• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 10
    Oct.  2023
    Turn off MathJax
    Article Contents
    Zhang Jie, Liang Xing, Liu Yanfeng, Zhang Xin, Sun Liqun, Zhao Feng, Fu Pengyu, 2023. CoKriging Method Based on Principal Components to Predict Spatial Distribution of Arsenic in Groundwater. Earth Science, 48(10): 3820-3831. doi: 10.3799/dqkx.2021.180
    Citation: Zhang Jie, Liang Xing, Liu Yanfeng, Zhang Xin, Sun Liqun, Zhao Feng, Fu Pengyu, 2023. CoKriging Method Based on Principal Components to Predict Spatial Distribution of Arsenic in Groundwater. Earth Science, 48(10): 3820-3831. doi: 10.3799/dqkx.2021.180

    CoKriging Method Based on Principal Components to Predict Spatial Distribution of Arsenic in Groundwater

    doi: 10.3799/dqkx.2021.180
    • Received Date: 2021-06-30
      Available Online: 2023-10-31
    • Publish Date: 2023-10-25
    • Few factors are considered in the current spatial simulation of arsenic content in groundwater, resulting in low prediction accuracy. To the east of Jianghan Plain as an example, considering the effects of all groundwater chemical components on arsenic, ordinary kriging (OK), traditional CoKriging (COK) and CoKriging based on principal component (COK-Y, where Y is a comprehensive factor obtained by principal component analysis) were used to simulate the spatial distribution of arsenic in groundwater. The results show that the semi-variogram fitting of COK-Y is the best, and the mean square error and mean absolute error for arsenic prediction in groundwater are 21.7% and 21.3% lower than OK, respectively. Compared with COK, the evaluation indexes decrease by 3.5% and 3.4%, severally. The accuracy of COK-Y is improved slightly, and the spatiacl distribution map of arsenic in groundwater can better reflect the high heterogeneity of arsenic, which is more realistic. COK-Y improve the dampening effect of kriging method to the grestest extent. The comprehensive factor Y indicates the contribution of each component on the simulation of arsenic. The reductive dissolution of iron oxide and hydroxide was the main factor for the formation and distribution of high arsenic in groundwater. The weathering, dissolution and analytical adsorption of polymetallic minerals, such as barite, magnetite and ilmenite also contributed part of it.

       

