799/dqkx.2021.118
    Citation: Yang Fuquan, Geng Xinxia, Wu Feng, Zhang Zhixin, Cheng Xihui, Zhang Zhenlong, Li Ning, 2022. VMS Deposits in the Northern Xinjiang: Geological Characteristics and Metallogeny. Earth Science, 47(9): 3147-3173. doi: 10.3799/dqkx.2021.118

    VMS Deposits in the Northern Xinjiang: Geological Characteristics and Metallogeny

    doi: 10.3799/dqkx.2021.118
    • Received Date: 2021-08-09
    • Publish Date: 2022-09-25
    • Volcanogenic massive sulfide (VMS) is one of the most important deposit types in the Central Asian Orogenic Belt (CAOB). In the CAOB in Xinjiang (northern Xinjiang), VMS deposits are mainly distributed in the Ashele, Kelan, Maizi, and Kalatag ore dense districts of the Altay and the East Tianshan. The orebodies occurr in marine volcanic sedimentary rocks from the Lower-Middle Silurian Hongliuxia Formation, the Upper Silurian-Lower Devonian Kangbutiebao Formation, the Lower-Middle Devonian Ashele Formation, and the Lower Carboniferous Xiaorequanzi Formation. Exhalation rocks are developed in these ore districts, such iron-bearing jasper rock, barite, siliceous rock, ferromanganese marble, pyrite layer, and chlorite rock. There are many mineralization types developed in VMS metallogenic system, including the "two-layered structure" (layered/lenticular type and vein type from recharge zone), vein type related to volcanic hydrothermal fluids, and disseminated/vein type associated with sub-volcanic hydrothermal fluids. The VMS deposits in Xinjiang formed in three metallogenic periods: the Early-Middle Silurian (428-438 Ma), the Early-Middle Devonian (379-413 Ma), and Early Carboniferous (332-359 Ma). Sulfur of these deposits is derived from the underlying volcanic rock, inorganic sulfate reduction of seawater, and bacterial sulfate reduction. Ore-forming fluids are characterized by medium-low temperature (300-120 ℃) and low salinity (2%-10% NaCleq), and are deep-circulation seawater mixed with magmatic water in different proportions. The VMS metallogenic system is affected by volcanic structure, lithofacies, mineralization type, ore-forming fluids source, and physical-chemical condition, which results in a complex combination of mineralization elements.

       

    • loading
    • Burnard, P. G., Hu, R. Z., Turner, G., et al., 1999. Mantle, Crustal and Atmospheric Noble Gases in Ailaoshan Gold Deposits, Yunnan Province, China. Geochimica et Cosmochimica Acta, 63(10): 1595-1604. https://doi.org/10.1016/S0016⁃7037(99)00108⁃8
      Chai, F. M., Mao, J. W., Dong, L. H., et al., 2009. Geochronology of Metarhyolites from the Kangbutiebao Formation in the Kelang Basin, Altay Mountains, Xinjiang: Implications for the Tectonic Evolution and Metallogeny. Gondwana Research, 16(2): 189-200 doi: 10.1016/j.gr.2009.03.002
      Chai, F. M., Xu, Q. F., Wang, W., et al., 2017. Helium and Argon Isotope Characteristics of Ore⁃Forming Fluids for the Huangtupo Copper⁃Zinc Deposit, Eastern Tianshan. Chinese Journal of Geology, 52(4): 1263-1281 (in Chinese with English abstract).
      Chai, F. M., Yang, F. Q., Liu, F., et al., 2012. Geochronology and Genesis of the Meta⁃Felsic Volcanic Rocks in the Kangbutiebao Formation from the Maizi Basin at the Southern Margin of the Altay, Xinjiang. Chinese Journal of Geology, 47(1): 221-239 (in Chinese with English abstract). doi: 10.3969/j.issn.0563-5020.2012.01.019
      Chai, F. M., Zhang, Z. C., Li, W. H., et al., 2019. The Early Paleozoic Huangtupo VMS Cu⁃Zn Deposit in Kalatag, Eastern Tianshan: Implications from Geochemistry and Zircon U⁃Pb Geochronology of Volcanic Host Rocks. Lithos, 342-343: 97-113. https://doi.org/10.1016/j.lithos.2019.05.026
      Chen, Y. C., Ye, Q. T., Feng, J., et al., 1996. The Ore⁃Forming Conditions and Mineralization Predictions in Ashele Copper⁃Zinc Belt. Geological Publishing House, Beijing (in Chinese).
