• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 10
    Oct.  2023
    Turn off MathJax
    Article Contents
    Zhao Ruonan, Xiao Wei, Shi Lixin, Zhao Jiayu, Xie Chengyu, Xie Yanhong, Cao Chang, Zhang Mi, Zheng Youfei, 2023. Quantification of Water Vapor Transport Coefficient and Priestley-Taylor Coefficient over Small Inland Water Bodies. Earth Science, 48(10): 3896-3911. doi: 10.3799/dqkx.2021.227
    Citation: Zhao Ruonan, Xiao Wei, Shi Lixin, Zhao Jiayu, Xie Chengyu, Xie Yanhong, Cao Chang, Zhang Mi, Zheng Youfei, 2023. Quantification of Water Vapor Transport Coefficient and Priestley-Taylor Coefficient over Small Inland Water Bodies. Earth Science, 48(10): 3896-3911. doi: 10.3799/dqkx.2021.227

    Quantification of Water Vapor Transport Coefficient and Priestley-Taylor Coefficient over Small Inland Water Bodies

    doi: 10.3799/dqkx.2021.227
    • Received Date: 2021-09-04
      Available Online: 2023-10-31
    • Publish Date: 2023-10-25
    • Small water bodies (< 1 km2) are numerous, with area accounting for more than 40% of the total area of global inland water area, and play an important role in weather and climate system, water cycle and water resources management. In this paper, the aquaculture pond in Quanjiao County of Anhui Province was selected as a representative of small water bodies. Continuous observations of evaporation from June 2017 to May 2020 were conducted using eddy covariance technology. Data gaps were interpolated based on bulk transfer equation, and energy balance closure was forced on monthly scale. Priestley-Taylor model was used to study the effect of advection. Results indicate that the water vapor transfer coefficient of small water bodies was higher in summer and lower in winter, with a range of 1.9×10-3 to 3.4×10-3. The monthly water vapor transfer coefficient was significantly correlated with wind speed and the difference between water surface temperature and air temperature over small water bodies. But the transfer coefficient is not significantly correlated with water body area.The α coefficient of Priestley-Taylor model over the small water body ranged from 1.14 to 1.78, with lowest value appeared in August and highest value appeared in February, and the maximum value is higher than those over open surface of large lakes. Similar to other inland water bodies, the α coefficient over small water bodies was lower in warm season and higher in cold season, indicating that advection effect was weak in summer and strong in winter. On annual time scale, evaporation of both small and large water bodies were affected by weak advection.

       

