Citation: | Zhang Jie, Liang Xing, Liu Yanfeng, Zhang Xin, Sun Liqun, Zhao Feng, Fu Pengyu, 2023. CoKriging Method Based on Principal Components to Predict Spatial Distribution of Arsenic in Groundwater. Earth Science, 48(10): 3820-3831. doi: 10.3799/dqkx.2021.180 |
Abdelrady, A., Sharma, S., Sefelnasr, A., et al., 2020. Characterisation of the Impact of Dissolved Organic Matter on Iron, Manganese, and Arsenic Mobilisation during Bank Filtration. Journal of Environmental Management, 258: 110003. https://doi.org/10.1016/j.jenvman.2019.110003
|
Ali, Z. M., Othman, F., 2017. Selection of Variogram Model for Spatial Rainfall Mapping Using Analytical Hierarchy Procedure (Ahp). Scientia Iranica, 24(1): 28-39. https://doi.org/10.24200/sci.2017.2374
|
Anawar, H. M., Akai, J., Yoshioka, T., et al., 2006. Mobilization of Arsenic in Groundwater of Bangladesh: Evidence from an Incubation Study. Environmental Geochemistry and Health, 28: 553-565. https://doi.org/10.1007/s10653-006-9054-0
|
Basaran, M., Erpul, G., Ozcan, A. U., et al., 2011. Spatial Information of Soil Hydraulic Conductivity and Performance of CoKriging over Kriging in a Semi-Arid Basin Scale. Environmental Earth Sciences, 63(4): 827-838. https://doi.org/10.1007/s12665-010-0753-6
|
Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., et al., 2007. Arsenic in the Environment: Biology and Chemistry. The Science of the Total Environment, 379(2/3): 109-120. https://doi.org/10.1016/j.scitotenv.2007.02.037
|
Chen, Y. F., Zhou, J. L., Zeng, Y. Y., et al., 2020. Spatial Distribution of Arsenic in Soil and Its Accumulation Characteristics in Crops in Tarim Basin. Environmental Science, 41(1): 438-448 (in Chinese with English abstract).
|
Cho, K. H., Sthiannopkao, S., Pachepsky, Y. A., et al., 2011. Prediction of Contamination Potential of Groundwater Arsenic in Cambodia, Laos, and Thailand Using Artificial Neural Network. Water Research, 45(17): 5535-5544. https://doi.org/10.1016/j.watres.2011.08.010
|
Dalla, L. N., Fabbri, P., Mason, L., et al., 2017. Geostatistics as a Tool to Improve the Natural Background Level Definition: An Application in Groundwater. The Science of the Total Environment, 598: 330-340. https://doi.org/10.1016/j.scitotenv.2017.04.018
|
Deng, Y. M., 2008. Study on Geochemical Process in High Arsenic Groundwater System in Western Hetao Basin (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
|
Du, Y., Ma, T., Deng, Y. M., et al., 2017. Sources and Fate of High Levels of Ammonium in Surface Water and Shallow Groundwater of the Jianghan Plain, Central China. Environmental Science: Processes & Impacts, 19(2): 161-172. https://doi.org/10.1039/C6EM00531D
|
Duan, Y. H., 2016. Seasonal Variation and Mechanism of Arsenic Enrichment in Shallow Groundwater System: A Case Study of Jianghan Plain (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
|
Gao, J., Zheng, T. L., Deng, Y. M., et al., 2017. Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain. Earth Science, 42(5): 716-726(in Chinese with English abstract).
|
Gaus, I., Kinniburgh, D. G., Talbot, J. C., et al., 2003. Geostatistical Analysis of Arsenic Concentration in Groundwater in Bangladesh Using Disjunctive Kriging. Environmental Geology, 44(8): 939-948. https://doi.org/10.1007/s00254-003-0837-7
|
Gong, G., Mattevada, S., O'Bryant, S. E., 2014. Comparison of the Accuracy of Kriging and IDW Interpolations in Estimating Groundwater Arsenic Concentrations in Texas. Environmental Research, 130: 59-69. https://doi.org/10.1016/j.envres.2013.12.005
|
Gunduz, O., Elci, A., Simsek, C., 2012. The Use of CoKriging Algorithm for Arsenic Mappingin Groundwater Systems. In: Proceedings of the Conference Paper, 5th International Perspective on Water Resources & the Environment, Marrakech, Morrocco, 5-7 January 2012.
