• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 10
    Oct.  2023
    Turn off MathJax
    Article Contents
    Zhu Xiaoxi, Zhao Zhongxian, Zhuo Haiteng, Pang Xiong, Zheng Jinyun, Sun Longtao, Sun Zhen, 2023. Characteristics of Syn-Spread Magmatism and Its Implication for Tectonic Evolution in Baiyun-Liwan Deep-Water Area of Pearl River Mouth Basin. Earth Science, 48(10): 3781-3798. doi: 10.3799/dqkx.2021.171
    Citation: Zhu Xiaoxi, Zhao Zhongxian, Zhuo Haiteng, Pang Xiong, Zheng Jinyun, Sun Longtao, Sun Zhen, 2023. Characteristics of Syn-Spread Magmatism and Its Implication for Tectonic Evolution in Baiyun-Liwan Deep-Water Area of Pearl River Mouth Basin. Earth Science, 48(10): 3781-3798. doi: 10.3799/dqkx.2021.171

    Characteristics of Syn-Spread Magmatism and Its Implication for Tectonic Evolution in Baiyun-Liwan Deep-Water Area of Pearl River Mouth Basin

    doi: 10.3799/dqkx.2021.171
    • Received Date: 2021-08-23
      Available Online: 2023-10-31
    • Publish Date: 2023-10-25
    • The syn-rift and syn-spread magmatism occurs in the deep-water area of the continental margin of the South China Sea in different extents, but it is still controversial regarding its spatial and temporal distribution, the amount, and the mechanism. In this paper, the high-resolution and comprehensive covered three-dimensional (3D) seismic data were used to reveal the characteristics and scale of magmatic activities in the Baiyun-Liwan deep-water area. Under the constraints of drilling, it utilized the seismic reflection characteristics, contact relationship and seismic volcano-stratigraphy comprehensively to interpret 19 high-resolution 3D multichannel reflection seismic data. On this basis, the intrusive and eruptive igneous build-ups in the sedimentary layers had been systematically studied. The results show follows: (1) More than 100 igneous bodies and structures related to magmatic activities were identified from shallow to deep in the study area, which are subdivided into 3 seismic facies and 11 subfacies. The 3 facies include volcanic, intrusive and gas-hydro facies. (2) The magmatic activities can be divided into three stages: 33.9-23.0 Ma, 23.0-19.1 Ma and 19.1-16.0 Ma, and the amount of the magmatic activities gradually decreased. (3) In the spatial distribution, the magmatic activities decrease from the southwest to the northeast, and the ages become younger from the south to the north. Moreover, the magmatic activities are mostly distributed on the surrounding uplift. The magmatism in the study area migrated northward as the spreading ridge jumped southward at 23.6 Ma. It is speculated that the upwelling mantle material in the early stage of rifting-spreading stage may be affected by ridge suction, which caused the upwelling magma to be dragged toward the spreading ridge. After a southward ridge jump, the ridge suction reduced and part if not all of the upwelling mantle retreated northward, resulting in the northward migration of magmatic activities after 23 Ma. The alkalinity of magmatism increased during post-spreading stage (< 17 Ma) suggested that the source of magmatic material may become deeper.

       

    • loading
    • Alves, T. M., Omosanya, K., Gowling, P., 2015. Volume Rendering of Enigmatic High-Amplitude Anomalies in Southeast Brazil: A Workflow to Distinguish Lithologic Features from Fluid Accumulations. Interpretation-A Journal of Subsurface Characterization, 3(2): A1-A14. https://doi.org/10.1190/int-2014-0106.1
      Bischoff, A., 2019. Architectural Elements of Buried Volcanic Systems and Their Impact on Geoenergy Resources. https://doi.org/10.13140/RG.2.2.21440.58886
      Cai, G. F., Zhang, X. T., Peng, G. R., et al., 2021. Neogene Volcanism and Tectonics along the Yangjing-Yitong'ansha Fault Zone in the Northern South China Sea Margin. Geotectonica et Metallogenia, 45(1): 40-52 (in Chinese with English abstract).
      Campbell, I.H., 2005. Large Igneous Provinces and the Mantle Plume Hypothesis. Elements, 1(5): 265-269. https://doi.org/10.2113/ gselements.1.5.265 doi: 10.2113/gselements.1.5.265
      Chanceaux, L., Menand, T., 2014. Solidification Effects on Sill Formation: An Experimental Approach. Earth and Planetary Science Letters, 403: 79-88. https://doi.org/10.1016/j.epsl.2014.06.018
      Chen, C.M., 2000. Petroleum Geology and Conditions for Hydrocarbon Accumulation in the Eastern Pearl River Mouth Basin. China Offshore Oil and Gas (Geology), 14(2): 73-83(in Chinese with English abstract).
