• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 10
    Oct.  2023
    Turn off MathJax
    Article Contents
    Lin Xinwang, Zhang Yafeng, Chen Guochao, Guo Qiming, Wang Xing, Zhao Duanchang, 2023. LA-ICP-MS U-Pb Geochronology, Geochemistry and Petrography of Akebulake Pluton in Southern Altay Orogenic Belt: An Example for Magma Mixing. Earth Science, 48(10): 3597-3612. doi: 10.3799/dqkx.2021.215
    Citation: Lin Xinwang, Zhang Yafeng, Chen Guochao, Guo Qiming, Wang Xing, Zhao Duanchang, 2023. LA-ICP-MS U-Pb Geochronology, Geochemistry and Petrography of Akebulake Pluton in Southern Altay Orogenic Belt: An Example for Magma Mixing. Earth Science, 48(10): 3597-3612. doi: 10.3799/dqkx.2021.215

    LA-ICP-MS U-Pb Geochronology, Geochemistry and Petrography of Akebulake Pluton in Southern Altay Orogenic Belt: An Example for Magma Mixing

    doi: 10.3799/dqkx.2021.215
    • Received Date: 2021-09-17
      Available Online: 2023-10-31
    • Publish Date: 2023-10-25
    • The Akebulake pluton in the southern margin of the Altay orogenic belt is composed of tonalite, dioritic microgranular enclaves and mafic dikes. The pluton exhibits excellent evidence for magma mixing and mingling, such as the feldspathic phenocryst, long prisms of apatite in enclaves and quartz, plagioclase wrapped in biotite in the host rock. Host rocks, dioritic microgranular enclaves and mafic dikes of the Akebulake pluton are products of mixing with different end element ratios in the process of magma mixing evolution. LA-ICP-MS zircon U-Pb dating from three samples yielded weighted mean 206Pb/238U ages of 396.3±3.3 Ma, 392.2±3.7 Ma and 402.3±3.3 Ma, respectively. It indicates that they were formed in the same magmatic event, which provides important chronological evidence for the genesis of magma mixing of Akebulake pluton. Geochemically, the major oxide content of the mafic dikes, dioritic enclaves and their host rocks all have a good linear relationship in the plot, and the patterns of REE, spidergrams of trace elements of the dioritic enclaves and mafic dikes are similar to those of the host granites, suggesting that component exchange and homogenization occurred between the enclaves and the host rocks in the process of rock formation. Hf isotopic composition of zircon is not uniform. The host rocks, enclaves and mafic dikes εHf(t) vary from 1.22 to 4.70, -3.49 to 7.41 and 3.65 to 9.02, respectively. The Hf isotopic model ages (tDM2) range from 962 to 1 131 Ma, 816 to 1 375 Ma and 740 to 1 015 Ma, respectively. Based on a comprehensive analysis with the data of southern margin of Altay, the authors hold that the dioritic enclaves in the Akebulake pluton were generated by mixing of mantle-derived mafic magma and its induced crustal felsic magma in an island-arc setting of active continental margin. The formation of magma mixing of the Akebulake pluton further confirms that strong crust-mantle magmatic mixing occurred in the deep crust of the southern margin of the Altay orogenic belt during the Early Devonian, which resulted in an important event of lateral continental crust growth at the syn-accretionary stage in Altay.

       

    • loading
    • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1/2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1/2/3/4): 155-177. https://doi.org/10.1016/j.lithos.2004.05.010
      Bolhar, R., Weaver, S. D., Whitehouse, M. J., et al., 2008. Sources and Evolution of Arc Magmas Inferred from Coupled O and Hf Isotope Systematics of Plutonic Zircons from the Cretaceous Separation Point Suite (New Zealand). Earth and Planetary Science Letters, 268(3-4): 312-324. https://doi.org/10.1016/j.epsl.2008.01.022
      Chen, B., Xiong, F. H., Ma, C. Q., et al., 2021. Coupling Relation between Magma Mixing and Igneous Petrological Diversity: An Example of Bairiqili Felsic Pluton in East Kunlun Orogen. Earth Science, 46(6): 2057-2072(in Chinese with English abstract).