|
Guo, H. M., Guo, Q., Jia, Y. F., et al., 2013. Chemical Characteristics and Geochemical Processes of High Arsenic Groundwater in Different Regions of China. Journal of Earth Sciences and Environment, 35(3): 83-96(in Chinese with English abstract)
|
Hassan, M. M., Peter, J., 2007. Arsenic Risk Mapping in Bangladesh: A Simulation Technique of CoKriging Estimation from Regional Count Data. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 42(12): 1719-1728. https://doi.org/10.1080/10934520701564210
|
Hooshmand, A., Delghandi, M., Izadi, A., 2011. Application of Kriging and CoKriging in Spatial Estimation of Groundwater Quality Parameters. African Journal of Agricultural Research, 6(14): 3402-3408. https://doi.org/10.5897/AJAR11.027.
|
James, K. A., Meliker, J. R., Buttenfield, B. E., et al., 2014. Predicting Arsenic Concentrations in Groundwater of San Luis Valley, Colorado: Implications for Individual-Level Lifetime Exposure Assessment. Environmental Geochemistry and Health, 36(4): 773-782. https://doi.org/10.1007/s10653-014-9595-6
|
Jiang, F., Wu, X. H., Xiang, W. H., et al., 2017. Spatial Variations in Soil Organic Carbon, Nitrogen and Phosphorus Concentrations Related to Stand Characteristics in Subtropical Areas. Plant and Soil, 413(1): 289-301. https://doi.org/10.1007/s11104-016-3101-0
|
Levi, M. R., Rasmussen, C., 2014. Covariate Selection with Iterative Principal Component Analysis for Predicting Physical Soil Properties. Geoderma, 219/220: 46-57. https://doi.org/10.1016/j.geoderma.2013.12.013
|
Li, D., Deng, Y. M., Du, Y., et al., 2021. Isotopic Indicators of Arsenic Spatial Heterogeneity of Arsenic in Ahallow Groundwater of the Central Yangtze River Lacustriine Plain. Earth Science, 46(12): 4492-4502(in Chinese with English abstract). doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112017
|
Lin, Y. B., Lin, Y. P., Liu, C. W., 2006. Mapping of Spatial Multi-Scale Sources of Arsenic Variation in Groundwater on ChiaNan Floodplain of Taiwan. Science of the Total Environment, 370(1): 168-181. https://doi.org/10.1016/j.scitotenv.2006.07.002
|
Liu, A. L., Wang, P. F., Ding, Y. Y., 2012. Introduction of Geostatistics. Science Press, Beijing (in Chinese).
|
Liu, B. H., 2008. Encyclopedia of Petroleum Exploration and Development in China (Exploration Volume). Petroleum Industry Press, Beijing (in Chinese).
|
Markhvida, M., Ceferino, L., Baker, J. W., 2018. Modeling Spatially Correlated Spectral Accelerations at Multiple Periods Using Principal Component Analysis and Geostatistics. Earthquake Engineering & Structural Dynamics, 47(5): 1107-1123. https://doi.org/10.1002/eqe.3007
|
Nickson, R. T., McArthur, J. M., Ravenscroft, P., et al., 2000. Mechanism of Arsenic Release to Groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4): 403-413. https://doi.org/10.1016/s0883-2927(99)00086-4
|
Nickson, R., McArthur, J., Burgess, W., et al., 1998. Arsenic Poisoning of Bangladesh Groundwater. Nature, 395(6700): 338. https://doi.org/10.1038/26387
|
Parrone, D., Ghergo, S., Frollini, E., et al., 2020. Arsenic-Fluoride Co-Contamination in Groundwater: Background and Anomalies in a Volcanic-Sedimentary Aquifer in Central Italy. Journal of Geochemical Exploration, 217: 106590. https://doi.org/10.1016/j.gexplo.2020.106590
|
Parvin, S. A., Mehrdad, C., Bahareh, L., 2018. Spatial Distribution of Arsenic under the Influence of Chemical Fertilizers Using Geostatistics in Eghlid, Fars, Iran. Archives of Hygiene Sciences, 7(4): 303-311. doi: 10.29252/ArchHygSci.7.4.303
|
Podgorski, J., Berg, M., 2020. Global Threat of Arsenic in Groundwater. Science, 368(6493): 845-850. https://doi.org/10.1126/science.aba1510
|
Qin, Q. Q., Wang, H. Y., Lei, X. D., et al., 2020. Spatial Variability in the Amount of Forest Litter at the Local Scale in Northeastern China: Kriging and CoKriging Approaches to Interpolation. Ecology and Evolution, 10(2): 778-790. https://doi.org/10.1002/ece3.5934
|
Román-Ross, G., Cuello, G. J., Turrillas, X., et al., 2006. Arsenite Sorption and Co-Precipitation with Calcite. Chemical Geology, 233(3-4): 328-336. https://doi.org/10.1016/j.chemgeo.2006.04.007
|
Shen, S., Ma, T., Du, Y., et al., 2018. Spatial Distribution of Nitrogen in Shallow Groundwater in the Eastern Jianghan Plain. Environmental Science and Technology, 41(2): 47-56(in Chinese with English abstract).
