• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 12
    Dec.  2021
    Turn off MathJax
    Article Contents
    Wang Zaicong, Wang Christina Yan, Wang Xiang, Cheng Huai, Xu Zhe, 2021. Metasomatized Lithospheric Mantle and Gold Mineralization. Earth Science, 46(12): 4197-4229. doi: 10.3799/dqkx.2021.221
    Citation: Wang Zaicong, Wang Christina Yan, Wang Xiang, Cheng Huai, Xu Zhe, 2021. Metasomatized Lithospheric Mantle and Gold Mineralization. Earth Science, 46(12): 4197-4229. doi: 10.3799/dqkx.2021.221

    Metasomatized Lithospheric Mantle and Gold Mineralization

    doi: 10.3799/dqkx.2021.221
    • Received Date: 2021-10-07
    • Publish Date: 2021-12-15
    • Metasomatized lithospheric mantle has been considered to play a key control on the formation of giant gold (Au) deposits. Investigating the extent of Au enrichment in the metasomatized lithospheric mantle source and Au contents of mantle-derived magmas, as well as the mechanisms that promote the transportation and enrichment of Au from mantle source to large Au mineralization, could help us to understand the major controls responsible for the formation of giant hydrothermal Au deposits. Gold is one of the highly chalcophile elements and is also mobile in fluids. The behavior of Au in many processes such as mantle melting/metasomatism, magmatic-hydrothermal evolution, and mineralization is complicated. In this study, it compiles Au contents of mantle rocks and their derivative mafic magmas, and attempts to clarify key factors that control the behavior of Au from mantle, magmatic-hydrothermal processes to gold mineralization. It suggests that the metasomatized lithospheric mantle is an important source for giant hydrothermal Au deposits, but the remarkable Au enrichment of such mantle source is not necessarily required. Metasomatic components, especially volatiles, enable efficient release of Au from the mantle source to hydrous magmas and promote subsequent transportation and enrichment during magmatic-hydrothermal processes through trans-lithospheric fault systems. It thus emphasizes the main role of the metasomatized lithospheric mantle as the source of giant Au deposits and highlight the importance of metasomatic volatiles and related magmatic-hydrothermal processes in Au enrichment rather than anomalously pre-enriched sources or primary magmas. Therefore, understanding the behavior of Au in mantle metasomatism and magmatic-hydrothermal processes during the long-term evolution of the lithospheric mantle is the key to decode the genesis of giant hydrothermal Au deposits.

       

    • loading
    • Ackerman, L., Polák, L., Magna, T., et al., 2019. Highly Siderophile Element Geochemistry and Re-Os Isotopic Systematics of Carbonatites: Insights from Tamil Nadu, India. Earth and Planetary Science Letters, 520: 175-187. https://doi.org/10.1016/j.epsl.2019.05.035
      Alard, O., Griffin, W.L., Lorand, J.P., et al., 2000. Non-Chondritic Distribution of the Highly Siderophile Elements in Mantle Sulphides. Nature, 407: 891-894. https://doi.org/10.1038/35038049
      Alard, O., Lorand, J.P., Reisberg, L., et al., 2011. Volatile-Rich Metasomatism in Montferrier Xenoliths (Southern France): Implications for the Abundances of Chalcophile and Highly Siderophile Elements in the Subcontinental Mantle. Journal of Petrology, 52(10): 2009-2045. https://doi.org/10.1093/petrology/egr038
      Audétat, A., Edmonds, M., 2020. Magmatic-Hydrothermal Fluids. Elements, 16(6): 401-406. https://doi.org/10.2138/gselements.16.6.401
      Audétat, A., Simon, A.C., 2012. Magmatic Controls on Porphyry Copper Genesis. Geology and Genesis. In: Hedenquist, J.W., Harris, M., Camus, F., eds., Geology and Genesis of Major Copper Deposits and Districts of the World. A Tribute to Richard H. Sillitoe. Society of Economic Geologists, 16: 553-572.
      Aulbach, S., Giuliani, A., Fiorentini, M.L., et al., 2021. Siderophile and Chalcophile Elements in Spinels, Sulphides and Native Ni in Strongly Metasomatised Xenoliths from the Bultfontein Kimberlite (South Africa). Lithos, 380-381: 105880. https://doi.org/10.1016/j.lithos.2020.105880
      Aulbach, S., Mungall, J.E., Pearson, D.G., 2016. Distribution and Processing of Highly Siderophile Elements in Cratonic Mantle Lithosphere. Reviews in Mineralogy and Geochemistry, 81(1): 239-304. https://doi.org/10.2138/rmg.2016.81.5
      Aulbach, S., Stachel, T., Seitz, H.M., et al., 2012. Chalcophile and Siderophile Elements in Sulphide Inclusions in Eclogitic Diamonds and Metal Cycling in a Paleoproterozoic Subduction Zone. Geochimica et Cosmochimica Acta, 93: 278-299. https://doi.org/10.1016/j.gca.2012.04.027
      Ballhaus, C., Bockrath, C., Wohlgemuth-Ueberwasser, C., et al., 2006. Fractionation of the Noble Metals by Physical Processes. Contributions to Mineralogy and Petrology, 152(6): 667-684. https://doi.org/10.1007/s00410-006-0126-z
      Barnes, S.J., Mungall, J.E., Maier, W.D., 2015. Platinum Group Elements in Mantle Melts and Mantle Samples. Lithos, 232: 395-417. https://doi.org/10.1016/j.lithos.2015.07.007
      Becker, H., Dale, C.W., 2016. Re-Pt-Os Isotopic and Highly Siderophile Element Behavior in Oceanic and Continental Mantle Tectonites. Reviews in Mineralogy and Geochemistry, 81(1): 369-440. https://doi.org/10.2138/rmg.2016.81.7
      Becker, H., Horan, M.F., Walker, R.J., et al., 2006. Highly Siderophile Element Composition of the Earth's Primitive Upper Mantle: Constraints from New Data on Peridotite Massifs and Xenoliths. Geochimica et Cosmochimica Acta, 70(17): 4528-4550. https://doi.org/10.1016/j.gca.2006.06.004
      Blanks, D.E., Holwell, D.A., Fiorentini, M.L., et al., 2020. Fluxing of Mantle Carbon as a Physical Agent for Metallogenic Fertilization of the Crust. Nature Communications, 11(1): 4342. https://doi.org/10.1038/s41467-020-18157-6
      Botcharnikov, R.E., Holtz, F., Mungall, J.E., et al., 2013. Behavior of Gold in a Magma at Sulfide-Sulfate Transition: Revisited. American Mineralogist, 98(8-9): 1459-1464. https://doi.org/10.2138/am.2013.4502
      Botcharnikov, R.E., Linnen, R.L., Wilke, M., et al., 2011. High Gold Concentrations in Sulphide-Bearing Magma under Oxidizing Conditions. Nature Geoscience, 4(2): 112-115. https://doi.org/10.1038/ngeo1042
      Brenan, J.M., 2015. Se-Te Fractionation by Sulfide-Silicate Melt Partitioning: Implications for the Composition of Mantle-Derived Magmas and Their Melting Residues. Earth and Planetary Science Letters, 422: 45-57. https://doi.org/10.1016/j.epsl.2015.04.011
      Brenan, J.M., Bennett, N.R., Zajacz, Z., 2016. Experimental Results on Fractionation of the Highly Siderophile Elements (HSE) at Variable Pressures and Temperatures during Planetary and Magmatic Differentiation. Reviews in Mineralogy and Geochemistry, 81(1): 1-87. https://doi.org/10.2138/rmg.2016.81.1
      Brügmann, G.E., Arndt, N.T., Hofmann, A.W., et al., 1987. Noble Metal Abundances in Komatiite Suites from Alexo, Ontario and Gorgona Island, Colombia. Geochimica et Cosmochimica Acta, 51(8): 2159-2169. https://doi.org/10.1016/0016-7037(87)90265-1
      Burness, S., Smart, K.A., Tappe, S., et al., 2020. Sulphur-Rich Mantle Metasomatism of Kaapvaal Craton Eclogites and Its Role in Redox-Controlled Platinum Group Element Mobility. Chemical Geology, 542: 119476. https://doi.org/10.1016/j.chemgeo.2020.119476
      Burrows, D.R., Spooner, E.T.C., 1989. Relationships between Archean Gold Quartz Vein-Shear Zone Mineralization and Igneous Intrusions in the Val D'or and Timmins Areas, Abitibi Subprovince, Canada. In: Keays, R.R., Ramsay, W.R.H., Groves, D.I., eds., The Geology of Gold Deposits: The Perspective in 1988. Society of Economic Geologists. McLean, Va, U.S.A. . https://doi.org/
      Cai, R.H., Liu, J.G., Pearson, D.G., et al., 2021. Oxidation of the Deep Big Mantle Wedge by Recycled Carbonates: Constraints from Highly Siderophile Elements and Osmium Isotopes. Geochimica et Cosmochimica Acta, 295: 207-223. https://doi.org/10.1016/j.gca.2020.12.019
      Campbell, I.H., Griffiths, R.W., 1992. The Changing Nature of Mantle Hotspots through Time: Implications for the Chemical Evolution of the Mantle. The Journal of Geology, 100(5): 497-523. https://doi.org/10.1086/629605
      Cawood, P., Fryer, B.J., 1994. Noble Metal Abundances in Backarc Basin Basalts (Lau Basin, Southwest Pacific). Proceedings of the Ocean Drilling Program. Scientific Results, 135: 595-602. https://doi.org/10.2973/odp.proc.sr.135.137.1994
      Chambefort, I., Stefánsson, A., 2020. Fluids in Geothermal Systems. Elements, 16(6): 407-411. https://doi.org/10.2138/gselements.16.6.407
      Chang, J., Audétat, A., Li, J.W., 2021. Tectono-Magmatic Controls on Decratonic Gold Deposits. Contributions to Mineralogy and Petrology, 176(9): 69. https://doi.org/10.1007/s00410-021-01824-2
      Chen, Y., Su, B., Guo, S., 2015. The Dabie-Sulu Orogenic Peridotites: Progress and Key Issues. Science China: Earth Sciences, 58(10): 1679-1699. https://doi.org/10.1007/s11430-015-5148-9
      Chen, Y.J., Pirajno, F., Lai, Y., et al., 2004. Metallogenic Time and Tectonic Setting of the Jiaodong Gold Province, Esatern China. Acta Petrologica Sinica, 20(4): 907-922(in Chinese with English abstract).
