• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 10
    Oct.  2023
    Turn off MathJax
    Article Contents
    Chen Xiaozhen, Chen Guochao, Li Ruibao, Zhang Yafeng, Ji Xianjun, Zhang Xiaofei, 2023. Zircon U-Pb Geochronology and Trace Element Characteristics of Wuduoshan Granitic Pegmatite in Eastern Part of East Qinling and Its Geological Significance. Earth Science, 48(10): 3753-3769. doi: 10.3799/dqkx.2021.206
    Citation: Chen Xiaozhen, Chen Guochao, Li Ruibao, Zhang Yafeng, Ji Xianjun, Zhang Xiaofei, 2023. Zircon U-Pb Geochronology and Trace Element Characteristics of Wuduoshan Granitic Pegmatite in Eastern Part of East Qinling and Its Geological Significance. Earth Science, 48(10): 3753-3769. doi: 10.3799/dqkx.2021.206

    Zircon U-Pb Geochronology and Trace Element Characteristics of Wuduoshan Granitic Pegmatite in Eastern Part of East Qinling and Its Geological Significance

    doi: 10.3799/dqkx.2021.206
    • Received Date: 2021-08-21
      Available Online: 2023-10-31
    • Publish Date: 2023-10-25
    • The granitic pegmatite exposed in Wuduoshan granitic pluton occurs extensively in volume. However, its formation time, petrogenesis and geodynamic background are still unclear. LA-ICP-MS zircon U-Pb dating shows that the zircon U-Pb ages from the granitic pegmatite are 417.4±2.5, 429.5±2.1 and 450.9±3.3 Ma, respectively, the first of which represents the crystallization age of granitic pegmatite and the other is consistent with the age of Wuduoshan granite batholith, representing the captured zircons from the surrounding rocks of granitic pegmatite veins. The εHf(t) values of granitic pegmatite are -5.6 to -1.9, -8.7 to -1.3, and -5.3 to -3.4, respectively, which are similar to the Hf isotopic values of magmatic rocks derived from partial melting of metasedimentary rocks of the Qinling Group. Together with the regional data, it is suggested that the East Qinling was in the post-collision stage relevant to the proto-Tethys Ocean in the Early Devonian, and it underwent extensional setting and resulting the decompression melting of mantle and generation of mafic magma. The rising high-temperature magma further underplated and heated the lower crust and induced the partial melting of metamorphic basement of the lower crust, ultimately generating the granitic pegmatites along the magmatic conduits which formed in a postcollision-related extensional setting.

       

    • loading
    • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1/2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      Bell, E. A., Boehnke, P., Harrison, T. M., 2016. Recovering the Primary Geochemistry of Jack Hills Zircons through Quantitative Estimates of Chemical Alteration. Geochimica et Cosmochimica Acta, 191: 187-202. https://doi.org/10.1016/j.gca.2016.07.016
      Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
      Bradley, D. C., McCauley, A. D., et al., 2017. Mineral-Deposit Model for Lithium-Cesium-Tantalum Pegmatites. Geological Survey, Reston, VA, 1-48.
      Burnham, A. D., 2020. Key Concepts in Interpreting the Concentrations of the Rare Earth Elements in Zircon. Chemical Geology, 551: 119765. https://doi.org/10.1016/j.chemgeo.2020.119765
      Cao, H. H., Li, S. Z., Zhao, S. J., et al., 2017. Precambrian Tectonic Affinity of the North Qinling Microcontinent: Constraints from the Discovery of Mesoproterozoic Magmatic Zircons in the Qinling Group. Geological Journal, 52(S1): 142-154. https://doi.org/10.1002/gj.2997
      Černý, P., London, D., Novak, M., 2012. Granitic Pegmatites as Reflections of Their Sources. Elements, 8(4): 289-294. https://doi.org/10.2113/gselements.8.4.289
      Chen, Y. W., Hu, R. Z., Bi, X. W., et al., 2019. Genesis of the Guangshigou Pegmatite-Type Uranium Deposit in the North Qinling Orogenic Belt, China. Ore Geology Reviews, 115: 103165. https://doi.org/10.1016/j.oregeorev.2019.103165
      Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469
      Diwu, C. R., Sun, Y., Zhao, Y., et al., 2014. Geochronological, Geochemical, and Nd-Hf Isotopic Studies of the Qinling Complex, Central China: Implications for the Evolutionary History of the North Qinling Orogenic Belt. Geoscience Frontiers, 5(4): 499-513. https://doi.org/10.1016/j.gsf.2014.04.001
      Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1-40. https://doi.org/10.1016/j.gr.2015.06.009
      Dong, Y. P., Sun, S. S., Yang, Z., et al., 2017. Neoproterozoic Subduction-Accretionary Tectonics of the South Qinling Belt, China. Precambrian Research, 293: 73-90. https://doi.org/10.1016/j.precamres.2017.02.015
      Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002
      Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      Frost, B. R., 1991. Introduction to Oxygen Fugacity and Its Petrologic Importance. Reviews in Mineralogy and Geochemistry, 25(1): 1-9.