      Chen, Y. J., Pirajno, F., Wu, G., et al., 2012. Epithermal Deposits in North Xinjiang, NW China. International Journal of Earth Sciences, 101(4): 889-917. https://doi.org/10.1007/s00531⁃011⁃0689⁃4
      Cheng, X. H., Yang, F. Q., Zhang, R., et al., 2020. Metallogenesis and Fluid Evolution of the Huangtupo Cu⁃Zn Deposit, East Tianshan, Xinjiang, NW China: Constraints from Ore Geology, Fluid Inclusion Geochemistry, H⁃O⁃S Isotopes, and U⁃Pb Zircon, Re⁃Os Chalcopyrite Geochronology. Ore Geology Reviews, 121: 103469. https://doi.org/10.1016/j.oregeorev.2020.103469
      Daukeev, S. Z., Uzhkenov, B. S., Bespaev, K. A., et al., 2004. Atlas of Mineral Deposit Models of the Republic of Kazakhstan. Printing House: Center for Geoinformation of the Military Forces of the Republic of Kazakhstan. Almaty.
      Deng, X. H., Wang, J. B., Pirajno, F., et al., 2016. Re⁃Os Dating of Chalcopyrite from Selected Mineral Deposits in the Kalatag District in the Eastern Tianshan Orogen, China. Ore Geology Reviews, 77: 72-81. https://doi.org/10.1016/j.oregeorev.2016.01.014
      Deng, X. H., Wang, J. B., Pirajno, F., et al., 2020. A Review of Cu⁃Dominant Mineral Systems in the Kalatag District, East Tianshan, China. Ore Geology Reviews, 117: 103284. https://doi.org/10.1016/j.oregeorev.2019.103284
      Deng, X. H., Wang, J. B., Santosh, M., et al., 2018. New 40Ar/39Ar Ages from the Kalatag District in the Eastern Tianshan, NW China: Constraints on the Timing of Cu Mineralization and Stratigraphy. Ore Geology Reviews, 100: 250-262. https://doi.org/10.1016/j.oregeorev.2016.08.006
      Faure, G., 1986. Principles of Isotope Geology (2nd Edition). John Wiley and Sons, New York.
      Gao, J., Zhu, M. T., Wang, X. S., et al., 2019. Large⁃Scale Porphyry⁃Type Mineralization in the Central Asian Metallogenic Domain: Tectonic Background, Fluid Feature and Metallogenic Deep Dynamic Mechanism. Acta Geologica Sinica, 93(1): 24-71 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.01.004
      Gao, L. L., Chen, C., Wang, K. Y., et al., 2020. Tectonic Setting and Geochronology of the Sarsuk Au Polymetallic Deposit in Xinjiang, NW China: Constraints from Pyrite Re⁃Os, Zircon U⁃Pb Dating and Hf Isotopes. Ore Geology Reviews, 124: 103641. https://doi.org/10.1016/j.oregeorev.2020.103641
      Geng, X. X., Yang, F. Q., Chai, F. M., et al., 2012. LA⁃ICP⁃MS U⁃Pb Dating of Volcanic Rocks from Dadonggou Ore District on Southern Margin of Altay in Xinjiang and Its Geological Implications. Mineral Deposits, 31(5): 1119-1131 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.05.014
      Geng, X. X., Yang, F. Q., Yang, J. M., et al., 2010. Stable Isotope Characteristics of Tiemurte Pb⁃Zn Deposit in Altay, Xinjiang. Mineral Deposits, 29(6): 1088-1100 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2010.06.011
      Geng, X. X., Zhang, Z. X., Zhang, Z. L., et al., 2022. Ore⁃Forming Age of the Huangtan Au⁃Cu⁃Zn Deposit in the East Tianshan, Xinjiang⁃Muscovite 40Ar⁃39Ar Age and Pyrite Re⁃Os Age. Geotectonica et Metallogenia, Online (in Chinese with English abstract). https://doi.org/10.16539/j.ddgzyckx.2022.03.020
      Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2006. Major Types, Characteristics and Geodynamic Mechanism of Upper Paleozoic Copper Deposits in Northern Xinjiang, Northwestern China. Ore Geology Reviews, 28(3): 308-328. https://doi.org/10.1016/j.oregeorev.2005.04.002
      Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2014. Mid⁃Late Paleozoic Metallogenesis and Evolution of the Chinese Altai and East Junggar Orogenic Belt, NW China, Central Asia. Journal of Geosciences, 59(3): 255-274. https://doi.org/10.3190/jgeosci.173
      He, G. Q., Zhu, Y. F., 2006. Comparative Study of the Geology and Mineral Resources in Xinjiang, China, and Its Adjacent Regions. Geology in China, 33(3): 451-460 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.03.001
      Herrington, R. J., Scotney, P. M., Roberts, S., et al., 2011. Temporal Association of Arc⁃Continent Collision, Progressive Magma Contamination in Arc Volcanism and Formation of Gold⁃Rich Massive Sulphide Deposits on Wetar Island (Banda Arc). Gondwana Research, 19(3): 583-593. https://doi.org/10.1016/j.gr.2010.10.011
      Keller, J., Hoefs, J., 1995. Stable Isotope Characteristics of Recent Natrocarbonaties from Oldoinyo Lengai. In: Bell, K., Keller, J., eds., Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonaties. Springer, Berlin.