      Cheng, H., Wang, Z.C., Chen, K., et al., 2019. High-Precision Determination of Gold Mass Fractions in Geological Reference Materials by Internal Standardisation. Geostandards and Geoanalytical Research, 43(4): 663-680. https://doi.org/10.1111/ggr.12284
      Chiaradia, M., 2014. Copper Enrichment in Arc Magmas Controlled by Overriding Plate Thickness. Nature Geoscience, 7(1): 43-46. https://doi.org/10.1038/ngeo2028
      Chiaradia, M., 2020a. Gold Endowments of Porphyry Deposits Controlled by Precipitation Efficiency. Nature Communications, 11(1): 248. https://doi.org/10.1038/s41467-019-14113-1
      Chiaradia, M., 2020b. How Much Water in Basaltic Melts Parental to Porphyry Copper Deposits? Frontiers in Earth Science, 8: 138. https://doi.org/10.3389/feart.2020.00138
      Choi, E., Fiorentini, M.L., Hughes, H.S.R., et al., 2020. Platinum-Group Element and Au Geochemistry of Late Archean to Proterozoic Calc-Alkaline and Alkaline Magmas in the Yilgarn Craton, Western Australia. Lithos, 374-375: 105716. https://doi.org/10.1016/j.lithos.2020.105716
      Chowdhury, P., Dasgupta, R., 2020. Sulfur Extraction via Carbonated Melts from Sulfide-Bearing Mantle Lithologies: Implications for Deep Sulfur Cycle and Mantle Redox. Geochimica et Cosmochimica Acta, 269: 376-397. https://doi.org/10.1016/j.gca.2019.11.002
      Chowdhury, P., Dasgupta, R., Phelps, P.R., et al., 2021. Partitioning of Chalcophile and Highly Siderophile Elements (HSEs) between Sulfide and Carbonated Melt-Implications for HSE Systematics of Kimberlites, Carbonatites, and Melt Metasomatized Mantle Domains. Geochimica et Cosmochimica Acta, 305: 130-147. https://doi.org/10.1016/j.gca.2021.05.006
      Christie, D.M., Carmichael, I.S.E., Langmuir, C.H., 1986. Oxidation States of Mid-Ocean Ridge Basalt Glasses. Earth and Planetary Science Letters, 79(3-4): 397-411. https://doi.org/10.1016/0012-821x(86)90195-0
      Cooke, D.R., Hollings, P., Walshe, J.L., 2005. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 100(5): 801-818. https://doi.org/10.2113/gsecongeo.100.5.801
      Crossley, R.J., Evans, K.A., Evans, N.J., et al., 2020. Tracing Highly Siderophile Elements through Subduction: Insights from High-Pressure Serpentinites and 'Hybrid' Rocks from Alpine Corsica. Journal of Petrology, 61(2): egaa030. https://doi.org/10.1093/petrology/egaa030
      Day, J.M.D., Pearson, D.G., MacPherson, C.G., et al., 2009. Pyroxenite-Rich Mantle Formed by Recycled Oceanic Lithosphere: Oxygen-Osmium Isotope Evidence from Canary Island Lavas. Geology, 37(6): 555-558. https://doi.org/10.1130/g25613a.1
      Delpech, G., Lorand, J.P., Grégoire, M., et al., 2012. In-Situ Geochemistry of Sulfides in Highly Metasomatized Mantle Xenoliths from Kerguelen, Southern Indian Ocean. Lithos, 154: 296-314. https://doi.org/10.1016/j.lithos.2012.07.018
      Deng, J., Liu, X.F., Wang, Q.F., et al., 2017. Isotopic Characterization and Petrogenetic Modeling of Early Cretaceous Mafic Diking: Lithospheric Extension in the North China Craton, Eastern Asia. GSA Bulletin, 129(11-12): 1379-1407. https://doi.org/10.1130/b31609.1
      Deng, J., Yang, L.Q., Groves, D.I., et al., 2020a. An Integrated Mineral System Model for the Gold Deposits of the Giant Jiaodong Province, Eastern China. Earth-Science Reviews, 208: 103274. https://doi.org/10.1016/j.earscirev.2020.103274
      Deng, J., Wang, Q.F., Gao, L., et al., 2020b. Differential Crustal Rotation and Its Control on Giant Ore Clusters along the Eastern Margin of Tibet. Geology, 49(4): 428-432. https://doi.org/10.1130/g47855.1
      Deng, L. X, ,Liu, Y.S., Zong, K.Q., et al., 2019. Carbonate Metasomatism and Its Identification Characteristics in Mantle Peridotite. Earth Science, 44(4): 1113-1127(in Chinese with English abstract).
      Dijkstra, A.H., Hatch, C., 2018. Mapping a Hidden Terrane Boundary in the Mantle Lithosphere with Lamprophyres. Nature Communications, 9(1): 3770. https://doi.org/10.1038/s41467-018-06253-7
      Ding, S., Dasgupta, R., 2017. The Fate of Sulfide during Decompression Melting of Peridotite-Implications for Sulfur Inventory of the MORB-Source Depleted Upper Mantle. Earth and Planetary Science Letters, 459: 183-195. https://doi.org/10.1016/j.epsl.2016.11.020
      Dongre, A., Tappe, S., 2019. Kimberlite and Carbonatite Dykes within the Premier Diatreme Root (Cullinan Diamond Mine, South Africa): New Insights to Mineralogical-Genetic Classifications and Magma CO2 Degassing. Lithos, 338-339: 155-173. https://doi.org/10.1016/j.lithos.2019.04.020
      Downes, H., 2007. Origin and Significance of Spinel and Garnet Pyroxenites in the Shallow Lithospheric Mantle: Ultramafic Massifs in Orogenic Belts in Western Europe and NW Africa. Lithos, 99(1-2): 1-24. https://doi.org/10.1016/j.lithos.2007.05.006
      D'Souza, R.J., Canil, D., 2018. Effect of Alkalinity on Sulfur Concentration at Sulfide Saturation in Hydrous Basaltic Andesite to Shoshonite Melts at 1 270℃ and 1 GPa. American Mineralogist, 103(7): 1030-1043. https://doi.org/10.2138/am-2018-6404
      Edmonds, M., Mather, T.A., 2017. Volcanic Sulfides and Outgassing. Elements, 13(2): 105-110. https://doi.org/10.2113/gselements.13.2.105
      Evans, K.A., Elburg, M.A., Kamenetsky, V.S., 2012. Oxidation State of Subarc Mantle. Geology, 40(9): 783-786. https://doi.org/10.1130/g33037.1
      Evans, K.A., Tomkins, A.G., Cliff, J., et al., 2014. Insights into Subduction Zone Sulfur Recycling from Isotopic Analysis of Eclogite-Hosted Sulfides. Chemical Geology, 365: 1-19. https://doi.org/10.1016/j.chemgeo.2013.11.026
      Fan, H.R., Hu, F.F., Yang, J.H., et al., 2005. Fluid Evolution and Large-Scale Gold Metallogeny during Mesozoic Tectonic Transition in the Eastern Shandong Province. Acta Petrologica Sinica, 21(5): 1317-1328(in Chinese with English abstract).