      Glazner, A. F., Bartley, J. M., Coleman, D. S., et al., 2004. Are Plutons Assembled over Millions of Years by Amalgamation from Small Magma Chambers? GSA Today, 14(4): 4-12. https://doi.org/10.1130/1052-5173(2004)0140004:apaomo>2.0.co;2 doi: 10.1130/1052-5173(2004)0140004:apaomo>2.0.co;2
      Guo, C. L., Chen, D. L., 2011. Identification of O-Type Adakitic Rocks in Erlangping Area, Western of Henan Province, and Its Geological Significance. Acta Geologica Sinica, 85(12): 1994-2002(in Chinese with English abstract).
      Guo, G. L., Bonnetti, C., Zhang, Z. S., et al., 2021. SIMS U-Pb Dating of Uraninite from the Guangshigou Uranium Deposit: Constraints on the Paleozoic Pegmatite-Type Uranium Mineralization in North Qinling Orogen, China. Minerals, 11(4): 402. https://doi.org/10.3390/min11040402
      Hoskin, P. W. O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. https://doi.org/10.1016/j.gca.2004.07.006
      Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A., et al., 2006. Episodic Growth of the Gondwana Supercontinent from Hafnium and Oxygen Isotopes in Zircon. Nature, 439(7076): 580-583. https://doi.org/10.1038/nature04505
      Lai, Y., Zhao, G. C., Li, W. L., et al., 2017. Lithogeochemical Characteristics and Geological Significance of Granitoids in Zhenping Area, Eastern Qinling Mountains. Geology and Mineral Resources of South China, 33(4): 330-343(in Chinese with English abstract). doi: 10.3969/j.issn.1007-3701.2017.04.002
      Lei, M., 2010. Petrogrnesis of Granites and Their Relation to Tectonic Evolution of Orogen in the East Part of Qinling Orogenic Belt (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      Li, C. D., Zhao, L. G., Xu, Y. W., et al., 2018. Chronology of Metasedimentary Rocks from Kuanping Group Complex in North Qinling Belt and Its Geological Significance. Geology in China, 45(5): 992-1010(in Chinese with English abstract).
      Li, H., Li, J. W., Algeo, T. J., et al., 2018. Zircon Indicators of Fluid Sources and Ore Genesis in a Multi-Stage Hydrothermal System: The Dongping Au Deposit in North China. Lithos, 314/315: 463-478. https://doi.org/10.1016/j.lithos.2018.06.025
      Li, K. W., Fang, H. B., Guo, J. G., et al., 2019. Petrogeochemistry, Zircon U-Pb Dating and Geological Significance of Two-Mica Granites from Wuduoshan Granite in Nanzhao County, Eastern Qinling Mountains. Earth Science, 44(1): 123-134(in Chinese with English abstract).
      Li, Q. L., 2016. "High-U Effect" during SIMS Zircon U-Pb Dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 405-412, 401(in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2016.03.001
      Li, Z. Q., Ren, S. L., Dong, S. W., et al., 2021. Tectonic Evolution Time Limit of Subduction in Erlangping Back-Arc Basin, North Qinling. Chinese Journal of Geology (Scientia Geologica Sinica), 56(3): 770-791(in Chinese with English abstract).
      Linnen, R. L., Van Lichtervelde, M., Cerny, P., 2012. Granitic Pegmatites as Sources of Strategic Metals. Elements, 8(4): 275-280. https://doi.org/10.2113/gselements.8.4.275
      Liu, B. X., 2014. Magmatism and Crustal Evolution in the Eastern North Qinling Terrain (Dissertation). University of Science and Technology of China, Hefei(in Chinese with English abstract).