      Chen, H. L., Yang, S. F., Li, Z. L., et al., 2006. Geochemistry and Tectonic Setting of Early Late Paleozoic Felsic Volcanic Rocks from the Altai Orogenic Belt, North Xinjiang. Acta Geologica Sinica, 80(1): 38-42 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2006.tb00792.x
      Deng, J. F., Luo, Z. H., Su, S. G., et al., 2004. Ptrogeneses, Tectonic Environments and Mineralization. Geological Publishing House, Beijing (in Chinese).
      Dong, Z. C., Zhao, G. C., Pan, F., et al., 2019. Petrogenesis of the Qinghe Post-Orogenic Pluton and Its Implications for the Late Paleozoic Tectonic Evolution of the Altai Orogenic Belt. Acta Petrologica Sinica, 35(4): 1033-1057 (in Chinese with English abstract).
      Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
      Han, B. F., Ji, J. Q., Song, B., et al., 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China(PartⅠ): Timing of Post-Collisional Plutonism. Acta Petrologica Sinica, 22(5): 1077-1086 (in Chinese with English abstract).
      He, G. Q., Han, B. F., Yue, Y. J., et al., 1990. Tectonic Division and Crustal Evolution of Altay Orogenic Belt in China. Geological Publishing House, Beijing (in Chinese).
      Hu, A. Q., Jahn, B. M., Zhang, G. X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang: Nd Isotopic Evidence. Part I. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1-2): 15-51. https://doi.org/10.1016/s0040-1951(00)00176-1
      Janoušek, V., Bowes, D. R., Braithwaite, C. J. R., et al., 2000. Micro Structural and Mineralogical Evidence for Limited Involvement of Magma Mixing in the Petrogenesis of a Hercynian High-K Calc-Alkaline Intrusion: The Kozárovice Granodiorite, Central Bohemian Pluton, Czech Republic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 15-26. https://doi.org/10.1017/s0263593300007264
      Langmuir, C. H., Vocke, R. D. Jr, Hanson, G. N., et al., 1978. A General Mixing Equation with Applications to Icelandic Basalts. Earth and Planetary Science Letters, 37(3): 380-392. https://doi.org/10.1016/0012-821x(78)90053-5
      Li, C. N., 2002. Comment on the Magma Mixing and Their Research. Geological Science and Technology Information, 21(4): 49-54 (in Chinese with English abstract).
      Lin, X. W., Wang, X., Chen, G. T., et al., 2020. Magmatic Activity and Emplacement of the Devonian Intrusive Rocks in Eastern Altay, Northern Xinjiang. Geoscience, 34(3): 514-531 (in Chinese with English abstract).
      Lin, X. W., Wang, X., Zhao, J. L., et al., 2019. LA-ICP-MS Zircon U-Pb Age of the Jinge Plagiogranite in Northern Fuyun of Xinjiang and Its Geological Implications. Geological Bulletin of China, 38(11): 1813-1824 (in Chinese with English abstract).
      Liu, C. D., Mo, X. X., Luo, Z. H., et al., 2004. Crust-Mantle Magma Mixing in East Kunlun: Evidence from Zircon SHRIMP Geochronology. Chinese Science Bulletin, 49(6): 596-602 (in Chinese). doi: 10.1360/csb2004-47-6-596
      Liu, F., Cao, F., Zhang, Z. X., et al., 2014. Chronology and Geochemistry of the Granite near the Keketuohai No. 3 Pematite in Xinjiang. Acta Petrologica Sinica, 30(1) : 1-15 (in Chinese with English abstract).
      Liu, F., Yang, F. Q., Mao, J. W., et al., 2009. Study on Chronology and Geochemistry for Abagong Granite in Altay Orogen. Acta Petrologica Sinica, 25(6): 1416-1425 (in Chinese with English abstract).