      Fan, H.R., Lan, T.G., Li, X.H., et al., 2021. Conditions and Processes Leading to Large-Scale Gold Deposition in the Jiaodong Province, Eastern China. Scientia Sinica (Terrae), 51(9): 1504-1523(in Chinese). doi: 10.1360/SSTe-2020-0335
      Fischer-Gödde, M., Becker, H., Wombacher, F., 2011. Rhodium, Gold and Other Highly Siderophile Elements in Orogenic Peridotites and Peridotite Xenoliths. Chemical Geology, 280(3-4): 365-383. https://doi.org/10.1016/j.chemgeo.2010.11.024
      Foley, S., 1992. Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin of Potassic Alkaline Magmas. Lithos, 28(3-6): 435-453. https://doi.org/10.1016/0024-4937(92)90018-t
      Fonseca, R.O.C., Campbell, I.H., O'Neill, H.S.C., et al., 2009. Solubility of Pt in Sulphide Mattes: Implications for the Genesis of PGE-Rich Horizons in Layered Intrusions. Geochimica et Cosmochimica Acta, 73(19): 5764-5777. https://doi.org/10.1016/j.gca.2009.06.038
      Fonseca, R.O.C., Laurenz, V., Mallmann, G., et al., 2012. New Constraints on the Genesis and Long-Term Stability of Os-Rich Alloys in the Earth's Mantle. Geochimica et Cosmochimica Acta, 87: 227-242. https://doi.org/10.1016/j.gca.2012.04.002
      Fortin, M.A., Riddle, J., Desjardins-Langlais, Y., et al., 2015. The Effect of Water on the Sulfur Concentration at Sulfide Saturation (SCSS) in Natural Melts. Geochimica et Cosmochimica Acta, 160: 100-116. https://doi.org/10.1016/j.gca.2015.03.022
      Foustoukos, D.I., 2019. Hydrothermal Oxidation of Os. Geochimica et Cosmochimica Acta, 255: 237-246. https://doi.org/10.1016/j.gca.2019.04.019
      Fox, N., Cooke, D.R., Harris, A.C., et al., 2015. Porphyry Au-Cu Mineralization Controlled by Reactivation of an Arc-Transverse Volcanosedimentary Subbasin. Geology, 43(9): 811-814. https://doi.org/10.1130/g36992.1
      Frank, M.R., Candela, P.A., Piccoli, P.M., et al., 2002. Gold Solubility, Speciation, and Partitioning as a Function of HCl in the Brine-Silicate Melt-Metallic Gold System at 800℃ and 100 MPa. Geochimica et Cosmochimica Acta, 66(21): 3719-3732. https://doi.org/10.1016/s0016-7037(01)00900-0
      Frank, M.R., Simon, A.C., Pettke, T., et al., 2011. Gold and Copper Partitioning in Magmatic-Hydrothermal Systems at 800℃ and 100 MPa. Geochimica et Cosmochimica Acta, 75(9): 2470-2482. https://doi.org/10.1016/j.gca.2011.02.012
      Gan, T., Huang, Z.L., 2017. Platinum-Group Element and Re-Os Geochemistry of Lamprophyres in the Zhenyuan Gold Deposit, Yunnan Province, China: Implications for Petrogenesis and Mantle Evolution. Lithos, 282-283: 228-239. https://doi.org/10.1016/j.lithos.2017.03.018
      Giuliani, A., Phillips, D., Fiorentini, M.L., et al., 2013. Mantle Oddities: A Sulphate Fluid Preserved in a MARID Xenolith from the Bultfontein Kimberlite (Kimberley, South Africa). Earth and Planetary Science Letters, 376: 74-86. https://doi.org/10.1016/j.epsl.2013.06.028
      Goldfarb, R.J., Groves, D.I., Gardoll, S., 2001. Orogenic Gold and Geologic Time: A Global Synthesis. Ore Geology Reviews, 18(1-2): 1-75. https://doi.org/10.1016/s0169-1368(01)00016-6
      Goldfarb, R.J., Santosh, M., 2014. The Dilemma of the Jiaodong Gold Deposits: Are They Unique? Geoscience Frontiers, 5(2): 139-153. https://doi.org/10.1016/j.gsf.2013.11.001
      González-Jiménez, J.M., Tassara, S., Schettino, E., et al., 2020. Mineralogy of the HSE in the Subcontinental Lithospheric Mantle: An Interpretive Review. Lithos, 372-373: 105681. https://doi.org/10.1016/j.lithos.2020.105681
      Griffin, W.L., Begg, G.C., O'Reilly, S.Y., 2013. Continental-Root Control on the Genesis of Magmatic Ore Deposits. Nature Geoscience, 6(11): 905-910. https://doi.org/10.1038/ngeo1954
      Griffin, W.L., O'Reilly, S.Y., Afonso, J.C., et al., 2008. The Composition and Evolution of Lithospheric Mantle: A Re-Evaluation and Its Tectonic Implications. Journal of Petrology, 50(7): 1185-1204. https://doi.org/10.1093/petrology/egn033
      Grondahl, C., Zajacz, Z., 2017. Magmatic Controls on the Genesis of Porphyry Cu-Mo-Au Deposits: The Bingham Canyon Example. Earth and Planetary Science Letters, 480: 53-65. https://doi.org/10.1016/j.epsl.2017.09.036
      Groves, D.I., Santosh, M., Deng, J., et al., 2020. A Holistic Model for the Origin of Orogenic Gold Deposits and Its Implications for Exploration. Mineralium Deposita, 55(2): 275-292. https://doi.org/10.1007/s00126-019-00877-5
      Groves, D.I., Santosh, M., Zhang, L., et al., 2021. Subduction: The Recycling Engine Room for Global Metallogeny. Ore Geology Reviews, 134: 104130. https://doi.org/10.1016/j.oregeorev.2021.104130
      Groves, D.I., Zhang, L., Santosh, M., 2019. Subduction, Mantle Metasomatism, and Gold: A Dynamic and Genetic Conjunction. GSA Bulletin, 132(7-8): 1419-1426. https://doi.org/10.1130/b35379.1
      Hanley, J.J., Pettke, T., Mungall, J.E., et al., 2005. The Solubility of Platinum and Gold in NaCl Brines at 1.5 kbar, 600 to 800℃: A Laser Ablation ICP-MS Pilot Study of Synthetic Fluid Inclusions. Geochimica et Cosmochimica Acta, 69(10): 2593-2611. https://doi.org/10.1016/j.gca.2004.11.005
      Hao, H.D., Campbell, I.H., Arculus, R.J., et al., 2021. Using Precious Metal Probes to Quantify Mid-Ocean Ridge Magmatic Processes. Earth and Planetary Science Letters, 553: 116603. https://doi.org/10.1016/j.epsl.2020.116603
      Harte, B., Winterburn, P.A., Gurney, J.J., 1987. Metasomatic and Enrichment Phenomena in Garnet Peridotite Facies Mantle Xenoliths from the Matsoku Kimberlite, Lesotho. In: Menzies, H.C., ed., Mantle Metasomatism. Academic Press, London, 145-249.
      Harvey, J., Warren, J.M., Shirey, S.B., 2016. Mantle Sulfides and Their Role in Re-Os and Pb Isotope Geochronology. Reviews in Mineralogy and Geochemistry, 81(1): 579-649. https://doi.org/10.2138/rmg.2016.81.10
      Hayden, L.A., Watson, E.B., 2007. A Diffusion Mechanism for Core-Mantle Interaction. Nature, 450: 709-711. https://doi.org/10.1038/nature06380
      He, D.T., Liu, Y.S., Moynier, F., et al., 2020. Platinum Group Element Mobilization in the Mantle Enhanced by Recycled Sedimentary Carbonate. Earth and Planetary Science Letters, 541: 116262. https://doi.org/10.1016/j.epsl.2020.116262
      Heinrich, C.A., 2007. Fluid-Fluid Interactions in Magmatic-Hydrothermal Ore Formation. Reviews in Mineralogy and Geochemistry, 65(1): 363-387. https://doi.org/10.2138/rmg.2007.65.11
      Heinson, G.S., Direen, N.G., Gill, R.M., 2006. Magnetotelluric Evidence for a Deep-Crustal Mineralizing System beneath the Olympic Dam Iron Oxide Copper-Gold Deposit, Southern Australia. Geology, 34(7): 573-576. https://doi.org/10.1130/g22222.1
      Hofmann, A., Pitcairn, I., Wilson, A., 2017. Gold Mobility during Palaeoarchaean Submarine Alteration. Earth and Planetary Science Letters, 462: 47-54. https://doi.org/10.1016/j.epsl.2017.01.008
      Hofmann, A.W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385: 219-229. https://doi.org/10.1038/385219a0
      Holwell, D.A., Fiorentini, M., McDonald, I., et al., 2019. A Metasomatized Lithospheric Mantle Control on the Metallogenic Signature of Post-Subduction Magmatism. Nature Communications, 10: 3511. https://doi.org/10.1038/s41467-019-11065-4
      Hong, L.B., Xu, Y.G., Zhang, L., et al., 2020. Oxidized Late Mesozoic Subcontinental Lithospheric Mantle beneath the Eastern North China Craton: A Clue to Understanding Cratonic Destruction. Gondwana Research, 81: 230-239. https://doi.org/10.1016/j.gr.2019.11.012
      Hou, Q., Yang, X.Y., Tang, J., et al., 2021. First Discovery of Gold in Kimberlite in Xuzhou, Northern Jiangsu Province. Solid Earth Sciences, 6(2): 246-248. https://doi.org/10.1016/j.sesci.2020.08.001
      Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006. Metallogenesis in Tibetan Collisional Orogenic Belt: Ⅲ. Mineralization in Post-Collisional Extension Setting. Mineral Deposits, 25(6): 629-651(in Chinese with English abstract).