      Chung, S. L., Sun, S. S., Tu, K., et al., 1994. Late Cenozoic Basaltic Volcanism around the Taiwan Strait, SE China: Product of Lithosphere-Asthenosphere Interaction during Continental Extension. Chemical Geology, 112(1-2): 1-20. https://doi.org/10.1016/0009-2541(94)90101-5
      Cook, A.E., Portnov, A., 2019. Gas Hydrates in Coarse-Grained Reservoirs Interpreted from Velocity Pull up: Mississippi Fan, Gulf of Mexico: COMMENT. Geology, 47(3): e457-e457. https://doi.org/10.1130/g45609c.1. doi: 10.1130/G45609C.1
      Deng, P., Mei, L. F., Liu, J., et al., 2019. Episodic Normal Faulting and Magmatism during the Syn-Spreading Stage of the Baiyun Sag in Pearl River Mouth Basin: Response to the Multi-Phase Seafloor Spreading of the South China Sea. Marine Geophysical Research, 40(1): 33-50. https://doi.org/10.1007/s11001-018-9352-9
      Ding, W.W., Sun, Z., Mohn, G., et al., 2020. Lateral Evolution of the Rift-to-Drift Transition in the South China Sea: Evidence from Multi-Channel Seismic Data and IODP Expeditions 367 & 368 Drilling Results. Earth and Planetary Science Letters, 531: 115932. https://doi.org/10.1016/j.epsl.2019.115932
      Frahm, L., Hübscher, C., Warwel, A., et al., 2020. Misinterpretation of Velocity Pull-ups Caused by High-Velocity Infill of Tunnel Valleys in the Southern Baltic Sea. Near Surface Geophysics, 18(6): 643-657. https://doi.org/10.1002/nsg.12122
      Gudmundsson, A., 2011. Deflection of Dykes into Sills at Discontinuities and Magma-Chamber Formation. Tectonophysics, 500(1/2/3/4): 50-64. https://doi.org/10.1016/j.tecto.2009.10.015
      Huang, X. L., Xu, Y. G., Yang, F., 2020. Basalts in the South China Sea: Mid-Ocean Ridges and Seamounts. Science & Technology Review, 38(18): 46-51(in Chinese with English abstract).
      Hui, G. G., Li, S. Z., Li, X. Y., et al., 2016. Temporal and Spatial Distribution of Cenozoic Igneous Rocks in the South China Sea and Its Adjacent Regions: Implications for Tectono-Magmatic Evolution. Geological Journal, 51: 429-447. https://doi.org/10.1002/gj.2801
      Infante-Paez, L., Marfurt, K.J., 2017. Seismic Expression and Geomorphology of Igneous Bodies: A Taranaki Basin, New Zealand, Case Study. Interpretation, 5(3): SK121-SK140. https://doi.org/10.1190/int-2016-0244.1 doi: 10.1190/INT-2016-0244.1
      Kavanagh, J. L., Menand, T., Sparks, R. S. J., 2006. An Experimental Investigation of Sill Formation and Propagation in Layered Elastic Media. Earth and Planetary Science Letters, 245(3/4): 799-813. https://doi.org/10.1016/j.epsl.2006.03.025
      Lei, C., Alves, T. M., Ren, J. Y., et al., 2019. Depositional Architecture and Structural Evolution of a Region Immediately Inboard of the Locus of Continental Breakup (Liwan Sub-Basin, South China Sea). GSA Bulletin, 131(7/8): 1059-1074. https://doi.org/10.1130/b35001.1
      Lei, C., Alves, T. M., Ren, J. Y., et al., 2020. Rift Structure and Sediment Infill of Hyperextended Continental Crust: Insights from 3D Seismic and Well Data (Xisha Trough, South China Sea). Journal of Geophysical Research: Solid Earth, 125(5): 26. https://doi.org/10.1029/2019jb018610
      Lester, R., Van Avendonk, H. J. A., McIntosh, K., et al., 2014. Rifting and Magmatism in the Northeastern South China Sea from Wide‐Angle Tomography and Seismic Reflection Imaging. Journal of Geophysical Research: Solid Earth, 119(3): 2305-2323. doi: 10.1002/2013jb010639
      Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567 doi: 10.1002/2014GC005567
      Li, F., Sun, Z., Pang, X., et al., 2019. Low-Viscosity Crustal Layer Controls the Crustal Architecture and Thermal Distribution at Hyperextended Margins: Modeling Insight and Application to the Northern South China Sea Margin. Geochemistry, Geophysics, Geosystems, 20(7): 3248-3267. https://doi.org/10.1029/2019gc008200 doi: 10.1029/2019GC008200
      Li, F., Sun, Z., Yang, H., 2018. Possible Spatial Distribution of the Mesozoic Volcanic Arc in the Present-Day South China Sea Continental Margin and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 123(8): 6215-6235. https://doi.org/10.1029/2017jb014861 doi: 10.1029/2017JB014861
      Li, P.L., 1993. Cenozoic Tectonic Movement in the Pearl River Mouth Basin. China Offshore Oil and Gas, (6): 11-17(in Chinese with English abstract).