      Liu, G., Liu, J. J., Yuan, F., et al., 2017. The Magmatic Evolution and Its Constraints on Uranium Mineralization in the Xiaohuacha Uranium Deposit, Shaanxi Province. Geoscience, 31(5): 990-1005(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2017.05.010
      Liu, L., Liao, X. Y., Zhang, C. L., et al., 2013. Multi-Matemorphic Timings of HP-UHP Rocks in the North Qinling and Their Geological Implications. Acta Petrologica Sinica, 29(5): 1634-1656(in Chinese with English abstract).
      London, D., 2018. Ore-Forming Processes within Granitic Pegmatites. Ore Geology Reviews, 101: 349-383. https://doi.org/10.1016/j.oregeorev.2018.04.020
      Loucks, R. R., Fiorentini, M. L., Henríquez, G. J., 2020. New Magmatic Oxybarometer Using Trace Elements in Zircon. Journal of Petrology, 61(3): egaa034. https://doi.org/10.1093/petrology/egaa034
      Lu, X. X., Zhu, C. H., Gu, D. M., et al., 2010. The Main Geological and Metallogenic Characteristics of Granitic Pegmatite in Eastern Qinling Belt. Geological Review, 56(1): 21-30(in Chinese with English abstract).
      Ludwig, K. R., 2003. Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
      Luo, D., Hou, T., Pan, R. H., 2020. Constraints of Oxygen Fugacity on the Formation of the Panzhihua Layered Intrusion and Its Mineralization: Evidence from Trace Element in Zircon. Acta Petrologica Sinica, 36(7): 2116-2126(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.07.13
      Mao, J. W., Yang, Z. X., Xie, G. Q., et al., 2019. Critical Minerals: International Trends and Thinking. Mineral Deposits, 38(4): 689-698(in Chinese with English abstract).
      Qin, J. F., Lai, S. C., Long, X. P., et al., 2020. Thermotectonic Evolution of the Paleozoic Granites along the Shangdan Suture Zone (Central China): Crustal Growth and Differentiation by Magma Underplating in an Orogenic Belt. Geological Society of America, 133(3-4): 523-539. https://doi.org/10.1130/B35466.1
      Qin, K. Z., Zhou, Q. F., Tang, D. M., et al., 2019. Types, Internal Structural Patterns, Mineralization and Prospects of Rare Element Pegmatites in East Qinling Mountain in Comparison with Features of Chinese Altay. Mineral Deposits, 38(5): 970-982(in Chinese with English abstract).
      Qin, Z. W., 2016. Early Paleozoic Magmatism in the North Qinling Orogenic Belt and Its Implications for Continental Crust Evolution (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Qin, Z. W., Wu, Y. B., Wang, H., et al., 2014. Geochronology, Geochemistry, and Isotope Compositions of Piaochi S-Type Granitic Intrusion in the Qinling Orogen, Central China: Petrogenesis and Tectonic Significance. Lithos, 202/203: 347-362. https://doi.org/10.1016/j.lithos.2014.06.006
      Ren, J. S., Zhu, J. B., Li, C., et al., 2019. Is the Qinling Orogen an Indosinian Collisional Orogenic Belt? Earth Science, 44(5): 1476-1486(in Chinese with English abstract).
      Ren, L., Liang, H. Y., Bao, Z. W., et al., 2021. Early Paleozoic Magmatic "Flare-ups" in Western Qinling Orogeny, China: New Insights into the Convergence History of the North and South China Blocks at the Northern Margin of Gondwana. Lithos, 380/381: 105833. https://doi.org/10.1016/j.lithos.2020.105833
      Shi, Y., Yu, J. H., Santosh, M., 2013. Tectonic Evolution of the Qinling Orogenic Belt, Central China: New Evidence from Geochemical, Zircon U-Pb Geochronology and Hf Isotopes. Precambrian Research, 231: 19-60. https://doi.org/10.1016/j.precamres.2013.03.001
      Tian, W., Wei, C. J., 2005. Caledonian Low Al-TTD Series in North Qinling Orogenic Belt: Rock Characteristics, Genetic Simulation and Geological Significance. Science in China(Ser. D), 35(3): 215-224(in Chinese).