      Li, D. F., Fu, Y., Sun, X. M., 2018. Onset and Duration of Zn⁃Pb Mineralization in the Talate Pb⁃Zn (⁃Fe) Skarn Deposit, NW China: Constraints from Spessartine U⁃Pb Dating. Gondwana Research, 63: 117-128. https://doi.org/10.1016/j.gr.2018.05.013
      Li, J. Y., He, G. Q., Xu, X., et al., 2006. Crustal Tectonic Framework of Northern Xinjiang and Adjacent Regions and Its Formation. Acta Geologica Sinica, 80(1): 148-168 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.01.017
      Liu, G. R., Dong, L. H., Shang, H. J., et al., 2010. Prospecting Model of Comprehensive Information of Sawusi Pb⁃Zn Deposit in Altai, Xinjiang. Geoscience, 24(1): 59-68 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2010.01.008
      Liu, J. J., He, M. Q., Li, Z. M., et al., 2004. Oxygen and Carbon Isotopic Geochemistry of Baiyangping Silver⁃Copper Polymetallic Ore Concentration Area in Lanping Basin of Yunnan Province and Its Significance. Mineral Deposits, 23(1): 1-10 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2004.01.001
      Liu, M., Zhang, Z. H., Wang, Y. Q., et al., 2008. Geology and Stable Isotope Geochemistry of the Dadonggou Pb⁃Zn Ore Deposit, Altay, Xinjiang, NW China. Acta Geologica Sinica, 82(11): 1504-1513 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2008.11.005
      Liu, S. T., Lü, X. B., Cao, X. F., et al., 2011. Isotopic Geochemistry of the Xiaorequanzi Copper (Zinc) Deposit in Xinjiang and Its Significance. Geology and Exploration, 47(4): 624-632 (in Chinese with English abstract).
      Liu, W., Liu, L. J., Liu, X. J., 2014. 40Ar/39Ar Geochronology of Ore⁃Controlling Grunerite Skarn from the Sawusi Pb⁃Zn Deposit, Maizi Basin of the Southern Chinese Altay Mountains. Acta Petrologica Sinica, 30(6): 1535-1544 (in Chinese with English abstract).
      Liu, X. J., Liu, W., Liu, L. J., 2012. The Generation of a Stratiform Skarn and Volcanic Exhalative Pb⁃Zn Deposit (Sawusi) in the Southern Chinese Altay Mountains: The Constraints from Petrography, Mineral Assemblage and Chemistry. Gondwana Research, 22(2): 597-614. https://doi.org/10.1016/j.gr.2012.01.001
      Liu, X. J., Liu, W., Liu, L. J., et al., 2011. Genesis of the Sawusi Lead⁃Zinc Deposit in the Eastern Maizi Volcanic⁃Sedimentary Basin, Southern Altay Mountains. Acta Petrologica Sinica, 27(6): 1810-1828 (in Chinese with English abstract).
      Lobanov, K., Yakubchuk, A., Creaser, R. A., 2014. Besshi⁃Type VMS Deposits of the Rudny Altai (Central Asia). Economic Geology, 109(5): 1403-1430. https://doi.org/10.2113/econgeo.109.5.1403
      Long, L. L., Wang, J. B., Wang, Y. W., et al., 2017. Zircon U⁃Pb Geochronological, Geochemical Characteristics and Potential Mineralization Significance of the Rhyolite in Kalatage Copper Polymetallic Ore Cluster Area, Eastern Tianshan. Acta Petrologica Sinica, 33(2): 367-384 (in Chinese with English abstract).
      Lu, Q. Y., Zheng, Y., Wang, C. M., et al., 2018. S⁃Pb⁃Sr⁃Nd⁃C⁃H⁃O Isotopic Geochemistry of the Wulasigou Cu Deposit in the South Altay: Constraints for the Fluid and Metal Sources. Earth Science, 43(9): 3141-3153 (in Chinese with English abstract).