      Liu, B. J., Pang, X., Wang, J. H., et al., 2019. Sedimentary System Response Process and Hydrocarbon Exploration Significance of Crust Thinning Zone at Extensional Continental Margin of Deep-Water Area in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 124-138(in Chinese with English abstract).
      Liu, B.J., Shen, J., Pang, X., et al., 2007. Characteristics of Continental Delta Deposits in Zhuhai Formation of Baiyun Depression in Pearl River Mouth Basin. Acta Petrolei Sinica, 28(2): 49-56, 61(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2007.02.009
      Ma, B. J., Wu, S. G., Betzler, C., et al., 2018. Geometry, Internal Architecture, and Evolution of Buried Volcanic Mounds in the Northern South China Sea. Marine and Petroleum Geology, 97: 540-555. https://doi.org/10.1016/j.marpetgeo.2018.07.029
      Ma, M., Qi, J.F., Zhang, Y.Z., et al., 2019. An Analysis of Subsidence Characteristics and Affecting Factors in the Pearl River Mouth Basin in Cenozoic. Geology in China, 46(2): 269-289(in Chinese with English abstract).
      Magee, C., Hunt-Stewart, E., Jackson, C. A. L., 2013. Volcano Growth Mechanisms and the Role of Sub-Volcanic Intrusions: Insights from 2D Seismic Reflection Data. Earth and Planetary Science Letters, 373: 41-53. https://doi.org/10.1016/j.epsl.2013.04.041
      Mao, Y. H., Zhao, Z.X., Sun, Z., 2020. Extensional Thinning Mechanism of the Western Continental Margin of the Pearl River Mouth Basin. Earth Science, 45(5): 1622-1635(in Chinese with English abstract).
      Menand, T., 2011. Physical Controls and Depth of Emplacement of Igneous Bodies: A Review. Tectonophysics, 500(1-4): 11-19. https://doi.org/10.1016/j.tecto.2009.10.016
      Mi, L. J., Zhang, X. T., Pang, X., et al., 2019. Formation Mechanism and Petroleum Geology of Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 1-10(in Chinese with English abstract).
      Pang, X., Chen, C.M., Shao, L., et al., 2007. Baiyun Movement, a Great Tectonic Event on the Oligocene-Miocene Boundary in the Northern South China Sea and Its Implications. Geological Review, 53(2): 145-151(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2007.02.001
      Pang, X., Ren, J., Zheng, J., et al., 2018. Petroleum Geology Controlled by Extensive Detachment Thinning of Continental Margin Crust: A Case Study of Baiyun Sag in the Deep-Water Area of Northern South China Sea. Petroleum Exploration and Development, 45(1): 29-42. https://doi.org/10.1016/S1876-3804(18)30003-x doi: 10.1016/S1876-3804(18)30003-X
      Planke, S., Rasmussen, T., Rey, S. S., et al., 2005. Seismic Characteristics and Distribution of Volcanic Intrusions and Hydrothermal Vent Complexes in the Vøring and Møre Basins. Geological Society, London, Petroleum Geology Conference Series, 6(1): 833-844. https://doi.org/10.1144/0060833
      Planke, S., Svensen, H., Myklebust, R., et al., 2014. Geophysics and Remote Sensing. Physical Geology of Shallow Magmatic Systems. Springer International Publishing, Cham, 131-146. https://doi.org/10.1007/11157_2014_6
      Qin, G.Q., 2002. Late Cenozoic Sequence Stratigraphy and Sea-Level Changes in Pearl River Mouth Basin, South China Sea. China Offshore Oil and Gas (Geology), (1): 1-10, 18(in Chinese with English abstract).