      Liu, W., 1990. Petrogenetic Epochs and Peculiarities of Genetic Types of Granitoids in the Altai Mts Xinjiang Uygur Autonomous Region, China. Geotectonica et Metallogenia, 14(1) : 43-56 (in Chinese with English abstract).
      Long, X. P., Yuan, C., Sun, M., et al., 2008. Geochemical Characteristics and Sedimentary Environments of Devonian Low Metamorphic Clastic Sedimentary Rocks in the Southern Margin of the Chinese Altai, North Xinjiang. Acta Petrologica Sinica, 24(4): 718-732 (in Chinese with English abstract).
      Mo, X. X., Luo, Z. H., Xiao, Q. H., 2002. Cognition of Magma Hybrid in Granites and Its Research Methods. In: Xiao, Q. H., Deng, J. F., Ma, D. Q., et al., eds., The Ways of Investigation on Granitoids. Geological Publishing House, Beijing (in Chinese).
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
      Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi. org/10.1016/0024-4937(89)90028-5 doi: 10.1016/0024-4937(89)90028-5
      Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
      Silva, M. M. V. G., Neiva, A. M. R., Whitehouse, M. J., 2000. Geochemistry of Enclaves and Host Granite from the Nelas Area, Central Portugal. Lithos, 50: 153-170. https://doi. org/10.1016/S0024-4937(99)00053-5 doi: 10.1016/S0024-4937(99)00053-5
      Song, P., Tong, Y., Wang, T., et al., 2017. Zircon U-Pb Ages and Genetic Evolution of Devonian Granitic Rocks in the Southeastern Chinese Altai and Its Tectonic Implications: New Evidence for Magmatic Evolution of Calc-Alkaline-High-K Calc-Alkaline-Alkaline Rocks. Acta Geologica Sinica, 91(1): 55-79 (in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publications, Oxford.
      Tong, Y., 2006. Geochronlogy, Origin of the Late Paleozoic Granitoids from the Altai Orogen in China and Their Geological Significance (Dissertation). Chinese Academy of Sciences, Beijing (in Chinese).
      Vavra, G., Gebauer, D., Schmid, R., et al., 1996. Multiple Zircon Growth and Recrystallization during Polyphase Late Carboniferous to Triassic Metamorphism in Granulites of the Ivrea Zone (Southern Alps): An Ion Microprobe (SHRIMP) Study. Contributions to Mineralogy and Petrology, 122(4): 337-358. https://doi.org/10.1007/s004100050132
      Wang, D. Z., Xie, L., 2008. Magma Mingling: Evidence from Enclaves. Geological Journal of China Universities, 14(1): 16-21 (in Chinese with English abstract).
      Wang, T., Hong, D. W., Jahn, B. M., et al., 2006. Timing, Petrogenesis, and Setting of Paleozoic Synorogenic Intrusions from the Altai Mountains, Northwest China: Implications for the Tectonic Evolution of an Accretionary Orogen. The Journal of Geology, 114(6): 735-751. https://doi.org/10.1086/507617
      Wang, T., Hong, D. W., Tong, Y., et al., 2005. Zircon U-Pb SHRIMP Age and Origin of Post-Orogenic Lamazhao Granitic Pluton from Altai Orogen: Its Implications for Vertical Continental Growth. Acta Petrologica Sinica, 21(3): 640-650 (in Chinese with English abstract).
      Wang, T., Huang, H., Song, P., et al., 2020. Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang). Earth Science, 45(7): 2326-2344 (in Chinese with English abstract).
      Wang, T., Jahn, B. M., Kovachet, V. P., et al., 2009. Nd-Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt. Lithos, 110(1-4): 359-372. https://doi.org/10.1016/j.lithos.2009.02.001
      Wang, T., Tong, Y., Li, S., et al., 2010. Spatial and Temporal Variations of Granitoids in the Altay Orogen and Their Implications for Tectonic Setting and Crustal Growth: Perspectives from Chinese Altay. Acta Petrologica et Mineralogica, 29(6): 595-618 (in Chinese with English abstract).