      Hou, Z.Q., Zheng, Y.C., Geng, Y.S., 2015. Metallic Refertilization of Lithosphere along Cratonic Edges and Its Control on Au, Mo and REE Ore Systems. Mineral Deposits, 34(4): 641-674(in Chinese with English abstract).
      Hronsky, J.M.A., Groves, D.I., Loucks, R.R., et al., 2012. A Unified Model for Gold Mineralisation in Accretionary Orogens and Implications for Regional-Scale Exploration Targeting Methods. Mineralium Deposita, 47(4): 339-358. https://doi.org/10.1007/s00126-012-0402-y
      Jégo, S., Nakamura, M., Kimura, J.I., et al., 2016. Is Gold Solubility Subject to Pressure Variations in Ascending Arc Magmas? Geochimica et Cosmochimica Acta, 188: 224-243. https://doi.org/10.1016/j.gca.2016.05.034
      Jégo, S., Pichavant, M., 2012. Gold Solubility in Arc Magmas: Experimental Determination of the Effect of Sulfur at 1 000℃ and 0.4 GPa. Geochimica et Cosmochimica Acta, 84: 560-592. https://doi.org/10.1016/j.gca.2012.01.027
      Jégo, S., Pichavant, M., Mavrogenes, J.A., 2010. Controls on Gold Solubility in Arc Magmas: An Experimental Study at 1 000℃ and 4 kbar. Geochimica et Cosmochimica Acta, 74(7): 2165-2189. https://doi.org/10.1016/j.gca.2010.01.012
      Jenner, F.E., Arculus, R.J., Mavrogenes, J.A., et al., 2012. Chalcophile Element Systematics in Volcanic Glasses from the Northwestern Lau Basin. Geochemistry, Geophysics, Geosystems, 13(6): Q06014. https://doi.org/10.1029/2012gc004088
      Jenner, F.E., O'Neill, H.S.C., 2012. Analysis of 60 Elements in 616 Ocean Floor Basaltic Glasses. Geochemistry, Geophysics, Geosystems, 13(2): Q02005. https://doi.org/10.1029/2011gc004009
      Jenner, F.E., O'Neill, H.S.C., Arculus, R.J., et al., 2010. The Magnetite Crisis in the Evolution of Arc-Related Magmas and the Initial Concentration of Au, Ag and Cu. Journal of Petrology, 51(12): 2445-2464. https://doi.org/10.1093/petrology/egq063
      Jugo, P.J., 2009. Sulfur Content at Sulfide Saturation in Oxidized Magmas. Geology, 37(5): 415-418. https://doi.org/10.1130/g25527a.1
      Keays, R.R., 1995. The Role of Komatiitic and Picritic Magmatism and S-Saturation in the Formation of Ore Deposits. Lithos, 34(1-3): 1-18. https://doi.org/10.1016/0024-4937(95)90003-9
      Kelley, K.A., Cottrell, E., 2009. Water and the Oxidation State of Subduction Zone Magmas. Science, 325(5940): 605-607. https://doi.org/10.1126/science.1174156
      Kiseeva, E.S., Fonseca, R.O.C., Smythe, D.J., 2017. Chalcophile Elements and Sulfides in the Upper Mantle. Elements, 13(2): 111-116. https://doi.org/10.2113/gselements.13.2.111
      Le Roux, V., Bodinier, J.L., Tommasi, A., et al., 2007. The Lherz Spinel Lherzolite: Refertilized rather than Pristine Mantle. Earth and Planetary Science Letters, 259(3/4): 599-612. https://doi.org/10.1016/j.epsl.2007.05.026
      Lee, C.T.A., Luffi, P., Chin, E.J., et al., 2012. Copper Systematics in Arc Magmas and Implications for Crust-Mantle Differentiation. Science, 336(6077): 64-68. https://doi.org/10.1126/science.1217313
      Li, C., Yan, J., 2021. Geochemical, Mineralogy, and Sr-Nd-Pb Isotopic Compositions of the Gold-Related Lamprophyre in the Bengbu-Wuhe Area, Southeastern North China Craton: Implications for Gold Mineralization. Ore Geology Reviews, 132: 104050. https://doi.org/10.1016/j.oregeorev.2021.104050
      Li, J.L., Schwarzenbach, E.M., John, T., et al., 2020. Uncovering and Quantifying the Subduction Zone Sulfur Cycle from the Slab Perspective. Nature Communications, 11(1): 514. https://doi.org/10.1038/s41467-019-14110-4
      Li, L., Santosh, M., Li, S.R., 2015. The 'Jiaodong Type' Gold Deposits: Characteristics, Origin and Prospecting. Ore Geology Reviews, 65: 589-611. https://doi.org/10.1016/j.oregeorev.2014.06.021
      Li, X.H., Sun, X.S., 1995. Lamprophyre and Gold Mineralization: An Assessment of Observations and Theories. Geological Review, 41(3): 252-260(in Chinese with English abstract).
      Li, Y., Audétat, A., 2012. Partitioning of V, Mn, Co, Ni, Cu, Zn, as, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between Sulfide Phases and Hydrous Basanite Melt at Upper Mantle Conditions. Earth and Planetary Science Letters, 355-356: 327-340. https://doi.org/10.1016/j.epsl.2012.08.008
      Li, Y., Audétat, A., 2013. Gold Solubility and Partitioning between Sulfide Liquid, Monosulfide Solid Solution and Hydrous Mantle Melts: Implications for the Formation of Au-Rich Magmas and Crust-Mantle Differentiation. Geochimica et Cosmochimica Acta, 118: 247-262. https://doi.org/10.1016/j.gca.2013.05.014
      Li, Y., Feng, L., Kiseeva, E.S., et al., 2019a. An Essential Role for Sulfur in Sulfide-Silicate Melt Partitioning of Gold and Magmatic Gold Transport at Subduction Settings. Earth and Planetary Science Letters, 528: 115850. https://doi.org/10.1016/j.epsl.2019.115850
      Li, H.J., Wang, Q.F., Groves, D.I., et al., 2019b. Alteration of Eocene Lamprophyres in the Zhenyuan Orogenic Gold Deposit, Yunnan Province, China: Composition and Evolution of Ore Fluids. Ore Geology Reviews, 107: 1068-1083. https://doi.org/10.1016/j.oregeorev.2019.03.032
      Liang, Y.Y., Deng, J., Liu, X.F., et al., 2019. Water Contents of Early Cretaceous Mafic Dikes in the Jiaodong Peninsula, Eastern North China Craton: Insights into an Enriched Lithospheric Mantle Source Metasomatized by Paleo-Pacific Plate Subduction-Related Fluids. The Journal of Geology, 127(3): 343-362. https://doi.org/10.1086/702648
      Liu, J.G., Cai, R.H., Pearson, D.G., et al., 2019. Thinning and Destruction of the Lithospheric Mantle Root beneath the North China Craton: A Review. Earth-Science Reviews, 196: 102873. https://doi.org/10.1016/j.earscirev.2019.05.017
      Liu, X.C., Xu, T., Xiong, X.L., et al., 2021. Gold Solubility in Silicate Melts and Fluids: Advances from High-Pressure and High-Temperature Experiments. Scientia Sinica (Terrae), 51(9): 1477-1488(in Chinese). doi: 10.1360/SSTe-2020-0295
      Liu, Y.H., Wang, Z.C., Xue, D.S., et al., 2020. An Improved Analytical Protocol for the Determination of Sub-Nanogram Gold in 1-2 g Rock Samples Using GFAAS after Polyurethane Foam Pretreatment. Atomic Spectroscopy, 41(3): 131-140. https://doi.org/10.46770/as.2020.03.006
      Lorand, J.P., Alard, O., Luguet, A., 2010. Platinum-Group Element Micronuggets and Refertilization Process in Lherz Orogenic Peridotite (Northeastern Pyrenees, France). Earth and Planetary Science Letters, 289(1-2): 298-310. https://doi.org/10.1016/j.epsl.2009.11.017
      Lorand, J.P., Luguet, A., 2016. Chalcophile and Siderophile Elements in Mantle Rocks: Trace Elements Controlled by Trace Minerals. Reviews in Mineralogy and Geochemistry, 81(1): 441-488. https://doi.org/10.2138/rmg.2016.81.08
      Lorand, J.P., Luguet, A., Alard, O., 2013. Platinum-Group Element Systematics and Petrogenetic Processing of the Continental Upper Mantle: A Review. Lithos, 164-167: 2-21. https://doi.org/10.1016/j.lithos.2012.08.017
      Lorand, J.P., Pont, S., Guttierez-Narbona, R., et al., 2021. Chalcophile-Siderophile Element Systematics and Regional-Scale Magmatic Percolation in the Ronda Peridotite Massif (Spain). Lithos, 380-381: 105901. https://doi.org/10.1016/j.lithos.2020.105901
      Luhr, J.F., 1997. Extensional Tectonics and the Diverse Primitive Volcanic Rocks in the Western Mexican Volcanic Belt. The Canadian Mineralogist, 35(2): 473-500.