      Reynolds, P., Holford, S., Schofield, N., et al., 2017. The Shallow Depth Emplacement of Mafic Intrusions on a Magma-Poor Rifted Margin: An Example from the Bight Basin, Southern Australia. Marine and Petroleum Geology, 88: 605-616. https://doi.org/10.1016/j.marpetgeo.2017.09.008
      Reynolds, P., Schofield, N., Brown, R. J., et al., 2018. The Architecture of Submarine Monogenetic Volcanoes—Insights from 3D Seismic Data. Basin Research, 30: 437-451. https://doi.org/10.1111/bre.12230
      Shao, L., Pang, X., Qiao, P.J., et al., 2008. Sedimentary Filling of the Pearl River Mouth Basin and Its Response to the Evolution of the Pearl River. Acta Sedimentologica Sinica, 26(2): 179-185(in Chinese with English abstract).
      Shi, H.S., He, M., Zhang, L.L., et al., 2014. Hydrocarbon Geology, Accumulation Pattern and the Next Exploration Strategy in the Eastern Pearl River Mouth Basin. China Offshore Oil and Gas, 26(3): 11-22(in Chinese with English abstract).
      Shi, X. F., Yan, Q.S., 2011. Geochemistry of Cenozoic Magmatism in the South China Sea and Its Tectonic Implications. Marine Geology & Quaternary Geology, 31(2): 59-72(in Chinese with English abstract).
      Smallwood, J.R., Maresh, J., 2002. The Properties, Morphology and Distribution of Igneous Sills: Modelling, Borehole Data and 3D Seismic from the Faroe-Shetland Area. Geological Society, London, Special Publications, 197(1): 271-306. https://doi.org/10.1144/GSL.SP.2002.197.01.11
      Sun, Q.L., Jackson, C. A. L., Magee, C., et al., 2020. Deeply Buried Ancient Volcanoes Control Hydrocarbon Migration in the South China Sea. Basin Research, 32(1): 146-162. https://doi.org/10.1111/bre.12372
      Sun, Z., Li, F.C., Lin, J., et al., 2021. The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789(in Chinese with English abstract).
      Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin: Special Topic: The South China Sea Ocean Drilling. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      Sun, Z., Xu, Z., Sun, L., et al., 2014. The Mechanism of Post-Rift Fault Activities in Baiyun Sag, Pearl River Mouth Basin. Journal of Asian Earth Sciences, 89: 76-87. https://doi.org/10.1016/j.jseaes.2014.02.018
      Sun, Z., Zhong, Z., Keep, M., et al., 2009. 3D Analogue Modeling of the South China Sea: A Discussion on Breakup Pattern. Journal of Asian Earth Sciences, 34(4): 544-556. https://doi.org/10.1016/j.jseaes.2008.09.002
      Thomson, K., 2007. Determining Magma Flow in Sills, Dykes and Laccoliths and Their Implications for Sill Emplacement Mechanisms. Bulletin of Volcanology, 70(2): 183-201. https://doi.org/10.1007/s00445-007-0131-8
      Wang, K.L., Lo, Y.M., Chung, S.L., et al., 2012. Age and Geochemical Features of Dredged Basalts from Offshore SW Taiwan: The Coincidence of Intra-Plate Magmatism with the Spreading South China Sea. Terrestrial, Atmospheric and Oceanic Sciences, 23(6): 657-669. https://doi.org/10.3319/tao.2012.07.06.01(tt)
      Wang, L., Sun, Z., Yang, J., et al., 2019. Seismic Characteristics and Evolution of Post-Rift Igneous Complexes and Hydrothermal Vents in the Lingshui Sag (Qiongdongnan Basin), Northwestern South China Sea. Marine Geology, 418: 106043. https://doi.org/10.1016/j.margeo.2019.106043
      Wang, P. X., 2020. Exploring the Deep Sea Processes in the South China Sea. Science & Technology Review, 38(18): 6-20 (in Chinese with English abstract).
      Wang, X.J., Wu, S.G., Dong, D.D., et al., 2008. Characteristics of Gas Chimney and Its Relationship to Gas Hydrate in Qiongdongnan Basin. Marine Geology & Quaternary Geology, 28(3): 103-108(in Chinese with English abstract).