    • loading
    • Abdelrady, A., Sharma, S., Sefelnasr, A., et al., 2020. Characterisation of the Impact of Dissolved Organic Matter on Iron, Manganese, and Arsenic Mobilisation during Bank Filtration. Journal of Environmental Management, 258: 110003. https://doi.org/10.1016/j.jenvman.2019.110003
      Ali, Z. M., Othman, F., 2017. Selection of Variogram Model for Spatial Rainfall Mapping Using Analytical Hierarchy Procedure (Ahp). Scientia Iranica, 24(1): 28-39. https://doi.org/10.24200/sci.2017.2374
      Anawar, H. M., Akai, J., Yoshioka, T., et al., 2006. Mobilization of Arsenic in Groundwater of Bangladesh: Evidence from an Incubation Study. Environmental Geochemistry and Health, 28: 553-565. https://doi.org/10.1007/s10653-006-9054-0
      Basaran, M., Erpul, G., Ozcan, A. U., et al., 2011. Spatial Information of Soil Hydraulic Conductivity and Performance of CoKriging over Kriging in a Semi-Arid Basin Scale. Environmental Earth Sciences, 63(4): 827-838. https://doi.org/10.1007/s12665-010-0753-6
      Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., et al., 2007. Arsenic in the Environment: Biology and Chemistry. The Science of the Total Environment, 379(2/3): 109-120. https://doi.org/10.1016/j.scitotenv.2007.02.037
      Chen, Y. F., Zhou, J. L., Zeng, Y. Y., et al., 2020. Spatial Distribution of Arsenic in Soil and Its Accumulation Characteristics in Crops in Tarim Basin. Environmental Science, 41(1): 438-448 (in Chinese with English abstract).
      Cho, K. H., Sthiannopkao, S., Pachepsky, Y. A., et al., 2011. Prediction of Contamination Potential of Groundwater Arsenic in Cambodia, Laos, and Thailand Using Artificial Neural Network. Water Research, 45(17): 5535-5544. https://doi.org/10.1016/j.watres.2011.08.010
      Dalla, L. N., Fabbri, P., Mason, L., et al., 2017. Geostatistics as a Tool to Improve the Natural Background Level Definition: An Application in Groundwater. The Science of the Total Environment, 598: 330-340. https://doi.org/10.1016/j.scitotenv.2017.04.018
      Deng, Y. M., 2008. Study on Geochemical Process in High Arsenic Groundwater System in Western Hetao Basin (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Du, Y., Ma, T., Deng, Y. M., et al., 2017. Sources and Fate of High Levels of Ammonium in Surface Water and Shallow Groundwater of the Jianghan Plain, Central China. Environmental Science: Processes & Impacts, 19(2): 161-172. https://doi.org/10.1039/C6EM00531D
      Duan, Y. H., 2016. Seasonal Variation and Mechanism of Arsenic Enrichment in Shallow Groundwater System: A Case Study of Jianghan Plain (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Gao, J., Zheng, T. L., Deng, Y. M., et al., 2017. Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain. Earth Science, 42(5): 716-726(in Chinese with English abstract).
      Gaus, I., Kinniburgh, D. G., Talbot, J. C., et al., 2003. Geostatistical Analysis of Arsenic Concentration in Groundwater in Bangladesh Using Disjunctive Kriging. Environmental Geology, 44(8): 939-948. https://doi.org/10.1007/s00254-003-0837-7
      Gong, G., Mattevada, S., O'Bryant, S. E., 2014. Comparison of the Accuracy of Kriging and IDW Interpolations in Estimating Groundwater Arsenic Concentrations in Texas. Environmental Research, 130: 59-69. https://doi.org/10.1016/j.envres.2013.12.005
      Gunduz, O., Elci, A., Simsek, C., 2012. The Use of CoKriging Algorithm for Arsenic Mappingin Groundwater Systems. In: Proceedings of the Conference Paper, 5th International Perspective on Water Resources & the Environment, Marrakech, Morrocco, 5-7 January 2012. https://doi.org/10.13140/2.1.4773.3760
      Guo, H. M., Guo, Q., Jia, Y. F., et al., 2013. Chemical Characteristics and Geochemical Processes of High Arsenic Groundwater in Different Regions of China. Journal of Earth Sciences and Environment, 35(3): 83-96(in Chinese with English abstract)
      Hassan, M. M., Peter, J., 2007. Arsenic Risk Mapping in Bangladesh: A Simulation Technique of CoKriging Estimation from Regional Count Data. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 42(12): 1719-1728. https://doi.org/10.1080/10934520701564210
      Hooshmand, A., Delghandi, M., Izadi, A., 2011. Application of Kriging and CoKriging in Spatial Estimation of Groundwater Quality Parameters. African Journal of Agricultural Research, 6(14): 3402-3408. https://doi.org/10.5897/AJAR11.027.
      James, K. A., Meliker, J. R., Buttenfield, B. E., et al., 2014. Predicting Arsenic Concentrations in Groundwater of San Luis Valley, Colorado: Implications for Individual-Level Lifetime Exposure Assessment. Environmental Geochemistry and Health, 36(4): 773-782. https://doi.org/10.1007/s10653-014-9595-6
      Jiang, F., Wu, X. H., Xiang, W. H., et al., 2017. Spatial Variations in Soil Organic Carbon, Nitrogen and Phosphorus Concentrations Related to Stand Characteristics in Subtropical Areas. Plant and Soil, 413(1): 289-301. https://doi.org/10.1007/s11104-016-3101-0
      Levi, M. R., Rasmussen, C., 2014. Covariate Selection with Iterative Principal Component Analysis for Predicting Physical Soil Properties. Geoderma, 219/220: 46-57. https://doi.org/10.1016/j.geoderma.2013.12.013
      Li, D., Deng, Y. M., Du, Y., et al., 2021. Isotopic Indicators of Arsenic Spatial Heterogeneity of Arsenic in Ahallow Groundwater of the Central Yangtze River Lacustriine Plain. Earth Science, 46(12): 4492-4502(in Chinese with English abstract). doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112017