      Luo, T., Chen, J. P., Liao, Q. A., et al., 2020. A Back⁃Arc Basin in Eastern Tianshan, Central Asia: Evidence from Geochronology and Geochemistry of Carboniferous Basalts. Earth Science, 45(1): 194-210 (in Chinese with English abstract).
      Lü, X. Q., Mao, Q. G., Guo, N. X., et al., 2020. Re⁃Os Isotopic Dating of Pyrrhotite from Yueyawan Cu⁃Ni Sulfide Deposit in Kalatage Area of East Tianshan Mountain and Its Geological Significance. Earth Science, 45(9): 3475-3486 (in Chinese with English abstract).
      Mao, Q. G., Fang, T. H., Wang, J. B., et al., 2010. Geochronology Studies of the Early Paleozoic Honghai Massive Sulfide Deposits and Its Geological Significance in Kalatage Area, Eastern Tianshan Mountain. Acta Petrologica Sinica, 26(10): 3017-3026 (in Chinese with English abstract).
      Mao, Q. G., Wang, J. B., Fang, T. H., et al., 2015. Lead and Sulfur Isotope Studies of Sulfides from Honghai VMS⁃Type Deposit in Kalatage Ore Belt of Eastern Tianshan Mountains. Mineral Deposits, 34(4): 730-744 (in Chinese with English abstract).
      Mao, Q. G., Wang, J. B., Xiao, W. J., et al., 2019. Mineralization of an Intra⁃Oceanic Arc in an Accretionary Orogen: Insights from the Early Silurian Honghai Volcanogenic Massive Sulfide Cu⁃Zn Deposit and Associated Adakites of the Eastern Tianshan (NW China). GSA Bulletin, 131(5-6): 803-830. https://doi.org/10.1130/b31986.1
      Mao, Q. G., Wang, J. B., Yu, M. J., et al., 2020. Re⁃Os and U⁃Pb Geochronology for the Xiaorequanzi VMS Deposit in the Eastern Tianshan, NW China: Constraints on the Timing of Mineralization and Stratigraphy. Ore Geology Reviews, 122: 103473. https://doi.org/10.1016/j.oregeorev.2020.103473
      Mao, Q. G., Yu, M. J., Xiao, W. J., et al., 2018. Skarn⁃Mineralized Porphyry Adakites in the Harlik Arc at Kalatage, E. Tianshan (NW China): Slab Melting in the Devonian⁃Early Carboniferous in the Southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 365-378. https://doi.org/10.1016/j.jseaes.2017.03.021
      Mercier⁃Langevin, P., Hannington, M. D., Dubé, B., et al., 2011. The Gold Content of Volcanogenic Massive Sulfide Deposits. Mineralium Deposita, 46(5-6): 509-539. https://doi.org/10.1007/s00126⁃010⁃0300⁃0
      Niu, H. C., Yu, X. Y., Xu, J. F., et al., 2006. Late Paleozoic Volcanism and Associated Metallogenesis in the Altay Area, Xinjiang, China. Geological Publishing House, Beijing (in Chinese).
      Niu, L., Hong, T., Xu, X. W., et al., 2020. A Revised Stratigraphic and Tectonic Framework for the Ashele Volcanogenic Massive Sulfide Deposit in the Southern Chinese Altay: Evidence from Stratigraphic Relationships and Zircon Geochronology. Ore Geology Reviews, 127: 103814. https://doi.org/10.1016/j.oregeorev.2020.103814
      Sengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364 (22): 299-307. https://doi.org/10.1038/364299a0
      Shan, Q., Zeng, Q. S., Li, N. B., et al., 2012. Zircon U⁃Pb Ages and Geochemistry of the Potassic and Sodic Rhyolites of the Kangbutiebao Formation in the Southern Margin of Altay, Xinjiang. Acta Petrologica Sinica, 28(7): 2132-2144 (in Chinese with English abstract).
      Shan, Q., Zeng, Q. S., Luo, Y., et al., 2011. SHRIMP U⁃Pb Ages and Petrology Studies on the Potassic and Podic Rhyolites in Altai, North Xinjiang. Acta Petrologica Sinica, 27(12): 3653-3665 (in Chinese with English abstract).