      Xia, S., Zhao, D., Sun, J., et al., 2016. Teleseismic Imaging of the Mantle beneath Southernmost China: New Insights into the Hainan Plume. Gondwana Research, 36: 46-56. https://doi.org/10.1016/j.gr.2016.05.003
      Xu, Y. G., Wei, J. X., Qiu, H. N., et al., 2012. Opening and Evolution of the South China Sea Constrained by Studies on Volcanic Rocks: Preliminary Results and a Research Design. Chinese Science Bulletin, 57(24): 3150-3164. https://doi.org/10.1007/s11434-011-4921-1
      Yan, P., Deng, H., Liu, H., et al., 2006. The Temporal and Spatial Distribution of Volcanism in the South China Sea Region. Journal of Asian Earth Sciences, 27(5): 647-659. https://doi.org/10.1016/j.jseaes.2005.06.005
      Yan, P., Liu, H.L., 2005. Temporal and Spatial Distributions of Meso-Enozoic Igneous Rocks over South China Sea. Journal of Tropical Oceanography, 24(2): 33-41(in Chinese with English abstract). doi: 10.3969/j.issn.1009-5470.2005.02.005
      Yan, Q. S., Shi, X. F., Castillo, P. R., 2014. The Late Mesozoic-Cenozoic Tectonic Evolution of the South China Sea: A Petrologic Perspective. Journal of Asian Earth Sciences, 85: 178-201. https://doi.org/10.1016/j.jseaes.2014.02.005
      Yang, S., Jin, Z. K., Han, J.H., 2017. Cenozoic Magmatic Activities and Stages in the Baiyun Sag, Northern Margin of South China Sea. Marine Geology & Quaternary Geology, 37(6): 34-46(in Chinese with English abstract).
      Yu, M., Yan, Y., Huang, C.Y., et al., 2018. Opening of the South China Sea and Upwelling of the Hainan Plume. Geophysical Research Letters, 45(6): 2600-2609. https://doi.org/10.1002/2017gl076872
      Zeng, Z., Zhu, H., Yang, X., et al., 2019. Three-Dimensional Imaging of Miocene Volcanic Effusive and Conduit Facies: Implications for the Magmatism and Seafloor Spreading of the South China Sea. Marine and Petroleum Geology, 109: 193-207. https://doi.org/10.1016/j.marpetgeo.2019.06.024
      Zhang, C., Sun, Z., Manatschal, G., et al., 2021. Syn-Rift Magmatic Characteristics and Evolution at a Sediment-Rich Margin: Insights from High-Resolution Seismic Data from the South China Sea. Gondwana Research, 91: 81-96. https://doi.org/10.1016/j.gr.2020.11.012
      Zhang, Q., 2014. Cenozoic Magmatism in the Northern Continental Margin of the South China Sea and Its Implication for the Tectonic Evolution of the Rifted Margin (Dissertation). University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), Qingdao(in Chinese with English abstract).
      Zhang, Q., Wu, S. G., Dong, D. D., 2016. Cenozoic Magmatism in the Northern Continental Margin of the South China Sea: Evidence from Seismic Profiles. Marine Geophysical Research, 37(2): 71-94. https://doi.org/10.1007/s11001-016-9266-3
      Zhao, F., Alves, T. M., Wu, S., et al., 2016. Prolonged Post-Rift Magmatism on Highly Extended Crust of Divergent Continental Margins (Baiyun Sag, South China Sea). Earth and Planetary Science Letters, 445: 79-91. https://doi.org/10.1016/j.epsl.2016.04.001
      Zhao, F., Wu, S., Sun, Q., et al., 2014. Submarine Volcanic Mounds in the Pearl River Mouth Basin, Northern South China Sea. Marine Geology, 355: 162-172. https://doi.org/10.1016/j.margeo.2014.05.018
      Zhao, Z.X., Sun, Z., Xie, H., et al., 2011. Baiyun Deepwater Cenozoic Subsidence and Lithospheric Stretching Deformation. Chinese Journal of Geophysics, 54(12): 3336-3343(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.12.031
      Zhao, Z. X., Zhou, D., Liao, J., 2009. Tertiary Paleogeography and Depositional Evolution in the Pearl River Mouth Basin of the Northern South China Sea. Journal of Tropical Oceanography, 28(6): 52-60(in Chinese with English abstract). doi: 10.3969/j.issn.1009-5470.2009.06.007
      Zou, C.N., Zhao, W.Z., Jia, C.Z., et al., 2008. Formation and Distribution of Volcanic Hydrocarbon Reservoirs in Sedimentary Basins of China. Petroleum Exploration and Development, 35(3): 257-271(in Chinese with English abstract). doi: 10.1016/S1876-3804(08)60071-3
      Zou, H. P., Li, P. L., Rao, C.T., 1995. Geochemistry of Cenozoic Volcanic Rocks in Zhujiangkou Basin and Its Geodynamic Significance. Geochimica, 24(C00): 33-45(in Chinese with English abstract).