      Ma, L., Jiang, S.Y., Hofmann, A.W., et al., 2014. Lithospheric and Asthenospheric Sources of Lamprophyres in the Jiaodong Peninsula: A Consequence of Rapid Lithospheric Thinning beneath the North China Craton? Geochimica et Cosmochimica Acta, 124: 250-271. https://doi.org/10.1016/j.gca.2013.09.035
      Maier, W.D., Barnes, S.J., Campbell, I.H., et al., 2009. Progressive Mixing of Meteoritic Veneer into the Early Earth's Deep Mantle. Nature, 460: 620-623. https://doi.org/10.1038/nature08205
      Maier, W.D., Peltonen, P., McDonald, I., et al., 2012. The Concentration of Platinum-Group Elements and Gold in Southern African and Karelian Kimberlite-Hosted Mantle Xenoliths: Implications for the Noble Metal Content of the Earth's Mantle. Chemical Geology, 302-303: 119-135. https://doi.org/10.1016/j.chemgeo.2011.06.014
      Mair, J.L., Farmer, G.L., Groves, D.I., et al., 2011. Petrogenesis of Postcollisional Magmatism at Scheelite Dome, Yukon, Canada: Evidence for a Lithospheric Mantle Source for Magmas Associated with Intrusion-Related Gold Systems. Economic Geology, 106(3): 451-480. https://doi.org/10.2113/econgeo.106.3.451
      Mao, J.W., Wang, Y.T., Li, H.M., et al., 2008. The Relationship of Mantle-Derived Fluids to Gold Metallogenesis in the Jiaodong Peninsula: Evidence from D-O-C-S Isotope Systematics. Ore Geology Reviews, 33(3-4): 361-381. https://doi.org/10.1016/j.oregeorev.2007.01.003
      Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004. Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China. Earth Science Frontiers, 11(1): 45-55(in Chinese with English abstract).
      Mao, J.W., Xie, G.Q., Zhang, Z.H., et al., 2005. Mesozoic Large-Scale Metallogenic Pulses in North China and Corresponding Geodynamic Settings. Acta Petrologica Sinica, 21(1): 171-190(in Chinese with English abstract).
      Maria, A.H., Luhr, J.F., 2008. Lamprophyres, Basanites, and Basalts of the Western Mexican Volcanic Belt: Volatile Contents and a Vein-Wallrock Melting Relationship. Journal of Petrology, 49(12): 2123-2156. https://doi.org/10.1093/petrology/egn060
      Mathez, E.A., 1976. Sulfur Solubility and Magmatic Sulfides in Submarine Basalt Glass. Journal of Geophysical Research, 81(23): 4269-4276. https://doi.org/10.1029/jb081i023p04269
      Mavrogenes, J.A., O'Neill, H.S.C., 1999. The Relative Effects of Pressure, Temperature and Oxygen Fugacity on the Solubility of Sulfide in Mafic Magmas. Geochimica et Cosmochimica Acta, 63(7-8): 1173-1180. https://doi.org/10.1016/s0016-7037(98)00289-0
      McDonough, W.F., Sun, S.S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      McInnes, B.I.A., McBride, J.S., Evans, N.J., et al., 1999. Osmium Isotope Constraints on Ore Metal Recycling in Subduction Zones. Science, 286(5439): 512-516. https://doi.org/10.1126/science.286.5439.512
      McLeish, D.F., Williams-Jones, A.E., Vasyukova, O.V., et al., 2021. Colloidal Transport and Flocculation are the Cause of the Hyperenrichment of Gold in Nature. Proceedings of the National Academy of Sciences, 118(20): e2100689118. https://doi.org/10.1073/pnas.2100689118
      Mikucki, E.J., 1998. Hydrothermal Transport and Depositional Processes in Archean Lode-Gold Systems: A Review. Ore Geology Reviews, 13(1-5): 307-321. https://doi.org/10.1016/s0169-1368(97)00025-5
      Mills, S.E., Tomkins, A.G., Weinberg, R.F., et al., 2015. Anomalously Silver-Rich Vein-Hosted Mineralisation in Disseminated-Style Gold Deposits, Jiaodong Gold District, China. Ore Geology Reviews, 68: 127-141. https://doi.org/10.1016/j.oregeorev.2014.12.014
      Moncada, D., Rimstidt, J.D., Bodnar, R.J., 2019. How to Form a Giant Epithermal Precious Metal Deposit: Relationships between Fluid Flow Rate, Metal Concentration of Ore-Forming Fluids, Duration of the Ore-Forming Process, and Ore Grade and Tonnage. Ore Geology Reviews, 113: 103066. https://doi.org/10.1016/j.oregeorev.2019.103066
      Mueller, A.G., Hall, G.C., Nemchin, A.A., et al., 2007. Archean High-Mg Monzodiorite-Syenite, Epidote Skarn, and Biotite-Sericite Gold Lodes in the Granny Smith-Wallaby District, Australia: U-Pb and Re-Os Chronometry of Two Intrusion-Related Hydrothermal Systems. Mineralium Deposita, 43(3): 337-362. https://doi.org/10.1007/s00126-007-0164-0
      Müller, D., Groves, D.I., 2019a. Direct Associations between Potassic Igneous Rocks and Copper-Gold Deposits on Craton Margins. In: Müller, D., Groves, D.I., eds., Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Mineral Resource Reviews. Springer, Cham, 255-277. https://doi.org/10.1007/978-3-319-92979-8_7
      Müller, D., Groves, D.I., 2019b. Indirect Associations between Lamprophyres and Gold-Copper Deposits. In: Müller, D., Groves, D.I., eds., Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Mineral Resource Reviews. Springer, Cham, 279-306. https://doi.org/10.1007/978-3-319-92979-8_8
      Mungall, J.E., 2002. Roasting the Mantle: Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits. Geology, 30(10): 915. https://doi.org/10.1130/0091-7613(2002)0300915:rtmsma>2.0.co;2 doi: 10.1130/0091-7613(2002)0300915:rtmsma>2.0.co;2
      Mungall, J.E., Brenan, J.M., 2014. Partitioning of Platinum-Group Elements and Au between Sulfide Liquid and Basalt and the Origins of Mantle-Crust Fractionation of the Chalcophile Elements. Geochimica et Cosmochimica Acta, 125: 265-289. https://doi.org/10.1016/j.gca.2013.10.002
      Muntean, J.L., Cline, J.S., Simon, A.C., et al., 2011. Magmatic-Hydrothermal Origin of Nevada's Carlin-Type Gold Deposits. Nature Geoscience, 4(2): 122-127. https://doi.org/10.1038/ngeo1064
      O'Reilly, S.Y., Griffin, W.L., 2013. Mantle Metasomatism. In: Harlov, D., Austrheim, H., eds., Metasomatism and the Chemical Transformation of Rock. Springer, Berlin, 471-533. https://doi.org/10.1007/978-3-642-28394-9_12
      Park, J.W., Campbell, I.H., Arculus, R.J., 2013. Platinum-Alloy and Sulfur Saturation in an Arc-Related Basalt to Rhyolite Suite: Evidence from the Pual Ridge Lavas, the Eastern Manus Basin. Geochimica et Cosmochimica Acta, 101: 76-95. https://doi.org/10.1016/j.gca.2012.10.001
      Park, J.W., Campbell, I.H., Chiaradia, M., et al., 2021. Crustal Magmatic Controls on the Formation of Porphyry Copper Deposits. Nature Reviews Earth & Environment, 2(8): 542-557. https://doi.org/10.1038/s43017-021-00182-8
      Park, J.W., Campbell, I.H., Kim, J., et al., 2015. The Role of Late Sulfide Saturation in the Formation of a Cu- and Au-Rich Magma: Insights from the Platinum Group Element Geochemistry of Niuatahi-Motutahi Lavas, Tonga Rear Arc. Journal of Petrology, 56(1): 59-81. https://doi.org/10.1093/petrology/egu071
      Patten, C., Barnes, S.J., Mathez, E.A., et al., 2013. Partition Coefficients of Chalcophile Elements between Sulfide and Silicate Melts and the Early Crystallization History of Sulfide Liquid: LA-ICP-MS Analysis of MORB Sulfide Droplets. Chemical Geology, 358: 170-188. https://doi.org/10.1016/j.chemgeo.2013.08.040
      Peach, C.L., Mathez, E.A., Keays, R.R., 1990. Sulfide Melt-Silicate Melt Distribution Coefficients for Noble Metals and Other Chalcophile Elements as Deduced from MORB: Implications for Partial Melting. Geochimica et Cosmochimica Acta, 54(12): 3379-3389. https://doi.org/10.1016/0016-7037(90)90292-s
      Piquer, J., Sanchez-Alfaro, P., Pérez-Flores, P., 2021. A New Model for the Optimal Structural Context for Giant Porphyry Copper Deposit Formation. Geology, 49(5): 597-601. https://doi.org/10.1130/g48287.1