      Shen, P., Pan, H. D., Shen, Y. C., et al., 2015. Main Deposit Styles and Associated Tectonics of the West Junggar Region, NW China. Geoscience Frontiers, 6(2): 175-190. https://doi.org/10.1016/j.gsf.2014.05.001
      Shen, X. H., Yao, C. Y., Fan, X. K., et al., 2016. Zircon U⁃Pb Age and Hf Isotope Compositions of the Wall Rocks in the Sarshuoke Gold⁃Copper Polymetallic Deposit in Altay, Xinjiang: Implications for the Ore⁃Forming Conditions. Geological Bulletin of China, 35(1): 167-174 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2016.01.015
      Sun, B. K., Ruan, B. X., Lü, X. B., et al., 2020. Geochronology and Geochemistry of the Igneous Rocks and Ore⁃Forming Age in the Huangtan Au⁃Cu Deposit in the Kalatag District, Eastern Tianshan, NW China: Implications for Petrogenesis, Geodynamic Setting, and Mineralization. Lithos, 368-369: 105594. https://doi.org/10.1016/j.lithos.2020.105594
      Sun, Y., Wang, J. B., Li, Y. C., et al., 2018. Recognition of Late Ordovician Yudai Porphyry Cu (Au, Mo) Mineralization in the Kalatag District, Eastern Tianshan Terrane, NW China: Constraints from Geology, Geochronology, and Petrology. Ore Geology Reviews, 100: 220-236. https://doi.org/10.1016/j.oregeorev.2017.07.011
      Wan, B., Zhang, L. C., Xiang, P., 2010a. The Ashele VMS⁃Type Cu⁃Zn Deposit in Xinjiang, NW China Formed in a Rifted Arc Setting. Resource Geology, 60(2): 150-164. https://doi.org/10.1111/j.1751⁃3928.2010.00122.x
      Wan, B., Zhang, L. C., Xiao, W. J., 2010b. Geological and Geochemical Characteristics and Ore Genesis of the Keketale VMS Pb⁃Zn Deposit, Southern Altai Metallogenic Belt, NW China. Ore Geology Reviews, 37(2): 114-126. https://doi.org/10.1016/j.oregeorev.2010.01.002
      Wang, D. H., 1996. Sulfur and Lead Isotopic Geochemistry of the Ashele Volcanogenic Massive Sulfide Deposit, Xinjiang, China. Geochimica, 25(6): 582-590 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1996.06.008
      Wang, J. B., Qin, K. Z., Wu, Z. L., et al., 1998. Volcanic Exhalative Sedimentary Lead⁃Zinc Deposits in the South Margin of Altay Mountains, Xinjiang. Geological Publishing House, Beijing (in Chinese).
      Wang, J. B., Wang, Y. W., He, Z. J., 2006. Ore Deposits as a Guide to the Tectonic Evolution in the East Tianshan Mountains, NW China. Geology in China, 33(3): 461-469 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.03.002
      Xiao, W. J., Windley, B. F., Badarch, G., et al., 2004. Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids: Implications for the Growth of Central Asia. Journal of the Geological Society, 161: 339-342. https://doi.org/10.1144/0016⁃764903⁃165
      Xiao, W. J., Sun, M., Santosh, M., 2015. Continental Reconstruction and Metallogeny of the Circum⁃Junggar Areas and Termination of the Southern Central Asian Orogenic Belt. Geoscience Frontiers, 6(2): 137-140. https://doi.org/10.1016/j.gsf.2014.11.003
      Yakubchuk, A. S., Shatov, V. V., Kirwin, D., et al., 2005. Gold and Base Metal Metallogeny of the Central Asian Orogenic Supercollage. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., et al., eds., One Hundredth Anniversary Volume. Society of Economic Geologists, Littleton. https://doi.org/10.5382/av100.31
      Yang, C. D., Chai, F. M., Yang, F. Q., et al., 2018d. Genesis of the Huangtupo Cu⁃Zn Deposit, Eastern Tianshan, NW China: Constraints from Geology, Rb⁃Sr and Re⁃Os Geochronology, Fluid Inclusions, and H⁃O⁃S⁃Pb Isotopes. Ore Geology Reviews, 101: 725-739. https://doi.org/10.1016/j.oregeorev.2018.08.021
      Yang, C. D., Geng, X. X., Yang, F. Q., et al., 2018e. Metallogeny of the Sarsuk Polymetallic Au Deposit in the Ashele Basin, Altay Orogenic Belt, Xinjiang, NW China: Constraints from Mineralogy, Fluid Inclusions, and He⁃Ar Isotopes. Ore Geology Reviews, 100: 77-98. https://doi.org/10.1016/j.oregeorev.2016.10.026