      Trail, D., Watson, E. B., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97: 70-87. https://doi.org/10.1016/j.gca.2012.08.032
      Wang, H., 2014. Neoproterozoic-Early Paleozoic Metamorphism and Magmatism during the Multistage Evolution of the Eastern Qinling-Tongbai Orogenic Belt (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Wang, J. B., Li, T., Zhang, Y., et al., 2020. Water-Flux Melting of Amphibolite in Paleozoic Leucogranite from the North Qinling, Central China: Implication for Post Collisional Setting. Journal of Earth Science, 31(5): 867-874. https://doi.org/10.1007/s12583-020-1335-5
      Wang, T., Wang, X. X., Tian, W., et al., 2009. North Qinling Paleozoic Granite Associations and Their Variation in Space and Time: Implications for Orogenic Processes in the Orogens of Central China. Science in China (Series D), 52(9): 1359-1384. https://doi.org/10.1007/s11430-009-0129-5
      Wang, X. X., Wang, T., Zhang, C. L., 2015. Granitoid Magmatism in the Qinling Orogen, Central China and Its Bearing on Orogenic Evolution. Science China: Earth Sciences, 45: 1109-1125(in Chinese).
      Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
      Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.06.001
      Wu, Y., Qin, M. K., Guo, D. F., et al., 2018. The Latest In-Situ Uraninite U-Pb Age of the Guangshigou Uranium Deposit, Northern Qinling Orogen, China: Constraint on the Metallogenic Mechanism. Acta Geologica Sinica (English Edition), 92(6): 2445-2447.
      Wu, Y. B., 2019. Paleozoic Magmatism in the Qinling Orogen and Its Geodynamic Significance. Earth Science, 44(12): 4173-4177(in Chinese with English abstract).
      Wu, Y. B., Zheng, Y. F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
      Xu, Z. Q., Li, Y., Liang, F. H., et al., 2015. A Connection between of the Paleo-Tethys Suture Zone in the Qinling-Dabie-Sulu Orogenic Belt. Acta Geologica Sinica, 89(4): 671-680(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2015.04.001
      Yan, L. L., He, Z. Y., Beier, C., et al., 2018. Zircon Trace Element Constrains on the Link between Volcanism and Plutonism in SE China. Lithos, 320/321: 28-34. https://doi.org/10.1016/j.lithos.2018.08.040
      Yan, L. L., He, Z. Y., Klemd, R., et al., 2020. Tracking Crystal-Melt Segregation and Magma Recharge Using Zircon Trace Element Data. Chemical Geology, 542: 119596. https://doi.org/10.1016/j.chemgeo.2020.119596
      Yang, S. J., Chen, D. L., Gong, X. K., et al., 2015. The Geochemistry, Chronology and Its Geological Implications of Leucosomes in the Basic Volcanics of Erlangping Group in Eastern Segment of the North Qinling. Acta Petrologica Sinica, 31(7): 2009-2022(in Chinese with English abstract).
      Yang, Y., 2017. Spatial-Temporal Distribution and Sources of Granitoids in the Middle Qinling Orogenic Belt, Central China: Implications for the Nature of Deep Crustal Basement (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      Yang, Y. N., Li, Q. L., Liu, Y., et al., 2014. Zircon U-Pb Dating by Secondary Ion Mass Spectrometry. Earth Science Frontiers, 21(2): 81-92(in Chinese with English abstract).
      Yi, Z. Q., Wen, J., Lai, Q. S., et al., 2017. Zircon U-Pb Age of Wuduo Mountain Compound Batholith and Its Geological Significance. Contributions to Geology and Mineral Resources Research, 32(4): 594-603(in Chinese with English abstract).
      Yuan, F., Jiang, S. Y., Liu, J. J., et al., 2020. Origin and Evolution of Uraniferous Pegmatite: A Case Study from the Xiaohuacha Granite-Pegmatite System and Related Country Rocks in the Shangdan Uranium Mineralization District of North Qinling Orogenic Belt, China. Lithos, 356/357: 105379. https://doi.org/10.1016/j.lithos.2020.105379
      Yuan, F., Liu, J. J., Carranza, E. J. M., et al., 2018a. Zircon Trace Element and Isotopic (Sr, Nd, Hf, Pb) Effects of Assimilation-Fractional Crystallization of Pegmatite Magma: A Case Study of the Guangshigou Biotite Pegmatites from the North Qinling Orogen, Central China. Lithos, 302/303: 20-36. https://doi.org/10.1016/j.lithos.2017.12.022
      Yuan, F., Liu, J. J., Carranza, E. J. M., et al., 2018b. The Guangshigou Uranium Deposit, Northern Qinling Orogen, China: A Product of Assimilation-Fractional Crystallization of Pegmatitic Magma. Ore Geology Reviews, 99: 17-41. https://doi.org/10.1016/j.oregeorev.2018.05.010
      Yuan, F., Liu, J. J., Lü, G. X., et al., 2017. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Granites and Pegmatites from the Guangshigou Uranium Deposit in the Northern Qinling Orogen, China. Earth Science Frontiers, 24(6): 25-45(in Chinese with English abstract).
