Citation: | Fu Si, Li Chaoling, Zhang Haiyan, Liu Chang, Li Fengdan, 2023. Geological Body Recognition Based on Multi-Modal Feature Fusion. Earth Science, 48(10): 3743-3752. doi: 10.3799/dqkx.2021.176 |
Anderson, T. I., Vega, B., Kovscek, A. R., 2020. Multimodal Imaging and Machine Learning to Enhance Microscope Images of Shale. Computers & Geosciences, 145: 104593-104606. https://doi.org/10.1016/j.cageo.2020.104593
|
Arabi Aliabad, F., Shojaei, S., Zare, M., et al., 2019. Assessment of the Fuzzy ARTMAP Neural Network Method Performance in Geological Mapping Using Satellite Images and Boolean Logic. International Journal of Environmental Science and Technology, 16(7): 3829-3838. https://doi.org/10.1007/s13762-018-1795-7
|
Bhandari, D., Paul, S., Narayan, A., 2019. Multimodal Data Fusion and Prediction of Emotional Dimensions Using Deep Neural Network. Computational Intelligence: Theories, Applications and Future Directions, 799(2): 215-228. https://doi.org/10.1007/978-981-13-1135-2_17
|
Brandmeier, M., Chen, Y., 2019. Lithological Classification Using Multi-Sensor Data and Convolutional Neural Networks. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLⅡ-2/W16: 55-59.
|
Carter, A., Clift, P. D., 2008. Was the Indosinian Orogeny a Triassic Mountain Building or a Thermotectonic Reactivation Event? Comptes Rendus Geoscience, 340(2-3): 83-93. https://doi.org/10.1016/j.crte.2007.08.011
|
Cheng, G. J., Guo, W. H., 2017. Rock Images Classification by Using Deep Convolution Neural Network. Journal of Physics: Conference Series, 887(1): 012089. https://doi.org/10.1088/1742-6596/887/1/012089
|
Gao, S., 2020. A Review of Recent Researches and Reflections on Geospatial Artificial Intelligence. Geomatics and Information Science of Wuhan University, 45(12): 1865-1874(in Chinese with English abstract).
|
He, J., Zhang, C.Q., Li, X.Z., et al., 2020. Survey of Research on Multimodal Fusion Technology for Deep Learning. Computer Engineering, 46(5): 1-11(in Chinese with English abstract).
|
Krizhevsky, A., Hinton, G., 2009. Learning Multiple Layers of Features from Tiny Images. Handbook of Systemic Autoimmune Diseases, 1(4).
|
Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, 25(2): 1097-1105. https://doi.org/10.1145/3065386
|
LeCun, Y., Bottou, L., Bengio, Y., et al., 1998. Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11): 2278-2324. https://doi.org/10.1109/5.726791
|
Li, C. W., Zhang, R. S., Zhang, Z. T., et al., 2018. Tectonic Interpretation and Analysis Based on Multisource Remote Sensing Data: A Case Study of Jitai River in Chayi, Tibet. Remote Sensing Technology and Application, 33(4): 657-665(in Chinese with English abstract).
|
Liu, J.W., Ding, X.H., Luo, X.L., 2020. Survey of Multimodal Deep Learning. Application Research of Computers, 37(6): 1601-1614(in Chinese with English abstract).
|
Maimaitijiang, M., Sagan, V., Sidike, P., et al., 2019. Soybean Yield Prediction from UAV Using Multimodal Data Fusion and Deep Learning. Remote Sensing of Environment, 237: 111599. https://doi.org/10.1016/j.rse.2019.111599
|
Pires de Lima, R., Duarte, D., Nicholson, C., et al., 2020. Petrographic Microfacies Classification with Deep Convolutional Neural Networks. Computers & Geosciences, 142: 104481. https://doi.org/10.1016/j.cageo.2020.104481
|
Pour, A. B., Hashim, M., Makoundi, C., et al., 2016. Structural Mapping of the Bentong-Raub Suture Zone Using PALSAR Remote Sensing Data, Peninsular Malaysia: Implications for Sediment-Hosted/Orogenic Gold Mineral Systems Exploration. Resource Geology, 66(4): 368-385. https://doi.org/10.1111/rge.12105
|
Ran, X. J., Xue, L. F., Zhang, Y. Y., et al., 2019. Rock Classification from Field Image Patches Analyzed Using a Deep Convolutional Neural Network. Mathematics, 7(8): 755-770. https://doi.org/10.3390/math7080755
|
Russakovsky, O., Deng, J., Su, H., et al., 2015. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3): 211-252. https://doi.org/10.1007/s11263-015-0816-y
|
Simonyan, K., Zisserman, A., 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition". : arXiv: 1409.1556.