      蔡国富, 张向涛, 彭光荣, 等, 2021. 南海北部阳江-一统暗沙断裂带与新近纪岩浆活动. 大地构造与成矿学, 45(1): 40-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202101004.htm
      陈长民, 2000. 珠江口盆地东部石油地质及油气藏形成条件初探. 中国海上油气(地质), 14(2): 73-83 https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200002000.htm
      黄小龙, 徐义刚, 杨帆, 2020. 南海玄武岩: 扩张洋脊与海山. 科技导报, 38(18): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202018009.htm
      李平鲁, 1993. 珠江口盆地新生代构造运动. 中国海上油气, (6): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199306003.htm
      柳保军, 庞雄, 王家豪, 等, 2019. 珠江口盆地深水区伸展陆缘地壳减薄背景下的沉积体系响应过程及油气勘探意义. 石油学报, 40(增刊1): 124-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1011.htm
      柳保军, 申俊, 庞雄, 等, 2007. 珠江口盆地白云凹陷珠海组浅海三角洲沉积特征. 石油学报, 28(2): 49-56, 61 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200702008.htm
      马明, 漆家福, 张远泽, 等, 2019. 珠江口盆地新生代沉降特征及其影响因素分析. 中国地质, 46(2): 269-289. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902006.htm
      毛云华, 赵中贤, 孙珍, 2020. 珠江口盆地西部陆缘伸展-减薄机制. 地球科学, 45(5): 1622-1635. doi: 10.3799/dqkx.2019.160
      米立军, 张向涛, 庞雄, 等, 2019. 珠江口盆地形成机制与油气地质. 石油学报, 40(增刊1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1001.htm
      庞雄, 陈长民, 邵磊, 等, 2007. 白云运动: 南海北部渐新统-中新统重大地质事件及其意义. 地质论评, 53(2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200702001.htm
      秦国权, 2002. 珠江口盆地新生代晚期层序地层划分和海平面变化. 中国海上油气(地质), (1): 1-10, 18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200201000.htm
      邵磊, 庞雄, 乔培军, 等, 2008. 珠江口盆地的沉积充填与珠江的形成演变. 沉积学报, 26(2): 179-185 https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200802002.htm
      施和生, 何敏, 张丽丽, 等, 2014. 珠江口盆地(东部)油气地质特征、成藏规律及下一步勘探策略. 中国海上油气, 26(3): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201403002.htm
      石学法, 鄢全树, 2011. 南海新生代岩浆活动的地球化学特征及其构造意义. 海洋地质与第四纪地质, 31(2): 59-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201102011.htm
      孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. doi: 10.3799/dqkx.2020.371
      汪品先, 2020. 南海深部过程的探索. 科技导报, 38(18): 6-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202018003.htm
      王秀娟, 吴时国, 董冬冬, 等, 2008. 琼东南盆地气烟囱构造特点及其与天然气水合物的关系. 海洋地质与第四纪地质, 28(3): 103-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200803021.htm
      阎贫, 刘海龄, 2005. 南海及其周缘中新生代火山活动时空特征与南海的形成模式. 热带海洋学报, 24(2): 33-41. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY200502004.htm
      杨率, 金振奎, 韩建辉, 2017. 南海北缘白云凹陷新生代岩浆活动特征与期次. 海洋地质与第四纪地质, 37(6): 34-46. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201706005.htm
      张峤, 2014. 南海北部陆缘新生代岩浆活动及构造意义(博士学位论文). 青岛: 中国科学院研究生院(海洋研究所).
      赵中贤, 孙珍, 谢辉, 等, 2011. 白云深水区新生代沉降及岩石圈伸展变形. 地球物理学报, 54(12): 3336-3343 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201112033.htm
      赵中贤, 周蒂, 廖杰, 2009. 珠江口盆地第三纪古地理及沉积演化. 热带海洋学报, 28(6): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY200906007.htm
      邹才能, 赵文智, 贾承造, 等, 2008. 中国沉积盆地火山岩油气藏形成与分布. 石油勘探与开发, 35(3): 257-271. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200803002.htm
      邹和平, 李平鲁, 饶春涛, 1995. 珠江口盆地新生代火山岩地球化学特征及其动力学意义. 地球化学, 24(C00): 33-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX5S1.004.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (913) PDF downloads(81) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return