      Yang, C. D., Yang, F. Q., Chai, F. M., et al., 2018c. Timing of Formation of the Keketale Pb⁃Zn Deposit, Xinjiang, Northwest China, Central Asian Orogenic Belt: Implications for the Metallogeny of the South Altay Orogenic Belt. Geological Journal, 53(3): 899-913. https://doi.org/10.1002/gj.2933
      Yang, C. D., Yang, F. Q., Geng, X. X., et al., 2017. Geochemistry and Sr⁃Nd⁃Hf Isotopes of Middle Devonian Igneous Rocks of the Sarsuk Polymetallic Au Deposit: Implications for Understanding the Tectonic Evolution of the South Altay Orogenic Belt, Northwest China. International Geology Review, 59(4): 448-469. https://doi.org/10.1080/00206814.2016.1227943
      Yang, C. D., Zhang, B., Yang, F. Q., et al., 2021a. Zircon U⁃Pb Age, Fluid Inclusion, and H⁃C⁃O⁃He⁃Ar⁃S Isotopic Compositions as an Index to the VMS⁃Type Mineralization: A Case Study from the Wulasigou Polymetallic Deposit, Altay Orogenic Belt, Northwest China. Journal of Geochemical Exploration, 222: 106720. https://doi.org/10.1016/j.gexplo.2020.106720
      Yang, F. Q., Geng, X. X., Wang, R., et al., 2018a. A Synthesis of Mineralization Styles and Geodynamic Settings of the Paleozoic and Mesozoic Metallic Ore Deposits in the Altay Mountains, NW China. Journal of Asian Earth Sciences, 159: 233-258. https://doi.org/10.1016/j.jseaes.2017.05.020
      Yang, F. Q., Li, Q., Yang, C. D., et al., 2018b. A Combined Fluid Inclusion and S⁃H⁃O⁃He⁃Ar Isotope Study of the Devonian Ashele VMS⁃Type Copper⁃Zinc Deposit in the Altay Orogenic Belt, Northwest China. Journal of Asian Earth Sciences, 161: 139-163. https://doi.org/10.1016/j.jseaes.2018.05.012
      Yang, F. Q., Liu, F., Li, Q., 2015. Geological Characteristics and Metallogenesis of the Saershuoke Polymetallic Deposit in Altay, Xinjiang. Acta Petrologica Sinica, 31(8): 2366-2382 (in Chinese with English abstract).
      Yang, F. Q., Liu, F., Li, Q., et al., 2014. In Situ LA⁃MC⁃ICP⁃MS U⁃Pb Geochronology of Igneous Rocks in the Ashele Basin, Altay Orogenic Belt, Northwest China: Constraints on the Timing of Polymetallic Copper Mineralization. Journal of Asian Earth Sciences, 79: 477-496. https://doi.org/10.1016/j.jseaes.2013.10.022
      Yang, F. Q., Mao, J. W., Zheng, J. M., et al., 2006. Geology and Metallogenic Model of the Altay Large Metallogenic Belt in Kazakhstan. Acta Geologica Sinica, 80(7): 963-983 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.07.004
      Yang, F. Q., Zhang, B., Yang, C. D., et al., 2021b. Geology and Geochronology of the Volcanogenic Massive Sulphide Polymetallic Deposits in Altay Orogenic Belt, Xinjiang, Northwest China: Examples from the Kelan Basin. International Geology Review, 63(10): 1199-1214. https://doi.org/10.1080/00206814.2020.1756001
      Yu, M. J., Wang, Y. W., Wang, J. B., et al., 2019. The Mineralization of the Kalatage Arc, Eastern Tianshan, NW China: Insights from the Geochronology of the Meiling Cu⁃Zn(⁃Au) Deposit. Ore Geology Reviews, 107: 72-86. https://doi.org/10.1016/j.oregeorev.2018.12.009
      Yu, P. P., Zheng, Y., 2019. Pb⁃Zn⁃Cu Accumulation from Seafloor Sedimentation to Metamorphism: Constraints from Ore Textures Coupled with Elemental and Isotopic Geochemistry of the Tiemurt in Chinese Altay Orogen, NW China. Gondwana Research, 72: 65-82. https://doi.org/10.1016/j.gr.2019.02.007
      Yu, P. P., Zheng, Y., Wang, C. M., 2020. Trace Elemental and Sulfur⁃Lead Isotopic Variations in Metamorphosed Volcanogenic Massive Sulfide (VMS) Mineralization Systems: An Example from the Keketale Pb⁃Zn(⁃Ag) Deposit, NW China. Ore Geology Reviews, 125: 103685. https://doi.org/10.1016/j.oregeorev.2020.103685
      Yuan, L. L., Liu, F., 2017. Sulfide Re⁃Os Age and Rb⁃Sr Age of Talate Pb⁃Zn⁃Fe Polymetallic Deposit in Southern Altay and Their Geological Significance. Mineral Deposits, 36(6): 1333-1351 (in Chinese with English abstract).