|
Singer, D. A., 2021. How Deep Learning Networks could be Designed to Locate Mineral Deposits. Journal of Earth Science, 32(2): 288-292. https://doi.org/10.1007/s12583-020-1399-2
|
Su, Y. H., Fan, K., Bach, N., et al., 2019. Unsupervised Multi-Modal Neural Machine Translation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 10474-10483.
|
Tu, K., Wen, Q., Chen, H., et al., 2019. New Method of Structural Interpretation in Meadow Covering Based on GaoFen-3 Pol-SAR Images. Journal of Remote Sensing, 23(2): 243-251(in Chinese with English abstract).
|
Wang, X., Huang, Q. Y., Celikyilmaz, A., et al., 2019. Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vision-Language Navigation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 6622-6631.
|
Xu, Y. Y., Li, Z. X., Xie, Z., et al., 2020. Prediction of Copper Mineralization Based on Semi-Supervised Neural Network. Earth Science, (12): 4563-4573(in Chinese with English abstract).
|
Zhang, Y., Song, B., Du, X. J., et al., 2018. Vehicle Tracking Using Surveillance with Multimodal Data Fusion. IEEE Transactions on Intelligent Transportation Systems, 19(7): 2353-2361. https://doi.org/10.1109/TITS.2017.2787101
|
Zheng, M. Y., Tie, Y., Qi, L., et al., 2019. Dynamic Gesture Recognition Based on the Multimodality Fusion Temporal Segment Networks. 2019 8th International Symposium on Next Generation Electronics (ISNE). October 9-10, 2019, Zhengzhou, China. IEEE, 1-3.
|
Zhou, T. X., Su, R., Guo, Y., et al., 2020. A Multi-Modality Fusion Network Based on Attention Mechanism for Brain Tumor Segmentation. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). April 3-7, 2020, Iowa City, IA, USA. IEEE, 377-380.
|
Zuo, R.G., 2021. Data Science-Based Theory and Method of Quantitative Prediction of Mineral Resources. Earth Science Frontiers, 28(3): 49-55(in Chinese with English abstract).
|
Zuo, R. G., Peng, Y., Li, T., et al., 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358(in Chinese with English abstract).
|
高松, 2020. 地理空间人工智能的近期研究总结与思考. 武汉大学学报(信息科学版), 45(12): 1865-1874. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202012005.htm
|
何俊, 张彩庆, 李小珍, 等, 2020. 面向深度学习的多模态融合技术研究综述. 计算机工程, 46(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC202005001.htm
|
李晨伟, 张瑞丝, 张竹桐, 等, 2018. 基于多源遥感数据的构造解译与分析: 以西藏察隅吉太曲流域为例. 遥感技术与应用, 33(4): 657-665. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201804010.htm
|
刘建伟, 丁熙浩, 罗雄麟, 2020. 多模态深度学习综述. 计算机应用研究, 37(6): 1601-1614. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202006001.htm
|
涂宽, 文强, 谌华, 等, 2019. GF-3全极化影像在地表浅覆盖区进行地质构造解译的新方法. 遥感学报, 23(2): 243-251. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201902006.htm
|
徐永洋, 李孜轩, 谢忠, 等, 2020. 基于半监督神经网络的铜矿预测方法. 地球科学, 45(12): 4563-4573. doi: 10.3799/dqkx.2020.297
|
左仁广, 2021. 基于数据科学的矿产资源定量预测的理论与方法探索. 地学前缘, 28(3): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103005.htm
|
左仁广, 彭勇, 李童, 等, 2021. 基于深度学习的地质找矿大数据挖掘与集成的挑战. 地球科学, 46(1): 350-358. doi: 10.3799/dqkx.2020.111
|