      Wang, X. X., Wang, T., Happala, I., et al., 2005. Genesis of Mafic Enclaves from Rapakivi-Textured Granites in the Qinling and Its Petrological Significance: Evidence of Elements and Nd, Sr Isotopes. Acta Petrologica Sinica, 21(3): 935-946 (in Chinese with English abstract).
      Wang, Y. W., Wang, J. B., Wang, S. L., et al., 2008. Magma Mixing in the Xilikuduke Area, Fuyun County, Xinjiang and Its Mineralization Significance. Acta Geologica Sinica, 82(2): 221-233 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2008.02.008
      Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
      Wiebe, R. A., Smith, D., Sturm, M., et al., 1997. Enclaves in the Cadillac Mountain Granite (Coastal Maine): Samples of Hybrid Magma from the Base of the Chamber. Journal of Petrology, 38(3): 393-423. https://doi.org/10.1093/petroj/38.3.393
      Windley, B. F., Kröner, A., Guo, J. H., et al., 2002. Neoproterozoic to Paleozoic Geology of the Altai Orogen, NW China: New Zircon Age Data and Tectonic Evolution. The Journal of Geology, 110(6): 719-737. https://doi.org/10.1086/342866
      Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589
      Xiao, Q. H., Qiu, R. Z., Deng, J. F., et al., 2005. Granitoids and Continental Crustal Growth Modes in China. Chinese Geology, 32(3): 343-352 (in Chinese with English abstract).
      Xiao, W. J., Shu, L. S., Gao, J., et al., 2008. Continental Dynamics of the Central Asian Orogenic Belt and Its Metallogeny. Xinjiang Geology, 26(1): 4-8 (in Chinese with English abstract).
      Xiao, W. J., Windley, B. F., Badarch, G., et al., 2004. Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids: Implications for the Growth of Central Asia. Journal of the Geological Society, 161(3): 339-342. https://doi.org/10.1144/0016-764903-165
      Yang, F. Q., Mao, J. W., Yan, S. H., et al., 2008. Geochronology, Geochemistry and Geological Implications of the Mengku Synorogenic Plagiogranite Pluton in Altay, Xinjiang. Acta Geologica Sinica, 82(4): 485-499 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2008.04.006
      Yuan, C., Sun, M., Xiao, W. J., et al., 2007. Accretionary Orogenesis of the Chinese Altai: Insights from Paleozoic Granitoids. Chemical Geology, 242(1-2): 22-39. https://doi.org/10.1016/j.chemgeo.2007.02.013
      Yuan, H. L., Gao, S., Dai, M. N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1-2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003
      Zhang, Y. F., Lin, X. W., Guo, Q. M., et al., 2015. LA-ICP-MS Zircon U-Pb Dating and Geochemistry of Aral Granitic Plutons in Koktokay Area in the Southern Altay Margin and Their Source Significace. Acta Geologica Sinica, 89(2): 339-354 (in Chinese with English abstract).
      Zhang, Y. F., Lin, X. W., Wang, X., et al., 2014. LA-ICP-MS U-Pb Geochronology, Petrogenesis and Its Geological Implications of Kungeyite Plutons in Southern Altay Orogenic Belt. Geoscience, 28(1): 16-28 (in Chinese with English abstract).
      Zhang, Y. F., Lin, X. W., Zhao, Y. M., et al., 2017. Geochronology and Geochemistry of Granitoids of Ascalt Beryllium Deposit in Qinghe County, Northern Xinjiang. Mineral Deposits, 36(3): 643-658 (in Chinese with English abstract).
      Zhang, Y., Xu, X. Y., Chen, J. L., et al., 2012. Geological Characteristics and LA-ICP-MS Zircon U-Pb Age of Mayinebo Ophiolite in Altay Orogenic Belt. Geological Bulletin of China, 31(6): 834-842 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.06.002
      Zheng, Y. F., Chen, Y. X., 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12): 3961-3983 (in Chinese with English abstract).