      Yuan, H. L., Gao, S., Dai, M. N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1/2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003
      Yuan, H. L., Wu, F. Y., Gao, S., et al., 2003. Zircon Laser Probe U-Pb Dating and Rare Earth Element Composition Analysis of Cenozoic Intrusions in Northeast China. Chinese Science Bulletin, 48(14): 1511-1520(in Chinese). doi: 10.1360/csb2003-48-14-1511
      Zhai, M. G., Wu, F. Y., Hu, R. Z., et al., 2019. Critical Metal Mineral Resources: Current Research Status and Scientific Issues. Bulletin of National Natural Science Foundation of China, 33(2): 106-111(in Chinese with English abstract).
      Zhang, C. L., Liu, L., Wang, T., et al., 2013. Granite Magmatism in the Early Paleozoic Continental Collision in North Qinling Mountains. Chinese Science Bulletin, 58(23): 2323-2329(in Chinese). doi: 10.1360/csb2013-58-23-2323
      Zhang, G. W., Meng, Q. R., Lai, S. C., 1995. Structure and Tectonic of Qinling Orogenic Belt. Science in China (Series B), 25(9): 994-1003(in Chinese). doi: 10.3321/j.issn:1006-9240.1995.09.002
      Zhang, G. W., Zhang, B. R., Yuan, X. M., 2001. Qinling Orogenic Belt and Continental Dynamics. Science Press, Beijing (in Chinese with English abstract).
      Zhang, H. F., Yu, H., Zhou, D. W., et al., 2015. The Meta-Gabbroic Complex of Fushui in North Qinling Orogen: A Case of Syn-Subduction Mafic Magmatism. Gondwana Research, 28(1): 262-275. https://doi.org/10.1016/j.gr.2014.04.010
      Zhang, Z. Q., Zhang, G. W., Fu, G. M., et al., 1996. Age of Metamorphic Strata in Qinling Mountains and Its Tectonic Significance. Science in China (Ser. D), 26(3): 216-222(in Chinese).
      Zhao, L. G., Li, C. D., Xu, Y. W., et al., 2019. Geochemistry of Nb-Enriched Gabbros in Zhaigen Area in Northern Qinling and Their Tectonic Significance. Earth Science, 44(1): 135-144(in Chinese with English abstract).
      Zhao, R. Y., Li, W. H., Jiang, C. Y., et al., 2013. Age and Geochemistry of Uranium Bearing Pegmatite in Danfeng Area, Shaanxi Province. Acta Mineralogica Sinica, 33(S2): 880-882(in Chinese with English abstract).
      Zhao, Z. D., Liu, D., Wang, Q., et al., 2018. Zircon Trace Elements and Their Use in Probing Deep Processes. Earth Science Frontiers, 25(6): 124-135(in Chinese with English abstract).
      Zhao, Z. H., 2010. Trace Element Geochemistry of Accessory Minerals and Its Applications in Petrogenesis and Metallogenesis. Earth Science Frontiers, 17(1): 267-286(in Chinese with English abstract).
      Zhou, L. L., Zeng, Q. D., Sun, G. T., et al., 2019. Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) Elemental Mapping and Its Applications in Ore Geology. Acta Petrologica Sinica, 35(7): 1964-1978(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.02
      Zhou, Q. F., Qin, K. Z., Tang, D. M., 2021. Mineralogy of Columbite-Group Minerals from the Rare-Element Pegmatite Dykes in the East-Qinling Orogen, Central China: Implications for Formation Times and Ore Genesis. Journal of Asian Earth Sciences, 218: 104879. https://doi.org/10.1016/j.jseaes.2021.104879
      Zhou, Q. F., Qin, K. Z., Tang, D. M., et al., 2019. Mineralogical Characteristics and Significance of Beryl from the Rare-Element Pegmatites in the Lushi County, East Qinling, China. Acta Petrologica Sinica, 35(7): 1999-2012(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.04
      Zhou, S., Zhang, H., Chen, F. K., 2019. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of Granites from the Wuduoshan Pluton, the North Qinling Terrane. Geological Journal of China Universities, 25(6): 901-913(in Chinese with English abstract).