      Pitcairn, I.K., 2013. Background Concentrations of Gold in Different Rock Types. Applied Earth Science, 120(1): 31-38. https://doi.org/10.1179/1743275811y.0000000021
      Pitcairn, I.K., Leventis, N., Beaudoin, G., et al., 2021. A Metasedimentary Source of Gold in Archean Orogenic Gold Deposits. Geology, 49(7): 862-866. https://doi.org/10.1130/g48587.1
      Pitcairn, I.K., Warwick, P.E., Milton, J.A., et al., 2006. Method for Ultra-Low-Level Analysis of Gold in Rocks. Analytical Chemistry, 78(4): 1290-1295. https://doi.org/10.1021/ac051861z
      Pokrovski, G.S., Akinfiev, N.N., Borisova, A.Y., et al., 2014. Gold Speciation and Transport in Geological Fluids: Insights from Experiments and Physical-Chemical Modelling. Geological Society, London, Special Publications, 402(1): 9-70. https://doi.org/10.1144/sp402.4
      Pokrovski, G.S., Borisova, A.Y., Bychkov, A.Y., 2013. Speciation and Transport of Metals and Metalloids in Geological Vapors. Reviews in Mineralogy and Geochemistry, 76(1): 165-218. https://doi.org/10.2138/rmg.2013.76.6
      Pokrovski, G.S., Escoda, C., Blanchard, M., et al., 2021. An Arsenic-Driven Pump for Invisible Gold in Hydrothermal Systems. Geochemical Perspectives Letters, 17: 39-44. https://doi.org/10.7185/geochemlet.2112
      Pokrovski, G.S., Kokh, M.A., Guillaume, D., et al., 2015. Sulfur Radical Species Form Gold Deposits on Earth. Proceedings of the National Academy of Sciences of the United States of America, 112(44): 13484-13489. https://doi.org/10.1073/pnas.1506378112
      Redwood, S.D., Rice, C.M., 1997. Petrogenesis of Miocene Basic Shoshonitic Lavas in the Bolivian Andes and Implications for Hydrothermal Gold, Silver and Tin Deposits. Journal of South American Earth Sciences, 10(3-4): 203-221. https://doi.org/10.1016/s0895-9811(97)00024-2
      Rehkämper, M., Halliday, A.N., Fitton, J.G., et al., 1999. Ir, Ru, Pt, and Pd in Basalts and Komatiites: New Constraints for the Geochemical Behavior of the Platinum-Group Elements in the Mantle. Geochimica et Cosmochimica Acta, 63(22): 3915-3934. https://doi.org/10.1016/s0016-7037(99)00219-7
      Rezeau, H., Jagoutz, O., 2020. The Importance of H2O in Arc Magmas for the Formation of Porphyry Cu Deposits. Ore Geology Reviews, 126: 103744. https://doi.org/10.1016/j.oregeorev.2020.103744
      Richards, J.P., 2003. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Economic Geology, 98(8): 1515-1533. http://doi.org/10.2113/gsecongeo.98.8.1515
      Richards, J.P., 2009. Postsubduction Porphyry Cu-Au and Epithermal Au Deposits: Products of Remelting of Subduction-Modified Lithosphere. Geology, 37(3): 247-250. https://doi.org/10.1130/g25451a.1
      Richards, J.P., 2013. Giant Ore Deposits Formed by Optimal Alignments and Combinations of Geological Processes. Nature Geoscience, 6(11): 911-916. https://doi.org/10.1038/ngeo1920
      Richards, J.P., 2015. Tectonic, Magmatic, and Metallogenic Evolution of the Tethyan Orogen: From Subduction to Collision. Ore Geology Reviews, 70: 323-345. https://doi.org/10.1016/j.oregeorev.2014.11.009
      Rielli, A., Tomkins, A.G., Nebel, O., et al., 2018. Sulfur Isotope and PGE Systematics of Metasomatised Mantle Wedge. Earth and Planetary Science Letters, 497: 181-192. https://doi.org/10.1016/j.epsl.2018.06.012
      Rock, N.M.S., 1991. Nature, Origin and Evolution of Lamprophyre Melts. In: Rock, N.M.S., ed., Lamprophyres, Boston, MA, Springer US, 125-149. https://doi.org/10.1007/978-1-4615-3924-7_8
      Rock, N.M.S., Groves, D.I., 1988. Do Lamprophyres Carry Gold as Well as Diamonds? Nature, 332: 253-255. https://doi.org/10.1038/332253a0
      Salters, V.J.M., Stracke, A., 2004. Composition of the Depleted Mantle. Geochemistry, Geophysics, Geosystems, 5(5). https://doi.org/10.1029/2003gc000597
      Sarah-Jane, B., 2016. Chalcophile Elements. In: White, W.M., ed., Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_220-1
      Saunders, J.E., Pearson, N.J., O'Reilly, S.Y., et al., 2015. Sulfide Metasomatism and the Mobility of Gold in the Lithospheric Mantle. Chemical Geology, 410: 149-161. https://doi.org/10.1016/j.chemgeo.2015.06.016
      Saunders, J.E., Pearson, N.J., O'Reilly, S.Y., et al., 2016. Gold in the Mantle: The Role of Pyroxenites. Lithos, 244: 205-217. https://doi.org/10.1016/j.lithos.2015.12.008
      Saunders, J.E., Pearson, N.J., O'Reilly, S.Y., et al., 2018. Gold in the Mantle: A Global Assessment of Abundance and Redistribution Processes. Lithos, 322: 376-391. https://doi.org/10.1016/j.lithos.2018.10.022
      Shen, J., Li, W.Y., Li, S.G., et al., 2019. Crust-Mantle Interactions at Different Depths in the Subduction Channel: Magnesium Isotope Records of Ultramafic Rocks from the Mantle Wedges. Earth Science, 44(12): 4102-4111(in Chinese with English abstract).
      Secchiari, A., Gleissner, P., Li, C.H., et al., 2020. Highly Siderophile and Chalcophile Element Behaviour in Abyssal-Type and Supra-Subduction Zone Mantle: New Insights from the New Caledonia Ophiolite. Lithos, 354-355: 105338. https://doi.org/10.1016/j.lithos.2019.105338
      Selvaraja, V., Caruso, S., Fiorentini, M.L., et al., 2017. Atmospheric Sulfur in the Orogenic Gold Deposits of the Archean Yilgarn Craton, Australia. Geology, 45(8): 691-694. https://doi.org/10.1130/g39018.1
      Seo, J.H., Guillong, M., Heinrich, C.A., 2009. The Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits. Earth and Planetary Science Letters, 282(1): 323-328. https://doi.org/10.1016/j.epsl.2009.03.036
      Sillitoe, R.H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
      Simmons, S.F., Brown, K.L., 2006. Gold in Magmatic Hydrothermal Solutions and the Rapid Formation of a Giant Ore Deposit. Science, 314(5797): 288-291. https://doi.org/10.1126/science.1132866
      Simmons, S.F., Brown, K.L., Tutolo, B.M., 2016. Hydrothermal Transport of Ag, Au, Cu, Pb, Te, Zn, and Other Metals and Metalloids in New Zealand Geothermal Systems: Spatial Patterns, Fluid-Mineral Equilibria, and Implications for Epithermal Mineralization. Economic Geology, 111(3): 589-618. https://doi.org/10.2113/econgeo.111.3.589
      Simon, A.C., Frank, M.R., Pettke, T., et al., 2005. Gold Partitioning in Melt-Vapor-Brine Systems. Geochimica et Cosmochimica Acta, 69(13): 3321-3335. https://doi.org/10.1016/j.gca.2005.01.028
      Simon, A.C., Pettke, T., Candela, P.A., et al., 2007. The Partitioning Behavior of As and Au in S-Free and S-Bearing Magmatic Assemblages. Geochimica et Cosmochimica Acta, 71(7): 1764-1782. https://doi.org/10.1016/j.gca.2007.01.005
      Sisson, T.W., 2003. Native Gold in a Hawaiian Alkalic Magma. Economic Geology, 98(3): 643-648. https://doi.org/10.2113/gsecongeo.98.3.643
      Smythe, D.J., Wood, B.J., Kiseeva, E.S., 2017. The S Content of Silicate Melts at Sulfide Saturation: New Experiments and a Model Incorporating the Effects of Sulfide Composition. American Mineralogist, 102(4): 795-803. https://doi.org/10.2138/am-2017-5800ccby
      Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., et al., 2005. An Olivine-Free Mantle Source of Hawaiian Shield Basalts. Nature, 434: 590-597. https://doi.org/10.1038/nature03411
      Song, M.C., Cui, S.X., Jiang, H.L., 2011. Metallogenic Structural System for Jiaojia Gold Field and Jiaoxibei Gold Deposits Concentrated Areas in Shandong Province, China. Geological Bulletin of China, 30(4): 573-578(in Chinese with English abstract).