      Zhou, G., Zhang, Z. C., Luo, S. B., et al., 2007. Confirmation of High Temperature Strongly Peraluminous Mayin'ebo Granites in the South Margin of Altay, Xinjiang: Age, Geochemistry and Tectonic Implications. Acta Petrologica Sinica, 23(8): 1909-1920 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.08.012
      Zhou, X. R., 1994. Hybridization in the Genesis of Granitoids. Earth Science Frontiers, 1(S1): 87-97 (in Chinese with English abstract).
      Zorpi, M. J., Coulon, C., Orsini, J. B., 1991. Hybridization between Felsic and Mafic Magmas in Calc-Alkaline Granitoids: A Case Study in Northern Sardinia, Italy. Chemical Geology, 92(1-3): 45-86. https://doi.org/10.1016/0009-2541(91)90049-W
      陈兵, 熊富浩, 马昌前, 等, 2021. 岩浆混合作用与火成岩多样性的耦合关系: 以东昆仑造山带白日其利长英质岩体为例. 地球科学, 46(6): 2057-2072. doi: 10.3799/dqkx.2020.241
      陈汉林, 杨树锋, 厉子龙, 等, 2006. 阿尔泰晚古生代早期长英质火山岩的地球化学特征及构造背景. 地质学报, 80(1): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601005.htm
      邓晋福, 罗照华, 苏尚国, 等, 2004. 岩石成因、构造环境与成矿作用. 北京: 地质出版社.
      董增产, 赵国春, 潘峰, 等, 2019. 青河后造山岩体成因及其对阿尔泰造山带晚古生代构造演化的启示. 岩石学报, 35(4): 1033-1057. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201904004.htm
      韩宝福, 季建清, 宋彪, 等, 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ): 后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm
      何国琦, 韩宝福, 岳永君, 等, 1990. 中国阿尔泰造山带的构造分区和地壳演化. 北京: 地质出版社.
      李昌年, 2002. 岩浆混合作用及其研究评述. 地质科技情报, 21(4): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200204010.htm
      蔺新望, 王星, 陈光庭, 等, 2020. 新疆北部阿尔泰山东段泥盆纪岩浆活动及侵位方式的探讨. 现代地质, 34(3): 514-531. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202003009.htm
      蔺新望, 王星, 赵江林, 等, 2019. 新疆富蕴县北部金格岩体斜长花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 38(11): 1813-1824. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201911005.htm
      刘成东, 莫宣学, 罗照华, 等, 2004. 东昆仑壳-幔岩浆混合作用: 来自锆石SHRIMP年代学的证据. 科学通报, 49(6): 596-602. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201334015.htm
      刘锋, 杨富全, 毛景文, 等, 2009. 阿尔泰造山带阿巴宫花岗岩体年代学及地球化学研究. 岩石学报, 25(6): 1416-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200906012.htm
      刘锋, 曹峰, 张志欣, 等, 2014. 新疆可可托海近3号脉花岗岩成岩时代及地球化学特征研究. 岩石学报, 30(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401001.htm
      刘伟, 1990. 中国新疆阿尔泰花岗岩的时代及成因类型特征. 大地构造与成矿学, 14(1): 43-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK199001005.htm
      龙晓平, 袁超, 孙敏, 等, 2008. 北疆阿尔泰南缘泥盆系浅变质碎屑沉积岩地球化学特征及其形成环境. 岩石学报, 24(4): 718-732. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804012.htm
      莫宣学, 罗照华, 肖庆辉, 2002. 花岗岩类岩石中岩浆混合作用的识别与研究方法. 见: 肖庆辉, 邓晋福, 马大铨, 著, 花岗岩研究思维与方法. 北京: 地质出版社.