      Zeng, Z. G., Qin, Y. S., Zhai, S. K., 2001. He, Ne and Ar Isotope Compositions of Fluid Inclusions in Hydrothermal Sulfides from the TAG Hydrothermal Field Mid⁃Atlantic Ridge. Science China: Earth Sciences, 44(3): 221-228. https://doi.org/10.1007/BF02882256
      Zhang, Z. L., Geng, X. X., Zhang, Z. X., et al., 2022. Metallogenesis of the Huangtan Au⁃Cu⁃Zn Deposit in East Tianshan, NW China: Constraints from Isotopes (H, O, He, Ar, and S) and Re⁃Os Geochronology. International Journal of Earth Sciences, Online. https://doi.org/10.1007/s00531⁃021⁃02134⁃5
      Zhang, Z. X., Yang, F. Q., Liu, F., et al., 2014. Helium and Argon Isotopes Tracing for Sources of Ore⁃Forming Fluid in the Ashele Volcanogenic⁃Host Massive Sulfide Copper⁃Zinc Deposit, Chinese Altay. Geological Review, 60(1): 222-230 (in Chinese with English abstract).
      Zheng, Y., Zhang, L., Guo, Z. L., 2013. Zircon LA⁃ICP⁃MS U⁃Pb and Biotite 40Ar/39Ar Geochronology of the Tiemuert Pb⁃Zn⁃Cu Deposit, Xinjiang: Implications for Ore Genesis. Acta Petrologica Sinica, 29(1): 191-204 (in Chinese with English abstract).
      Zheng, Y., Zhang, L., Li, D. F., et al., 2015. Genesis of the Dadonggou Pb⁃Zn Deposit in Kelan Basin, Altay, NW China: Constraints from Zircon U⁃Pb and Biotite 40Ar/39Ar Geochronological Data. Ore Geology Reviews, 64: 128-139. https://doi.org/10.1016/j.oregeorev.2014.07.002
      柴凤梅, 许强奋, 王雯, 等, 2017. 东天山黄土坡铜锌矿床成矿流体的氩‒氩同位素示踪. 地质科学, 52(4): 1263-1281.
      柴凤梅, 杨富全, 刘锋, 等, 2012. 阿尔泰南缘麦兹盆地康布铁堡组变质酸性火山岩年龄及岩石成因. 地质科学, 47(1): 221-239. doi: 10.3969/j.issn.0563-5020.2012.01.019
      陈毓川, 叶庆同, 冯京, 等, 1996. 阿舍勒铜锌成矿带成矿条件和成矿预测. 北京: 地质出版社.
      高俊, 朱明田, 王信水, 等, 2019. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制. 地质学报, 93(1): 24-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201901004.htm
      耿新霞, 杨富全, 柴凤梅, 等, 2012. 新疆阿尔泰南缘大东沟铅锌矿区火山岩LA⁃ICP⁃MS锆石U⁃Pb定年及地质意义. 矿床地质, 31(5): 1119-1131. doi: 10.3969/j.issn.0258-7106.2012.05.014
      耿新霞, 杨富全, 杨建民, 等, 2010. 新疆阿尔泰铁木尔特铅锌矿床稳定同位素组成特征. 矿床地质, 29(6): 1088-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201006010.htm
      耿新霞, 张志欣, 张振龙, 等, 2022. 新疆东天山黄滩金铜锌矿成矿时代——来自白云母40Ar⁃39Ar年龄和黄铁矿Re⁃Os年龄约束. 大地构造与成矿, 在线出版. https://doi.org/10.16539/j.ddgzyckx.2022.03.020
      何国琦, 朱永峰, 2006. 中国新疆及其邻区地质矿产对比研究. 中国地质, 33(3): 451-460. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603000.htm
      李锦轶, 何国琦, 徐新, 等, 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 80(1): 148-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601020.htm
      刘国仁, 董连慧, 尚海军, 等, 2010. 新疆阿尔泰萨吾斯铅锌矿综合信息找矿模式. 现代地质, 24(1): 59-68. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201001009.htm
      刘家军, 何明勤, 李志明, 等, 2004. 云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义. 矿床地质, 23(1): 1-10 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200401000.htm
      刘敏, 张作衡, 王永强, 等, 2008. 新疆阿尔泰大东沟铅锌矿床地质特征及稳定同位素地球化学研究. 地质学报, 82(11): 1504-1513.