      Zou, X. Y., Jiang, J. L., Qin, K. Z., et al., 2021. Progress in the Principle and Application of Zircon Trace Element. Acta Petrologica Sinica, 37(4): 985-999(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.04.03
      Zou, X. Y., Qin, K. Z., Han, X. L., et al., 2019. Insight into Zircon REE Oxy-Barometers: A Lattice Strain Model Perspective. Earth and Planetary Science Letters, 506: 87-96. https://doi.org/10.1016/j.epsl.2018.10.031
      郭彩莲, 陈丹玲, 2011. 豫西二郎坪地区O型埃达克岩的厘定及其地质意义. 地质学报, 85(12): 1994-2002. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201112004.htm
      赖亚, 赵国春, 李文兰, 等, 2017. 东秦岭镇平地区花岗岩岩石地球化学特征及地质意义. 华南地质与矿产, 33(4): 330-343. doi: 10.3969/j.issn.1007-3701.2017.04.002
      雷敏, 2010. 秦岭造山带东部花岗岩成因及其与造山带构造演化的关系(博士学位论文). 北京: 中国地质科学院.
      李承东, 赵利刚, 许雅雯, 等, 2018. 北秦岭宽坪岩群变质沉积岩年代学及地质意义. 中国地质, 45(5): 992-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201805009.htm
      李开文, 方怀宾, 郭君功, 等, 2019. 东秦岭南召县五朵山岩体二云母花岗岩地球化学、锆石U-Pb年代学及地质意义. 地球科学, 44(1): 123-134. doi: 10.3799/dqkx.2018.306
      李秋立, 2016. 离子探针锆石U-Pb定年的"高U效应". 矿物岩石地球化学通报, 35(3): 405-412, 401. doi: 10.3969/j.issn.1007-2802.2016.03.001
      李振强, 任升莲, 董树文, 等, 2021. 北秦岭二郎坪弧后盆地俯冲消减的构造演化时限. 地质科学, 56(3): 770-791. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202103007.htm
      刘丙祥, 2013. 北秦岭地体东段岩浆作用与地壳演化(博士学位论文). 合肥: 中国科学技术大学.
      刘刚, 刘家军, 袁峰, 等, 2017. 陕西小花岔铀矿床岩浆演化及其对铀成矿作用的制约. 现代地质, 31(5): 990-1005. doi: 10.3969/j.issn.1000-8527.2017.05.010
      刘良, 廖小莹, 张成立, 等, 2013. 北秦岭高压-超高压岩石的多期变质时代及其地质意义. 岩石学报, 29(5): 1634-1656. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201305015.htm
      卢欣祥, 祝朝辉, 谷德敏, 等, 2010. 东秦岭花岗伟晶岩的基本地质矿化特征. 地质论评, 56(1): 21-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201001006.htm
      罗雕, 侯通, 潘荣昊, 2020. 氧逸度对攀枝花岩体成岩成矿作用的制约: 来自锆石微量元素的证据. 岩石学报, 36(7): 2116-2126. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202007013.htm
      毛景文, 杨宗喜, 谢桂青, 等, 2019. 关键矿产: 国际动向与思考. 矿床地质, 38(4): 689-698. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202303014.htm
      秦克章, 周起凤, 唐冬梅, 等, 2019. 东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景: 兼与阿尔泰地区对比. 矿床地质, 38(5): 970-982. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905002.htm
      秦拯纬, 2016. 北秦岭造山带早古生代岩浆作用及其大陆地壳演化意义(博士学位论文). 武汉: 中国地质大学.
      任纪舜, 朱俊宾, 李崇, 等, 2019. 秦岭造山带是印支碰撞造山带吗? 地球科学, 44(5): 1476-1486. doi: 10.3799/dqkx.2019.047
      田伟, 魏春景, 2005. 北秦岭造山带加里东期低Al-TTD系列: 岩石特征、成因模拟及地质意义. 中国科学(D辑: 地球科学), 35(3): 215-224. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200503002.htm
      王浩, 2014. 东秦岭-桐柏造山带新元古代-早古生代不同阶段演化的变质和岩浆作用(博士学位论文). 武汉: 中国地质大学.