      Song, M.C., Song, Y.X., Ding, Z.J., et al., 2018. Jiaodong Gold Deposits: Essential Characteristics and Major Controversy. Gold Science and Technology, 26(4): 406-422(in Chinese with English abstract).
      Sullivan, N.A., Zajacz, Z., Brenan, J.M., 2018. The Solubility of Pd and Au in Hydrous Intermediate Silicate Melts: The Effect of Oxygen Fugacity and the Addition of Cl and S. Geochimica et Cosmochimica Acta, 231: 15-29. https://doi.org/10.1016/j.gca.2018.03.019
      Sun, W., Arculus, R.J., Kamenetsky, V.S., et al., 2004. Release of Gold-Bearing Fluids in Convergent Margin Magmas Prompted by Magnetite Crystallization. Nature, 431: 975-978. https://doi.org/10.1038/nature02972
      Sun, W.D., Huang, R.F., Li, H., et al., 2015. Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews, 65: 97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004
      Tan, J., Wei, J.H., He, H.Y., et al., 2018. Noble Gases in Pyrites from the Guocheng-Liaoshang Gold Belt in the Jiaodong Province: Evidence for a Mantle Source of Gold. Chemical Geology, 480: 105-115. https://doi.org/10.1016/j.chemgeo.2017.09.027
      Tassara, S., González-Jiménez, J.M., Reich, M., et al., 2017. Plume-Subduction Interaction Forms Large Auriferous Provinces. Nature Communications, 8(1): 843. https://doi.org/10.1038/s41467-017-00821-z
      Tassara, S., González-Jiménez, J.M., Reich, M., et al., 2018. Highly Siderophile Elements Mobility in the Subcontinental Lithospheric Mantle beneath Southern Patagonia. Lithos, 314-315: 579-596. https://doi.org/10.1016/j.lithos.2018.06.022
      Tassara, S., Reich, M., Konecke, B.A., et al., 2020. Unraveling the Effects of Melt-Mantle Interactions on the Gold Fertility of Magmas. Frontiers in Earth Science, 8: 29. https://doi.org/10.3389/feart.2020.00029
      Taylor, W.R., Rock, N.M.S., Groves, D.I., et al., 1994. Geochemistry of Archean Shoshonitic Lamprophyres from the Yilgarn Block, Western Australia: Au Abundance and Association with Gold Mineralization. Applied Geochemistry, 9(2): 197-222. https://doi.org/10.1016/0883-2927(94)90007-8
      Tomkins, A.G., 2013. On the Source of Orogenic Gold. Geology, 41(12): 1255-1256. https://doi.org/10.1130/focus122013.1
      Ulrich, T., Günther, D., Heinrich, C.A., 1999. Gold Concentrations of Magmatic Brines and the Metal Budget of Porphyry Copper Deposits. Nature, 399: 676-679. https://doi.org/10.1038/21406
      Varas-Reus, M.I., Garrido, C.J., Marchesi, C., et al., 2018. Genesis of Ultra-High Pressure Garnet Pyroxenites in Orogenic Peridotites and Its Bearing on the Compositional Heterogeneity of the Earth's Mantle. Geochimica et Cosmochimica Acta, 232: 303-328. https://doi.org/10.1016/j.gca.2018.04.033
      Vikent'ev, I.V., Borisova, A.Y., Karpukhina, V.S., et al., 2012. Direct Data on the Ore Potential of Acid Magmas of the Uzel'ginskoe Ore Field (Southern Urals, Russia). Doklady Earth Sciences, 443(1): 401-405. https://doi.org/10.1134/s1028334x12030300
      Wallace, P., Carmichael, I.S.E., 1992. Sulfur in Basaltic Magmas. Geochimica et Cosmochimica Acta, 56(5): 1863-1874. https://doi.org/10.1016/0016-7037(92)90316-b
      Wallace, P.J., Edmonds, M., 2011. The Sulfur Budget in Magmas: Evidence from Melt Inclusions, Submarine Glasses, and Volcanic Gas Emissions. Reviews in Mineralogy and Geochemistry, 73(1): 215-246. https://doi.org/10.2138/rmg.2011.73.8
      Wallace, P.J., Plank, T., Edmonds, M., et al., 2015. Volatiles in Magmas. In: Sigurdsson, H., ed., The Encyclopedia of Volcanoes (Second Edition). Academic Press, Amsterdam, 163-183. https://doi.org/10.1016/b978-0-12-385938-9.00007-9
      Wang, J.T., Xiong, X.L., Chen, Y.X., et al., 2020. Redox Processes in Subduction Zones: Progress and Prospect. Scientia Sinica (Terrae), 50(12): 1799-1817(in Chinese). doi: 10.1360/SSTe-2019-0313
      Wang, Q.F., Deng, J., Weng, W.J., et al., 2020. Cenozoic Orogenic Gold System in Tibet. Acta Petrologica Sinica, 36(5): 1315-1354, 73-77(in Chinese with English abstract).
      Wang, Q.F., Deng, J., Zhao, H.S., et al., 2019. Review on Orogenic Gold Deposits. Earth Science, 44(6): 2155-2186 (in Chinese with English abstract).
      Wang, X., Deng, J., Wang, Q.F., et al., 2021a. Contrast between Metamorphic and Ore-Forming Fluids in the Ailaoshan Belt, Southeastern Tibet: New Constraints on Ore-Fluids Source for Its Orogenic Gold Deposits. Ore Geology Reviews, 131: 103933. https://doi.org/10.1016/j.oregeorev.2020.103933
      Wang, X., Wang, Z.C., Cheng, H., et al., 2020b. Early Cretaceous Lamprophyre Dyke Swarms in Jiaodong Peninsula, Eastern North China Craton, and Implications for Mantle Metasomatism Related to Subduction. Lithos, 368-369: 105593. https://doi.org/10.1016/j.lithos.2020.105593
      Wang, X., Wang, Z.C., Cheng, H., et al., 2022. Gold Endowment of the Metasomatized Lithospheric Mantle for Giant Gold Deposits: Insights from Lamprophyre Dykes. Geochimica et Cosmochimica Acta, 316: 21-40. https://doi.org/10.1016/j.gca.2021.10.006
      Wang, Y., Wei, B., Tan, W., et al., 2021. The Distribution, Characteristics and Fluid Sources of Lode Gold Deposits: an Overview. Scientia Sinica (Terrae), 51(9): 1457-1476(in Chinese). doi: 10.1360/SSTe-2021-0036
      Wang, Z.C., Becker, H., 2015. Fractionation of Highly Siderophile and Chalcogen Elements during Magma Transport in the Mantle: Constraints from Pyroxenites of the Balmuccia Peridotite Massif. Geochimica et Cosmochimica Acta, 159: 244-263. https://doi.org/10.1016/j.gca.2015.03.036
      Wang, Z.C., Cheng, H., Zong, K.Q., et al., 2020a. Metasomatized Lithospheric Mantle for Mesozoic Giant Gold Deposits in the North China Craton. Geology, 48(2): 169-173. https://doi.org/10.1130/g46662.1
      Wang, Z.C., Xu, Z., Cheng, H., et al., 2021b. Precambrian Metamorphic Crustal Basement cannot Provide Much Gold to Form Giant Gold Deposits in the Jiaodong Peninsula, China. Precambrian Research, 354: 106045. https://doi.org/10.1016/j.precamres.2020.106045
      Wang, Z.L., Yang, L.Q., Guo, L.N., et al., 2015. Fluid Immiscibility and Gold Deposition in the Xincheng Deposit, Jiaodong Peninsula, China: A Fluid Inclusion Study. Ore Geology Reviews, 65: 701-717. https://doi.org/10.1016/j.oregeorev.2014.06.006
      Webber, A.P., Roberts, S., Taylor, R.N., et al., 2013. Golden Plumes: Substantial Gold Enrichment of Oceanic Crust during Ridge-Plume Interaction. Geology, 41(1): 87-90. https://doi.org/10.1130/g33301.1
      Wei, B., Wang, C.Y., Wang, Z.C., et al., 2021. Mantle-Derived Gold Scavenged by Bismuth-(Tellurium)-Rich Melts: Evidence from the Mesozoic Wulong Gold Deposit in the North China Craton. Ore Geology Reviews, 131: 104047. https://doi.org/10.1016/j.oregeorev.2021.104047
      Williams-Jones, A.E., Bowell, R.J., Migdisov, A.A., 2009. Gold in Solution. Elements, 5(5): 281-287. https://doi.org/10.2113/gselements.5.5.281
      Williams-Jones, A.E., Heinrich, C.A., 2005.100th Anniversary Special Paper: Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits. Economic Geology, 100(7): 1287-1312. https://doi.org/10.2113/gsecongeo.100.7.1287
      Wood, B.J., Bryndzia, L.T., Johnson, K.E., 1990. Mantle Oxidation State and Its Relationship to Tectonic Environment and Fluid Speciation. Science, 248(4953): 337-345. https://doi.org/10.1126/science.248.4953.337
      Woodland, A.B., Girnis, A.V., Bulatov, V.K., et al., 2019. Experimental Study of Sulfur Solubility in Silicate-Carbonate Melts at 5-10.5 GPa. Chemical Geology, 505: 12-22. https://doi.org/10.1016/j.chemgeo.2018.12.008
      Workman, R.K., Hart, S.R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1-2): 53-72. https://doi.org/10.1016/j.epsl.2004.12.005
      Wu, F.Y., Yang, J.H., Xu, Y.G., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47(1): 173-195. https://doi.org/10.1146/annurev-earth-053018-060342
      Xu, B., Hou, Z.Q., Griffin, W.L., et al., 2021. Recycled Volatiles Determine Fertility of Porphyry Deposits in Collisional Settings. American Mineralogist, 106(4): 656-661. https://doi.org/10.2138/am-2021-7714
      Xu, C., Qi, L., Huang, Z.L., et al., 2008. Abundances and Significance of Platinum Group Elements in Carbonatites from China. Lithos, 105(3-4): 201-207. https://doi.org/10.1016/j.lithos.2008.03.008
      Yang, L.Q., Deng, J., Song, M.C., et al., 2019. Structure Control on Formation and Localization of Giant Deposits: An Example of Jiaodong Gold Deposits in China. Geotectonica et Metallogenia, 43(3): 431-446(in Chinese with English abstract).
