• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 10
    Oct.  2023
    Turn off MathJax
    Article Contents
    Zhu Zichao, Liu Hui, Mao Shengjun, Ma Aolan, Li Minjing, 2023. Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors. Earth Science, 48(10): 3832-3843. doi: 10.3799/dqkx.2021.217
    Citation: Zhu Zichao, Liu Hui, Mao Shengjun, Ma Aolan, Li Minjing, 2023. Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors. Earth Science, 48(10): 3832-3843. doi: 10.3799/dqkx.2021.217

    Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors

    doi: 10.3799/dqkx.2021.217
    • Received Date: 2021-08-24
      Available Online: 2023-10-31
    • Publish Date: 2023-10-25
    • The unique hydrogeochemical process of the river-groundwater interaction zone can seriously affect microbial community distribution. Studying the microbial distribution characteristic can provide a new understanding of a series of biogeochemical cycles. In this paper, the microbial community diversity, species composition and relationship with environmental factors in the two-dimensional sediment profiles of the interactive zone are analyzed by high-throughput sequencing of 16SrRNA gene. The results show that the microbial community distribution is more heterogeneous in the profile where river water recharge is the main water flow direction. Microbial diversity in the hyporheic zone has a remarkably substantial negative correlation with NH4+, As, and has a negatively correlation with TOC, Mn. Below the water level near the river distributed an area with high microbial diversity where the oxidative NO3-, Fe(III), and SO42- were accumulated, the abundance of a large number of chemoheterotrophic microbes decreased, and that of microorganisms related to phosphorus-accumulating, ammonia oxidation and methyl-phage increased. The marginal areas of the interaction zone show less biodiversity, with relatively high TOCs, NH4+, Mn and As. In conclusion, the interaction of river and groundwater determines the distribution of DO and TOC in the interaction zone sediments, thus regulating the changes of the microbial community and the biochemical processes of various elements.

       