      王晓霞, 王涛, 张成立, 2015. 秦岭造山带花岗质岩浆作用与造山带演化. 中国科学: 地球科学, 45(8): 1109-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508003.htm
      吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706000.htm
      吴元保, 2019. 秦岭造山带古生代岩浆作用及地球动力学意义. 地球科学, 44(12): 4173-4177. doi: 10.3799/dqkx.2019.266
      吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
      许志琴, 李源, 梁凤华, 等, 2015. "秦岭-大别-苏鲁"造山带中"古特提斯缝合带"的连接. 地质学报, 89(4): 671-680. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201504001.htm
      杨士杰, 陈丹玲, 宫相宽, 等, 2015. 北秦岭东段二郎坪群基性火山岩中浅色岩体的地球化学、年代学及其地质意义. 岩石学报, 31(7): 2009-2022. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201507016.htm
      杨亚楠, 李秋立, 刘宇, 等, 2014. 离子探针锆石U-Pb定年. 地学前缘, 21(2): 81-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201402008.htm
      杨阳, 2017. 秦岭造山带中段花岗岩的时空格架、源区物质及其对地壳深部物质组成的示踪(博士学位论文). 北京: 中国地质科学院.
      易志强, 文景, 赖群生, 等, 2017. 五垛山复式岩基锆石U-Pb年龄及其地质意义. 地质找矿论丛, 32(4): 594-603. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201704011.htm
      袁峰, 刘家军, 吕古贤, 等, 2017. 北秦岭光石沟铀矿区花岗岩、伟晶岩锆石U-Pb年代学、地球化学及成因意义. 地学前缘, 24(6): 25-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706003.htm
      袁洪林, 吴福元, 高山, 等, 2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析. 科学通报, 48(14): 1511-1520. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200314007.htm
      翟明国, 吴福元, 胡瑞忠, 等, 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ202304004.htm
      张成立, 刘良, 王涛, 等, 2013. 北秦岭早古生代大陆碰撞过程中的花岗岩浆作用. 科学通报, 58(23): 2323-2329. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201323015.htm
      张国伟, 孟庆任, 赖绍聪, 1995. 秦岭造山带的结构构造. 中国科学(B辑), 25(9): 994-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199509014.htm
      张国伟, 张本仁, 袁学诚, 等, 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社.
      张宗清, 张国伟, 付国民, 等, 1996. 秦岭变质地层年龄及其构造意义. 中国科学(D辑: 地球科学), 26(3): 216-222. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199603003.htm
      赵利刚, 李承东, 许雅雯, 等, 2019. 北秦岭寨根地区富铌辉长岩地球化学特征及其构造意义. 地球科学, 44(1): 135-144. doi: 10.3799/dqkx.2018.340
      赵如意, 李卫红, 姜常义, 等, 2013. 陕西丹凤地区含铀花岗伟晶岩年龄及其构造意义. 矿物学报, 33(增刊2): 880-882. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2013S2489.htm
      赵振华, 2010. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用. 地学前缘, 17(1): 267-286. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201001027.htm
      赵志丹, 刘栋, 王青, 等, 2018. 锆石微量元素及其揭示的深部过程. 地学前缘, 25(6): 124-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806012.htm
      周伶俐, 曾庆栋, 孙国涛, 等, 2019. LA-ICPMS原位微区面扫描分析技术及其矿床学应用实例. 岩石学报, 35(7): 1964-1978. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201907002.htm
      周起凤, 秦克章, 唐冬梅, 等, 2019. 东秦岭卢氏稀有金属伟晶岩的绿柱石矿物学特征及其指示意义. 岩石学报, 35(7): 1999-2012. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201907004.htm
      周澍, 张贺, 陈福坤, 2019. 北秦岭五垛山花岗岩锆石U-Pb年代学和地球化学特征及成因. 高校地质学报, 25(6): 901-913. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201906010.htm
      邹心宇, 蒋济莲, 秦克章, 等, 2021. 锆石微量元素的理论基础及其应用研究进展. 岩石学报, 37(4): 985-999. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202104003.htm
    • dqkxzx-48-10-3753-附表1-3.doc
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (840) PDF downloads(80) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return