      Lin, Y. B., Lin, Y. P., Liu, C. W., 2006. Mapping of Spatial Multi-Scale Sources of Arsenic Variation in Groundwater on ChiaNan Floodplain of Taiwan. Science of the Total Environment, 370(1): 168-181. https://doi.org/10.1016/j.scitotenv.2006.07.002
      Liu, A. L., Wang, P. F., Ding, Y. Y., 2012. Introduction of Geostatistics. Science Press, Beijing (in Chinese).
      Liu, B. H., 2008. Encyclopedia of Petroleum Exploration and Development in China (Exploration Volume). Petroleum Industry Press, Beijing (in Chinese).
      Markhvida, M., Ceferino, L., Baker, J. W., 2018. Modeling Spatially Correlated Spectral Accelerations at Multiple Periods Using Principal Component Analysis and Geostatistics. Earthquake Engineering & Structural Dynamics, 47(5): 1107-1123. https://doi.org/10.1002/eqe.3007
      Nickson, R. T., McArthur, J. M., Ravenscroft, P., et al., 2000. Mechanism of Arsenic Release to Groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4): 403-413. https://doi.org/10.1016/s0883-2927(99)00086-4
      Nickson, R., McArthur, J., Burgess, W., et al., 1998. Arsenic Poisoning of Bangladesh Groundwater. Nature, 395(6700): 338. https://doi.org/10.1038/26387
      Parrone, D., Ghergo, S., Frollini, E., et al., 2020. Arsenic-Fluoride Co-Contamination in Groundwater: Background and Anomalies in a Volcanic-Sedimentary Aquifer in Central Italy. Journal of Geochemical Exploration, 217: 106590. https://doi.org/10.1016/j.gexplo.2020.106590
      Parvin, S. A., Mehrdad, C., Bahareh, L., 2018. Spatial Distribution of Arsenic under the Influence of Chemical Fertilizers Using Geostatistics in Eghlid, Fars, Iran. Archives of Hygiene Sciences, 7(4): 303-311. doi: 10.29252/ArchHygSci.7.4.303
      Podgorski, J., Berg, M., 2020. Global Threat of Arsenic in Groundwater. Science, 368(6493): 845-850. https://doi.org/10.1126/science.aba1510
      Qin, Q. Q., Wang, H. Y., Lei, X. D., et al., 2020. Spatial Variability in the Amount of Forest Litter at the Local Scale in Northeastern China: Kriging and CoKriging Approaches to Interpolation. Ecology and Evolution, 10(2): 778-790. https://doi.org/10.1002/ece3.5934
      Román-Ross, G., Cuello, G. J., Turrillas, X., et al., 2006. Arsenite Sorption and Co-Precipitation with Calcite. Chemical Geology, 233(3-4): 328-336. https://doi.org/10.1016/j.chemgeo.2006.04.007
      Shen, S., Ma, T., Du, Y., et al., 2018. Spatial Distribution of Nitrogen in Shallow Groundwater in the Eastern Jianghan Plain. Environmental Science and Technology, 41(2): 47-56(in Chinese with English abstract).
      Wallis, I., Prommer, H., Berg, M., et al., 2020. The River-Groundwater Interface as a Hotspot for Arsenic Release. Nature Geoscience, 13(4): 288-295. https://doi.org/10.1038/s41561-020-0557-6
      Wang, J., Xie, Z. M., Wang, J., et al, 2021. Influence of Bioreduction of Arsenic-Bearing Goethite by Bacterial under Sulfur Mediation on Migration and Transformation of Arsenic. Earth Science, 46 (2): 642-651(in Chinese with English abstract).
      Xue, Y., Chen, L. P., 2007. Statistical Modeling and R Software. Tsinghua University Press, Beijing(in Chinese).
      Yang, Q. Y., Luo, W. Q., Jiang, Z. C., et al., 2016. Improve the Prediction of Soil Bulk Density by CoKriging with Predicted Soil Water Content as Auxiliary Variable. Journal of Soils and Sediments, 16(1): 77-84. https://doi.org/10.1007/s11368-015-1193-4
      Yu, J. H., Yang, W. Q., 2005. Multivariate Statistical Analysis and Application. Sun Yat-sen University Press, Guangzhou (in Chinese).
      Yu, K., 2016. Study on the Source of Organic Matter in High Arsenic Groundwater System and Its Influence on the Dynamic Change of Arsenic—Taking Jianghan Plain as an Example (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Zheng, X. Q., Lü, L. N., 2018. Geostatistics (Modern Spatial Statistics). Science Press, Beijing (in Chinese).
      陈云飞, 周金龙, 曾妍妍, 等, 2020. 塔里木盆地东南缘绿洲区土壤砷空间分布及农作物砷富集特征. 环境科学. 41(1): 438-448. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001053.htm
      邓娅敏, 2008. 河套盆地西部高砷地下水系统中的地球化学过程研究(博士学位论文). 武汉: 中国地质大学.
      段艳华, 2016. 浅层地下水系统中砷富集的季节性变化与机理研究: 以江汉平原为例(博士学位论文). 武汉: 中国地质大学.
      高杰, 郑天亮, 邓娅敏, 等, 2017. 江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响. 地球科学, 42(5): 716-726. doi: 10.3799/dqkx.2017.059
      郭华明, 郭琦, 贾永锋, 等, 2013. 中国不同区域高砷地下水化学特征及形成过程. 地球科学与环境学报, 35(3): 83-96. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201303010.htm
      李典, 邓娅敏, 杜尧, 等, 2021. 长江中游河湖平原浅层地下水中砷空间异质性的同位素指示. 地球科学, 46(12): 4492-4502. doi: 10.3799/dqkx.2021.054
      刘爱利, 王培法, 丁园圆, 2012. 地统计学概论. 北京: 科学出版社.
      刘宝和, 2008. 中国石油勘探开发百科全书·勘探卷. 北京: 石油工业出版社.
      沈帅, 马腾, 杜尧, 等, 2018. 江汉平原东部浅层地下水氮的空间分布特征. 环境科学与技术, 41(2): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201802008.htm
      王晶, 谢作明, 王佳, 等, 2021. 硫介导细菌还原载砷铁矿对砷迁移转化的影响. 地球科学, 46(2): 642-651. doi: 10.3799/dqkx.2020.054
      薛毅, 陈立萍, 2007. 统计建模与R软件. 北京: 清华大学出版社.
      于凯, 2016. 高砷地下水系统中有机质来源及其对砷动态变化的影响研究: 以江汉平原为例(博士学位论文). 武汉: 中国地质大学.
      余锦华, 杨维权, 2005. 多元统计分析与应用. 广州: 中山大学出版社.
      郑新奇, 吕利娜, 2018. 地统计学(现代空间统计学). 北京: 科学出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(5)

      Article views (669) PDF downloads(50) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return