• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 4
    Apr.  2022
    Turn off MathJax
    Article Contents
    Zhao Shanrong, Liu Yukun, Xu Chang, 2022. Electron Back-Scatter Diffraction Analysis for Twins of Plagioclase in Some Rocks. Earth Science, 47(4): 1399-1414. doi: 10.3799/dqkx.2021.150
    Citation: Zhao Shanrong, Liu Yukun, Xu Chang, 2022. Electron Back-Scatter Diffraction Analysis for Twins of Plagioclase in Some Rocks. Earth Science, 47(4): 1399-1414. doi: 10.3799/dqkx.2021.150

    Electron Back-Scatter Diffraction Analysis for Twins of Plagioclase in Some Rocks

    doi: 10.3799/dqkx.2021.150
    • Received Date: 2020-08-11
      Available Online: 2022-04-29
    • Publish Date: 2022-04-25
    • Twins in plagioclase are very common, and the twin laws are of more than 10 types. However, these twin laws are difficultly distinguished under optic microscope. In this paper, it provides a method based on electron back-scatter diffraction (EBSD) technique to determine accurately twin laws of plagioclase in three kinds of rocks (granite, diorite and leptite), occurring in Dabie Mountain, China. It is found that albite-carlsbad compound twin (including Albite law, Carlsbad law and Albite-Carlsbad law) is the most common twin type in the plagioclase in these three rocks. However, this Albite-Carlsbad compound twin (including 3-4 individuals) under EBSD test is just a polysynthetic twin (only 2 individuals) under optic microscope, because there are 1-2 individuals appearing as small domains inside other individuals, which cannot be resolved under optic microscope. A small amount of Pericline law, Prism {110}, {130} and {130} laws are also found. A new compound twin among Carlsbad law, Prism{110} law and Prism{130} law is found. The Albite-Carlsbad law, Prism {130} law and Prism {130} law can co-exist together to form an intergrowth with three-six fold symmetry, but they cannot form a compound twin. Based on the limited amount of statistics in this paper, the probability of twin laws of plagioclase is unvaried among these three kinds of rocks, possibly reflecting that the twin laws of plagiocalse are not related closely to the formation condition of rocks. The method provided in this paper to analyze twin laws of plagioclase based on EBSD is effective and convenient, which will be helpful to statistic twin laws of plagioclase in rocks on a large scale, and find some new twin laws as well as new compound twins.

       

    • loading
    • Arzilli, F., Mancini, L., Voltolini, M., et al., 2015. Near-Liquidus Growth of Feldspar Spherulites in Trachytic Melts: 3D Morphologies and Implications in Crystallization Mechanisms. Lithos, 216/217: 93-105. https://doi.org/10.1016/j.lithos.2014.12.003
      Balić-Žunić, T., Piazolo, S., Katerinopoulou, A., et al., 2013. Full Analysis of Feldspar Texture and Crystal Structure by Combining X-Ray and Electron Techniques. American Mineralogist, 98: 41-52. doi: 10.2138/am.2013.4124
      Brown, W.L., Macaudière, J., 1986. Mechanical Twinning of Plagioclase in a Deformed Meta-Anorthosite—The Production of M-Twinning. Contributions to Mineralogy and Petrology, 92(1): 44-56. https://doi.org/10.1007/BF00373962
      Brugger, C.R., Hammer, J.E., 2015. Prevalence of Growth Twins among Anhedral Plagioclase Microlites. American Mineralogist, 100(2/3): 385-395. https://doi.org/10.2138/am-2015-4809
      Chi, J.S., Wu, G.Z., 1982. Federov Law. Geological Publishing House, Beijing (in Chinese).
      Deer, W.A., Howie, R.A., Zussman, J., 2001. Rock-Forming Minerals (Volume 4A)-Framework Silicates: Feldspar. 2nd ed. Geological Society Publishing House, London.
      Hu, C.Q., 1991. Measurement of Plagioclase Composition and Structural State by Using an Improved Twin Operation Method. Journal of Guilin College of Geology, 11(3): 315-319(in Chinese with English abstract).
      Jiang, X.P., 1985. Using a Triaxlal Spindle Stage to Determine the Chemical Composition Structure Op and Twinning Type of Plagioclase. Yunnan Geology, 4(3): 281-290(in Chinese with English abstract).
      Lee, M.R., 2010. Transmission Electron Microscopy (TEM) of Earth and Planetary Materials: A Review. Mineralogical Magazine, 74(1): 1-27. https://doi.org/10.1180/minmag.2010.074.1.1
      Noguchi, T., 2013. Importance of Transmission Electron Microscopy (TEM) on the Studies of Planetary Materials and the Progress of TEM and Peripheral Technology. Abstracts of Meeting of the Geochemical Society of Japan, 60: 252-253. https://www.sciencedirect.com/science/article/pii/S0080878408626794
      Shen, S.Y., 1990. The Recognition of Plagioclase Twins with Universal Stage Method. Journal of Mineralogy and Petrology, 10(3): 33-40(in Chinese with English abstract).
      Smith, J.V., Brown, W.L., 1988. Feldspar Minerals, Volume 1: Crystal Structures, Physical, Chemical and Microtextural Properties. Springer-Verlag, Berlin Heidelberg.
      Wang, C.B., Chen, T.L., Chen, N., 2011. The Origin of Iridescent Plagioclase from Finland: A Perspective from the Relationship between the Inclusions and the Iridescence. Acta Petrologica et Mineralogica, 30(1): 150-160(in Chinese with English abstract).
      Xu, C., Zhao, S.R., Li, C., et al., 2016. Plagioclase Twins in a Basalt: An Electron Backscatter Diffraction Study. Journal of Applied Crystallography, 49(6): 2145-2154. https://doi.org/10.1107/s1600576716015739
      Xu, H.J., Jin, S.Y., Zheng, B.R., 2007. New Technique of Petrofabric: Electron Backscatter Diffraction(EBSD). Geoscience, 21(2): 213-225(in Chinese with English abstract).
      Zhang, R.X., Yang, S.Y., 2016. A Mathematical Model for Determining Carbon Coating Thickness and Its Application in Electron Probe Microanalysis. Microscopy and Microanalysis, 22(6): 1374-1380. https://doi.org/10.1017/s143192761601182x
      池际尚, 吴国忠, 1982. 弗德罗夫法. 北京: 地质出版社.
      胡承绮, 1991. 一种测定斜长石成分和结构态的改进双晶法. 桂林冶金地质学院学报, 11(3): 315-319. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX199103010.htm
      江鑫培, 1985. 三轴旋转针台测定斜长石成分结构状态和双晶类型. 云南地质, 4(3): 281-290. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD198503005.htm
      沈上越, 1990. 旋转台法鉴别斜长石双晶律. 矿物岩石, 10(3): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS199003004.htm
      王晨波, 陈廷礼, 陈南, 2011. 芬兰晕彩斜长石晕彩成因探讨: 包裹体及其与晕彩的关系. 岩石矿物学杂志, 30(1): 150-160. doi: 10.3969/j.issn.1000-6524.2011.01.015
      徐海军, 金淑燕, 郑伯让, 2007. 岩石组构学研究的最新技术——电子背散射衍射(EBSD). 现代地质, 21(2): 213-225. doi: 10.3969/j.issn.1000-8527.2007.02.005
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(6)

      Article views (1287) PDF downloads(100) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return