    • loading
    • Abraham, W. R., Rohde, M., Bennasar, A., 2014. The Family Caulobacteraceae. In: Rosenberg, E., et al., eds., The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Heidelberg, 179-205. https://doi.org/10.1007/978-3-642-30197-1_259
      Allison, S. D., Martiny, J. B. H., 2008. Resistance, Resilience, and Redundancy in Microbial Communities. Proceedings of the National Academy of Sciences of the United States of America, 105 (Supplement_1): 11512-11519. https://doi.org/10.1073/pnas.0801925105
      Benner, S. G., Smart, E. W., Moore, J. N., 1995. Metal Behavior during Surface-Groundwater Interaction, Silver Bow Creek, Montana. Environmental Science & Technology, 29(7): 1789-1795. https://doi.org/10.1021/es00007a015
      Bott, T. L., Kaplan, L. A., 1985. Bacterial Biomass, Metabolic State, and Activity in Stream Sediments: Relation to Environmental Variables and Multiple Assay Comparisons. Applied and Environmental Microbiology, 50(2): 508-522. https://doi.org/10.1128/aem.50.2.508-522.1985
      Chain, P., Lamerdin, J., Larimer, F., et al., 2003. Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas Europaea. Journal of Bacteriology, 185(9): 2759-2773. https://doi.org/10.1128/jb.185.9.2759-2773.2003
      Chen, J. W., Ge, J. W., Feng, L., et al., 2020. Methane Flux Characteristics and Its Relationship with Soil Microbial Community Composition of Dajiuhu Peatland in Shennongjia. Earth Science, 45(3): 1082-1092(in Chinese with English abstract).
      Coenye, T., 2014. The Family Burkholderiaceae. In: Rosenberg, E., et al., eds., The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Heidelberg, 759-776.
      DeFlaun, M. F., Mayer, L. M., 1983. Relationships between Bacteria and Grain Surfaces in Intertidal Sediments1. Limnology and Oceanography, 28(5): 873-881. https://doi.org/10.4319/lo.1983.28.5.0873
      Febria, C. M., Fulthorpe, R. R., Williams, D. D., 2010. Characterizing Seasonal Changes in Physicochemistry and Bacterial Community Composition in Hyporheic Sediments. Hydrobiologia, 647(1): 113-126. https://doi.org/10.1007/s10750-009-9882-x
      Feris, K. P., Ramsey, P. W., Frazar, C., et al., 2003. Structure and Seasonal Dynamics of Hyporheic Zone Microbial Communities in Free-Stone Rivers of the Western United States. Microbial Ecology, 46(2): 200-215. https://doi.org/10.1007/BF03036883
      Fischer, H., Kloep, F., Wilzcek, S., et al., 2005. A River's Liver-Microbial Processes within the Hyporheic Zone of a Large Lowland River. Biogeochemistry, 76(2): 349-371. https://doi.org/10.1007/s10533-005-6896-y
      Gayraud, S., Philippe, M., 2003. Influence of Bed-Sediment Features on the Interstitial Habitat Available for Macroinvertebrates in 15 French Streams. International Review of Hydrobiology, 88(1): 77-93. https://doi.org/10.1002/iroh.200390007
      Harvey, J. W., Fuller, C. C., 1998. Effect of Enhanced Manganese Oxidation in the Hyporheic Zone on Basin-Scale Geochemical Mass Balance. Water Resources Research, 34(4): 623-636. https://doi.org/10.1029/97wr03606
      Lee, J. H., Fredrickson, J. K., Kukkadapu, R. K., et al., 2012. Microbial Reductive Transformation of Phyllosilicate Fe(III) and U(VI) in Fluvial Subsurface Sediments. Environmental Science & Technology, 46(7): 3721-3730. https://doi.org/10.1021/es204528m
      Lin, X. J., McKinley, J., Resch, C. T., et al., 2012. Spatial and Temporal Dynamics of the Microbial Community in the Hanford Unconfined Aquifer. The ISME Journal, 6(9): 1665-1676. https://doi.org/10.1038/ismej.2012.26
      Liu, S. N., Chui, T. F. M., 2019. Numerical Modelling to Evaluate the Nitrogen Removal Rate in Hyporheic Zone and Its Implications for Stream Management. Hydrological Processes, 33(24): 3084-3097. https://doi.org/10.1002/hyp.13548
      Lowell, J. L., Gordon, N., Engstrom, D., et al., 2009. Habitat Heterogeneity and Associated Microbial Community Structure in a Small-Scale Floodplain Hyporheic Flow Path. Microbial Ecology, 58(3): 611-620. https://doi.org/10.1007/s00248-009-9525-9
      Lu, S. D., Sun, Y. J., Zhao, X., et al., 2016. Sequencing Insights into Microbial Communities in the Water and Sediments of Fenghe River, China. Archives of Environmental Contamination and Toxicology, 71(1): 122-132. https://doi.org/10.1007/s00244-016-0277-5
      Nogaro, G., Datry, T., Mermillod-Blondin, F., et al., 2010. Influence of Streambed Sediment Clogging on Microbial Processes in the Hyporheic Zone. Freshwater Biology, 55(6): 1288-1302. https://doi.org/10.1111/j.1365-2427.2009.02352.x
      Nogaro, G., Datry, T., Mermillod-Blondin, F., et al., 2013. Influence of Hyporheic Zone Characteristics on the Structure and Activity of Microbial Assemblages. Freshwater Biology, 58(12): 2567-2583. https://doi.org/10.1111/fwb.12233
      Olsen, D. A., Townsend, C. R., 2003. Hyporheic Community Composition in a Gravel-Bed Stream: Influence of Vertical Hydrological Exchange, Sediment Structure and Physicochemistry. Freshwater Biology, 48(8): 1363-1378. https://doi.org/10.1046/j.1365-2427.2003.01097.x
      Pascual, J., García-López, M., Bills, G. F., et al., 2015. Pseudomonas Granadensis sp. nov., a New Bacterial Species Isolated from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_2): 625-632. https://doi.org/10.1099/ijs.0.069260-0
      Ren, J., Cheng, J. Q., Yang, J., et al., 2018. A Review on Using Heat as a Tool for Studying Groundwater-Surface Water Interactions. Environmental Earth Sciences, 77(22): 1-13. https://doi.org/10.1007/s12665-018-7959-4
      Sackett, J. D., Shope, C. L., Bruckner, J. C., et al., 2019. Microbial Community Structure and Metabolic Potential of the Hyporheic Zone of a Large Mid-Stream Channel Bar. Geomicrobiology Journal, 36(9): 765-776. https://doi.org/10.1080/01490451.2019.1621964
      Sliva, L., Williams, D. D., 2005. Exploration of Riffle-Scale Interactions between Abiotic Variables and Microbial Assemblages in the Hyporheic Zone. Canadian Journal of Fisheries and Aquatic Sciences, 62(2): 276-290. https://doi.org/10.1139/f04-190
      Stegen, J. C., Johnson, T., Fredrickson, J. K., et al., 2018. Publisher Correction: Influences of Organic Carbon Speciation on Hyporheic Corridor Biogeochemistry and Microbial Ecology. Nature Communications, 9: 1034. https://doi.org/10.1038/s41467-018-02922-9
      Takaichi, S., Maoka, T., Takasaki, K., et al., 2010. Carotenoids of Gemmatimonas Aurantiaca (Gemmatimonadetes): Identification of a Novel Carotenoid, Deoxyoscillol 2-Rhamnoside, and Proposed Biosynthetic Pathway of Oscillol 2, 2'-Dirhamnoside. Microbiology, 156(3): 757-763. https://doi.org/10.1099/mic.0.034249-0
      Wilhelm, R. C., Murphy, S. J. L., Feriancek, N. M., et al., 2020. Paraburkholderia Madseniana sp. nov., a Phenolic Acid-Degrading Bacterium Isolated from Acidic Forest Soil. International Journal of Systematic and Evolutionary Microbiology, 70(3): 2137-2146. https://doi.org/10.1099/ijsem.0.004029
      Xiao, Y. N., Zhong, X. L., Wang, B. C., et al., 2020. Microbial Community Structure and Function and Their Influencing Factors in the Soil of Horqin Area of Tongliao City, Inner Mongolia. Earth Science, 45(3): 1071-1081(in Chinese with English abstract).
      Yuan, X. Z., Luo, G. Y., 2003. A Brief Review for Ecological Studies on Hyporheic Zone of Stream Ecosystem. Acta Ecologica Sinica, 23(5): 956-964(in Chinese).
      谌佳伟, 葛继稳, 冯亮, 等, 2020. 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系. 地球科学, 45(3): 1082-1092. doi: 10.3799/dqkx.2019.289
      肖玉娜, 钟信林, 王北辰, 等, 2020. 通辽科尔沁地区土壤微生物群落结构和功能及其影响因素. 地球科学, 45(3): 1071-1081. doi: 10.3799/dqkx.2019.067
      袁兴中, 罗固源, 2003. 溪流生态系统潜流带生态学研究概述. 生态学报, 23(5): 956-964. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200305016.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(3)

      Article views (477) PDF downloads(52) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return