      刘申态, 吕新彪, 曹晓峰, 等, 2011. 新疆小热泉子铜(锌)矿床同位素地球化学研究及其意义. 地质与勘探, 47(4): 624-632. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201104010.htm
      刘伟, 刘丽娟, 刘秀金, 2014. 阿尔泰南缘麦兹盆地萨吾斯铅锌矿床控矿铁闪石矽卡岩的40Ar/39Ar年代学研究. 岩石学报, 30(6): 1535-1544. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406002.htm
      刘秀金, 刘伟, 刘丽娟, 等, 2011. 阿尔泰南缘麦兹火山‒沉积盆地东部萨吾斯铅锌矿床成因探讨. 岩石学报, 27(6): 1810-1828. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106020.htm
      龙灵利, 王京彬, 王玉往, 等, 2017. 东天山卡拉塔格铜多金属矿集区黄铁矿化(次)流纹岩年代学、地球化学特征及其对成矿的潜在意义. 岩石学报, 33(2): 367-384. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201702005.htm
      卢琦园, 郑义, 王成明, 等, 2018. 阿尔泰南缘乌拉斯沟铜矿床S⁃Pb⁃Sr⁃Nd⁃C⁃H⁃O同位素特征及其对成矿物质和流体来源限定. 地球科学, 43(9): 3141-3153. doi: 10.3799/dqkx.2018.135
      罗婷, 陈继平, 廖群安, 等, 2020. 东天山觉罗塔格构造带石炭纪弧后盆地: 来自基性火山岩的证据. 地球科学, 45(1): 194-210. doi: 10.3799/dqkx.2018.325
      吕晓强, 毛启贵, 郭娜欣, 等, 2020. 东天山卡拉塔格地区月牙湾铜镍硫化物矿床磁黄铁矿Re⁃Os同位素测定及其地质意义. 地球科学, 45(9): 3475-3486. doi: 10.3799/dqkx.2019.228
      毛启贵, 方同辉, 王京彬, 等, 2010. 东天山卡拉塔格早古生代红海块状硫化物矿床精确定年及其地质意义. 岩石学报, 26(10): 3017-3026. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010013.htm
      毛启贵, 王京彬, 方同辉, 等, 2015. 东天山卡拉塔格矿带红海VMS型矿床S、Pb同位素地球化学研究. 矿床地质, 34(4): 730-744. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201504005.htm
      牛贺才, 于学元, 许继峰, 等, 2006. 中国新疆阿尔泰晚古生代火山作用及成矿. 北京: 地质出版社.
      单强, 曾乔松, 李宁波, 等, 2012. 新疆阿尔泰南缘康布铁堡组钾‒钠质流纹岩锆石U⁃Pb年龄和地球化学. 岩石学报, 28(7): 2132-2144. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207016.htm
      单强, 曾乔松, 罗勇, 等, 2011. 新疆阿尔泰康布铁堡组钾质和钠质流纹岩的成因及同位素年代学研究. 岩石学报, 27(12): 3653-3665. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201112013.htm
      沈雪华, 姚春彦, 樊献科, 等, 2016. 新疆萨尔朔克铜金多金属矿床成矿围岩锆石年龄、Hf同位素及其成矿背景. 地质通报, 35(1): 167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201601015.htm
      王登红, 1996. 新疆阿舍勒火山岩型块状硫化物铜矿硫、铅同位素地球化学. 地球化学, 25(6): 582-590. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX606.007.htm
      王京彬, 秦克章, 吴志亮, 等, 1998. 阿尔泰山南缘火山喷流沉积型铅锌矿床. 北京: 地质出版社.
      王京彬, 王玉往, 何志军, 2006. 东天山大地构造演化的成矿示踪. 中国地质, 33(3): 461-469. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603001.htm
      杨富全, 刘锋, 李强, 2015. 新疆阿尔泰萨尔朔克多金属矿地质特征及成矿作用. 岩石学报, 31(8): 2366-2382. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201508017.htm
      杨富全, 毛景文, 郑建民, 等, 2006. 哈萨克斯坦阿尔泰巨型成矿带的地质特征和成矿模型. 地质学报, 80(7): 963-983. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200607003.htm
      袁玲玲, 刘锋, 2017. 阿尔泰南缘塔拉特铅锌铁多金属矿床硫化物Re⁃Os和Rb⁃Sr年龄及其地质意义. 矿床地质, 36(6): 1333-1351. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201706005.htm
      张志欣, 杨富全, 刘锋, 等, 2014. 新疆阿尔泰阿舍勒VHMS型铜锌矿床成矿流体的氦: 氩同位素示踪. 地质论评, 60(1): 222-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201401023.htm
      郑义, 张莉, 郭正林, 2013. 新疆铁木尔特铅锌铜矿床锆石U⁃Pb和黑云母40Ar/39Ar年代学及其矿床成因意义. 岩石学报, 29(1): 191-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201301016.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(2)

      Article views (1446) PDF downloads(172) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return