      宋鹏, 童英, 王涛, 等, 2017. 阿尔泰东南缘泥盆纪花岗质岩石的锆石U-Pb年龄、成因演化及构造意义: 钙碱性-高钾钙碱性-碱性岩浆演化新证据. 地质学报, 91(1): 55-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201701004.htm
      童英, 2006. 阿尔泰造山带晚古生代花岗岩年代学、成因及其地质意义(博士学位论文). 北京: 中国地质科学院.
      王德滋, 谢磊, 2008. 岩浆混合作用: 来自岩石包体的证据. 高校地质学报, 14(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201601003.htm
      王涛, 洪大卫, 童英, 等, 2005. 中国阿尔泰造山带后造山喇嘛昭花岗岩体锆石SHRIMP年龄、成因及陆壳垂向生长意义. 岩石学报, 21(3): 640-650. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503007.htm
      王涛, 黄河, 宋鹏, 等, 2020. 地壳生长及深部物质架构研究与问题: 以中亚造山带(北疆地区)为例. 地球科学, 45(7): 2326-2344. doi: 10.3799/dqkx.2020.172
      王涛, 童英, 李舢, 等, 2010. 阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义: 以中国阿尔泰为例. 岩石矿物学杂志, 29(6): 595-618. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006002.htm
      王晓霞, 王涛, Happala, I., 等, 2005. 秦岭环斑结构花岗岩中暗色包体的岩浆混合成因及岩石学意义: 元素和Nd、Sr同位素地球化学证据. 岩石学报, 21(3): 935-946. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501012.htm
      王玉往, 王京彬, 王书来, 等, 2008. 新疆富蕴希力库都克地区岩浆混合作用及其成矿意义. 地质学报, 82(2): 221-233. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200802007.htm
      吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
      肖庆辉, 邱瑞照, 邓晋福, 等, 2005. 中国花岗岩与大陆地壳生长方式初步研究. 中国地质, 32(3): 343-352. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200503001.htm
      肖文交, 舒良树, 高俊, 等, 2008. 中亚造山带大陆动力学过程与成矿作用. 新疆地质, 26(1): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200801005.htm
      杨富全, 毛景文, 闫升好, 等, 2008. 新疆阿尔泰蒙库同造山斜长花岗岩年代学、地球化学及其地质意义. 地质学报, 82(4): 485-499. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200804006.htm
      张亚峰, 蔺新望, 郭岐明, 等, 2015. 阿尔泰南缘可可托海地区阿拉尔花岗岩体LA-ICP-MS锆石U-Pb定年、岩石地球化学特征及其源区意义. 地质学报, 89(2): 339-354. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502010.htm
      张亚峰, 蔺新望, 王星, 等, 2014. 阿尔泰造山带南缘昆格依特岩体LA-ICP-MS锆石U-Pb年代学、岩石成因及其地质意义. 现代地质, 28(1): 16-28. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201401003.htm
      张亚峰, 蔺新望, 赵玉梅, 等, 2017. 新疆北部青河县阿斯喀尔特铍矿区花岗质岩石年代学及地球化学特征. 矿床地质, 36(3): 643-658. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201703007.htm
      张越, 徐学义, 陈隽璐, 等, 2012. 阿尔泰地区玛因鄂博蛇绿岩的地质特征及其LA-ICP-MS锆石U-Pb年龄. 地质通报, 31(6): 834-842. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201206002.htm
      郑永飞, 陈伊翔, 2019. 大陆俯冲带壳幔相互作用. 地球科学, 44(12): 3961-3983. doi: 10.3799/dqkx.2019.982
      周刚, 张招崇, 罗世宾, 等, 2007. 新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩: 年龄、地球化学特征及其地质意义. 岩石学报, 23(8): 1909-1920. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201905008.htm
      周珣若, 1994. 花岗岩混合作用. 地学前缘, 1(增刊1): 87-97. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY4Z1.016.htm
    • dqkxzx-48-10-3597-附表1.doc
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (929) PDF downloads(81) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return