      Yang, Z.F., Li, J., Liang, W.F., et al., 2016. On the Chemical Markers of Pyroxenite Contributions in Continental Basalts in Eastern China: Implications for Source Lithology and the Origin of Basalts. Earth-Science Reviews, 157: 18-31. https://doi.org/10.1016/j.earscirev.2016.04.001
      Zajacz, Z., Candela, P.A., Piccoli, P.M., et al., 2013. Solubility and Partitioning Behavior of Au, Cu, Ag and Reduced S in Magmas. Geochimica et Cosmochimica Acta, 112: 288-304. https://doi.org/10.1016/j.gca.2013.02.026
      Zajacz, Z., Seo, J.H., Candela, P.A., et al., 2010. Alkali Metals Control the Release of Gold from Volatile-Rich Magmas. Earth and Planetary Science Letters, 297(1-2): 50-56. https://doi.org/10.1016/j.epsl.2010.06.002
      Zhai, M.G., Fan, H.R., Yang, J.H., et al., 2004. Large-Scale Cluster of Gold Deposits in East Shandong: Anorogenic Metallogenesis. Earth Science Frontiers, 11(1): 85-98(in Chinese with English abstract).
      Zhang, Y.W., Hu, F.F., Fan, H.R., et al., 2020a. Fluid Evolution and Gold Precipitation in the Muping Gold Deposit (Jiaodong, China): Insights from In-Situ Trace Elements and Sulfur Isotope of Sulfides. Journal of Geochemical Exploration, 218: 106617. https://doi.org/10.1016/j.gexplo.2020.106617
      Zhang, L., Weinberg, R.F., Yang, L.Q., et al., 2020b. Mesozoic Orogenic Gold Mineralization in the Jiaodong Peninsula, China: A Focused Event at 120±2 Ma during Cooling of Pregold Granite Intrusions. Economic Geology, 115(2): 415-441. https://doi.org/10.5382/econgeo.4716
      Zhang, Z.C., Mao, J.W., Wang, F.S., et al., 2006. Native Gold and Native Copper Grains Enclosed by Olivine Phenocrysts in a Picrite Lava of the Emeishan Large Igneous Province, SW China. American Mineralogist, 91(7): 1178-1183. https://doi.org/10.2138/am.2006.1888
      Zhao, T., Zhu, G., Lin, S.Z., et al., 2016. Indentation-Induced Tearing of a Subducting Continent: Evidence from the Tan-Lu Fault Zone, East China. Earth-Science Reviews, 152: 14-36. https://doi.org/10.1016/j.earscirev.2015.11.003
      Zheng, Y.F., Xu, Z., Zhao, Z.F., et al., 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Science China Earth Sciences, 61(4): 353-385. https://doi.org/10.1007/s11430-017-9160-3
      Zhu, G., Lu, Y.C., Su, N., et al., 2021. Crustal Deformation and Dynamics of Early Cretaceous in the North China Craton. Science China: Earth Sciences, 51(9): 1420-1443(in Chinese).
      Zhu, R.X., Fan, H.R., Li, J.W., et al., 2015. Decratonic Gold Deposits. Science China: Earth Sciences, 45(8): 1153-1168, 1-4(in Chinese).
      Zhu, R.X., Sun, W.D., 2021. The Big Mantle Wedge and Decratonic Gold Deposits. Science China: Earth Sciences, ,51(9): 1444-1456(in Chinese).
      Zhu, R.X., Xu, Y.G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science China: Earth Sciences, 55(10): 1565-1587. https://doi.org/10.1007/s11430-012-4516-y
      陈衍景, Pirajno, F., 赖勇, 等, 2004. 胶东矿集区大规模成矿时间和构造环境. 岩石学报, 20(4): 907-922. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200404013.htm
      邓黎旭, 刘勇胜, 宗克清, 等, 2019. 地幔橄榄岩中碳酸盐熔体交代作用及其鉴定特征. 地球科学, 44(4): 1113-1127. doi: 10.3799/dqkx.2018.357
      范宏瑞, 胡芳芳, 杨进辉, 等, 2005. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿. 岩石学报, 21(5): 1317-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505000.htm
      范宏瑞, 蓝廷广, 李兴辉, 等, 2021. 胶东金成矿系统的末端效应. 中国科学: 地球科学, 51(9): 1504-1523. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109007.htm
      侯增谦, 曲晓明, 杨竹森, 等, 2006. 青藏高原碰撞造山带: Ⅲ. 后碰撞伸展成矿作用. 矿床地质, 25(6): 629-651. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604000.htm
      侯增谦, 郑远川, 耿元生, 2015. 克拉通边缘岩石圈金属再富集与金-钼-稀土元素成矿作用. 矿床地质, 34(4): 641-674. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201504001.htm
      李献华, 孙贤鉥, 1995. "煌斑岩"与金矿的实际观察与理论评述. 地质论评, 41(3): 252-260. doi: 10.3321/j.issn:0371-5736.1995.03.008
      刘星成, 许婷, 熊小林, 等, 2021. 岩浆熔/流体中金的溶解度: 高温高压实验研究进展. 中国科学: 地球科学, 51(9): 1477-1488. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109005.htm
      毛景文, 谢桂青, 李晓峰, 等, 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45-55. doi: 10.3321/j.issn:1005-2321.2004.01.003
      毛景文, 谢桂青, 张作衡, 等, 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 171-190. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm
      沈骥, 李王晔, 李曙光, 等, 2019. 俯冲隧道内不同深度的壳幔相互作用: 地幔楔超镁铁质岩的镁同位素记录. 地球科学, 44(12): 4102-4111. doi: 10.3799/dqkx.2019.286
      宋明春, 崔书学, 姜洪利, 2011. 山东胶西北矿集区和焦家金矿田成矿构造系统. 地质通报, 30(4): 573-578. doi: 10.3969/j.issn.1671-2552.2011.04.014
      宋明春, 宋英昕, 丁正江, 等, 2018. 胶东金矿床: 基本特征和主要争议. 黄金科学技术, 26(4): 406-422. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201804006.htm
      王锦团, 熊小林, 陈伊翔, 等, 2020. 俯冲带氧逸度研究: 进展和展望. 中国科学: 地球科学, 50(12): 1799-1817. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202012008.htm
      王庆飞, 邓军, 翁伟俊, 等, 2020. 青藏高原新生代造山型金成矿系统. 岩石学报, 36(5): 1315-1354, 73-77. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202005002.htm
      王庆飞, 邓军, 赵鹤森, 等, 2019. 造山型金矿研究进展: 兼论中国造山型金成矿作用. 地球科学, 44(6): 2155-2186. doi: 10.3799/dqkx.2019.105
      王焰, 魏博, 谭伟, 等, 2021. 脉状金矿床的时空分布、地质特征和成矿流体来源. 中国科学: 地球科学, 51(9): 1457-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109004.htm
      杨立强, 邓军, 宋明春, 等, 2019. 巨型矿床形成与定位的构造控制: 胶东金矿集区剖析. 大地构造与成矿学, 43(3): 431-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201903005.htm
      翟明国, 范宏瑞, 杨进辉, 等, 2004. 非造山带型金矿——胶东型金矿的陆内成矿作用. 地学前缘, 11(1): 85-98. doi: 10.3321/j.issn:1005-2321.2004.01.005
      朱光, 陆元超, 苏楠, 等, 2021. 华北克拉通早白垩世地壳变形规律与动力学. 中国科学: 地球科学, 51(9): 1420-1443. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109002.htm
      朱日祥, 范宏瑞, 李建威, 等, 2015. 克拉通破坏型金矿床. 中国科学: 地球科学, 45(8): 1153-1168, 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508006.htm
      朱日祥, 孙卫东, 2021. 大地幔楔与克拉通破坏型金矿. 中国科学: 地球科学, 51(9): 1444-1456. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109003.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(2)

      Article views (4161) PDF downloads(371) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return