|
Wallis, I., Prommer, H., Berg, M., et al., 2020. The River-Groundwater Interface as a Hotspot for Arsenic Release. Nature Geoscience, 13(4): 288-295. https://doi.org/10.1038/s41561-020-0557-6
|
Wang, J., Xie, Z. M., Wang, J., et al, 2021. Influence of Bioreduction of Arsenic-Bearing Goethite by Bacterial under Sulfur Mediation on Migration and Transformation of Arsenic. Earth Science, 46 (2): 642-651(in Chinese with English abstract).
|
Xue, Y., Chen, L. P., 2007. Statistical Modeling and R Software. Tsinghua University Press, Beijing(in Chinese).
|
Yang, Q. Y., Luo, W. Q., Jiang, Z. C., et al., 2016. Improve the Prediction of Soil Bulk Density by CoKriging with Predicted Soil Water Content as Auxiliary Variable. Journal of Soils and Sediments, 16(1): 77-84. https://doi.org/10.1007/s11368-015-1193-4
|
Yu, J. H., Yang, W. Q., 2005. Multivariate Statistical Analysis and Application. Sun Yat-sen University Press, Guangzhou (in Chinese).
|
Yu, K., 2016. Study on the Source of Organic Matter in High Arsenic Groundwater System and Its Influence on the Dynamic Change of Arsenic—Taking Jianghan Plain as an Example (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
|
Zheng, X. Q., Lü, L. N., 2018. Geostatistics (Modern Spatial Statistics). Science Press, Beijing (in Chinese).
|
陈云飞, 周金龙, 曾妍妍, 等, 2020. 塔里木盆地东南缘绿洲区土壤砷空间分布及农作物砷富集特征. 环境科学. 41(1): 438-448. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001053.htm
|
邓娅敏, 2008. 河套盆地西部高砷地下水系统中的地球化学过程研究(博士学位论文). 武汉: 中国地质大学.
|
段艳华, 2016. 浅层地下水系统中砷富集的季节性变化与机理研究: 以江汉平原为例(博士学位论文). 武汉: 中国地质大学.
|
高杰, 郑天亮, 邓娅敏, 等, 2017. 江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响. 地球科学, 42(5): 716-726. doi: 10.3799/dqkx.2017.059
|
郭华明, 郭琦, 贾永锋, 等, 2013. 中国不同区域高砷地下水化学特征及形成过程. 地球科学与环境学报, 35(3): 83-96. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201303010.htm
|
李典, 邓娅敏, 杜尧, 等, 2021. 长江中游河湖平原浅层地下水中砷空间异质性的同位素指示. 地球科学, 46(12): 4492-4502. doi: 10.3799/dqkx.2021.054
|
刘爱利, 王培法, 丁园圆, 2012. 地统计学概论. 北京: 科学出版社.
|
刘宝和, 2008. 中国石油勘探开发百科全书·勘探卷. 北京: 石油工业出版社.
|
沈帅, 马腾, 杜尧, 等, 2018. 江汉平原东部浅层地下水氮的空间分布特征. 环境科学与技术, 41(2): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201802008.htm
|
王晶, 谢作明, 王佳, 等, 2021. 硫介导细菌还原载砷铁矿对砷迁移转化的影响. 地球科学, 46(2): 642-651. doi: 10.3799/dqkx.2020.054
|
薛毅, 陈立萍, 2007. 统计建模与R软件. 北京: 清华大学出版社.
|
于凯, 2016. 高砷地下水系统中有机质来源及其对砷动态变化的影响研究: 以江汉平原为例(博士学位论文). 武汉: 中国地质大学.
|
余锦华, 杨维权, 2005. 多元统计分析与应用. 广州: 中山大学出版社.
|
郑新奇, 吕利娜, 2018. 地统计学(现代空间统计学). 北京: 科学出版社.
|