    • loading
    • Assouline, S., Li, D., Tyler, S., et al., 2016. On the Variability of the Priestley-Taylor Coefficient over Water Bodies. Water Resources Research, 52(1): 150-163. https://doi.org/10.1002/2015wr017504
      Baldocchi, D., Falge, E., Gu, L. H., et al., 2001. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society, 82(11): 2415-2434. https://doi.org/10.1175/1520-0477(2001)0822415:fantts>2.3.co;2 doi: 10.1175/1520-0477(2001)0822415:fantts>2.3.co;2
      Blanken, P. D., Rouse, W. R., Schertzer, W. M., 2003. Enhancement of Evaporation from a Large Northern Lake by the Entrainment of Warm, Dry Air. Journal of Hydrometeorology, 4(4): 680-693. doi: 10.1175/1525-7541(2003)004<0680:EOEFAL>2.0.CO;2
      Cao, L., Shen, J. M., Nie, Z. L., et al., 2021. Stable Isotopic Characteristics of Precipitation and Moisture Recycling in Badain Jaran Desert. Earth Science, 46(8): 2973-2983(in Chinese with English abstract).
      Chen, J. W., Ge, J. W., Feng, L., et al., 2020. Methane Flux Characteristics and Its Relationship with Soil Microbial Community Composition of Dajiuhu Peatland in Shennongjia. Earth Science, 45(3): 1082-1092(in Chinese with English abstract).
      De Bruin, H. A. R., Keijman, J. Q., 1979. The Priestley-Taylor Evaporation Model Applied to a Large, Shallow Lake in the Netherlands. Journal of Applied Meteorology, 18(7): 898-903. https://doi.org/10.1175/1520-0450(1979)0180898: tptema>2.0.co;2 doi: 10.1175/1520-0450(1979)0180898:tptema>2.0.co;2
      Deng, B., Liu, S. D., Xiao, W., et al., 2013. Evaluation of the CLM4 Lake Model at a Large and Shallow Freshwater Lake. Journal of Hydrometeorology, 14(2): 636-649. https://doi.org/10.1175/jhm-d-12-067.1
      Dos Reis, R. J., Dias, N. L., 1998. Multi-Season Lake Evaporation: Energy-Budget Estimates and CRLE Model Assessment with Limited Meteorological Observations. Journal of Hydrology, 208(3-4): 135-147. doi: 10.1016/S0022-1694(98)00160-7
      Franz, D., Mammarella, I., Boike, J., et al., 2018. Lake-Atmosphere Heat Flux Dynamics of a Thermokarst Lake in Arctic Siberia. Journal of Geophysical Research: Atmospheres, 123(10): 5222-5239. https://doi.org/10.1029/2017jd027751
      Friedrich, K., Grossman, R. L., Huntington, J., et al., 2018. Reservoir Evaporation in the Western United States: Current Science, Challenges, and Future Needs. Bulletin of the American Meteorological Society, 99(1): 167-187. https://doi.org/10.1175/bams-d-15-00224.1
      Garratt, J. R., 1992. The Atmospheric Boundary Layer. Cambridge University Press, Cambridge.
      Gibson, J. J., Birks, S. J., Yi, Y., 2016. Stable Isotope Mass Balance of Lakes: A Contemporary Perspective. Quaternary Science Reviews, 131: 316-328. https://doi.org/10.1016/j.quascirev.2015.04.013
      Guo, X. F., Liu, H. P., Yang, K., 2015. On the Application of the Priestley-Taylor Relation on Sub-Daily Time Scales. Boundary-Layer Meteorology, 156(3): 489-499. https://doi.org/10.1007/s10546-015-0031-y
      Guo, Y. H., Zhang, Y. S., Ma, N., et al., 2019. Long-Term Changes in Evaporation over Siling Co Lake on the Tibetan Plateau and Its Impact on Recent Rapid Lake Expansion. Atmospheric Research, 216: 141-150. https://doi.org/10.1016/j.atmosres.2018.10.006
      Han, S. J., Tian, F. Q., Wang, W., et al., 2021. Sigmoid Generalized Complementary Equation for Evaporation over Wet Surfaces: A Nonlinear Modification of the Priestley-Taylor Equation. Water Resources Research, 57(9): e2020WR028737. https://doi.org/10.1029/2020wr028737
      Heikinheimo, M., Kangas, M., Tourula, T., et al., 1999. Momentum and Heat Fluxes over Lakes Tämnaren and RÅKSJÖ Determined by the Bulk-Aerodynamic and Eddy-Correlation Methods. Agricultural and Forest Meteorology, 98/99: 521-534. https://doi.org/10.1016/S0168-1923(99)00121-5
      Lee, X. H., Liu, S. D., Xiao, W., et al., 2014. The Taihu Eddy Flux Network: An Observational Program on Energy, Water, and Greenhouse Gas Fluxes of a Large Freshwater Lake. Bulletin of the American Meteorological Society, 95(10): 1583-1594. https://doi.org/10.1175/bams-d-13-00136.1
      Li, X. Y., Ma, Y. J., Huang, Y. M., et al., 2016. Evaporation and Surface Energy Budget over the Largest High-Altitude Saline Lake on the Qinghai-Tibet Plateau. Journal of Geophysical Research: Atmospheres, 121(18): 10470-10485. https://doi.org/10.1002/2016jd025027
      Li, Z. G., Lyu, S. H., Zhao, L., et al., 2015. Turbulent Transfer Coefficient and Roughness Length in a High-Altitude Lake, Tibetan Plateau. Theoretical and Applied Climatology, 124(3/4): 723-735. https://doi.org/10.1007/s00704-015-1440-z
      Lim, W. H., Roderick, M. L., Hobbins, M. T., et al., 2013. The Energy Balance of a US Class a Evaporation Pan. Agricultural and Forest Meteorology, 182/183: 314-331. https://doi.org/10.1016/j.agrformet.2013.07.001
      Liu, H. P., Zhang, Y., Liu, S. H., et al., 2009. Eddy Covariance Measurements of Surface Energy Budget and Evaporation in a Cool Season over Southern Open Water in Mississippi. Journal of Geophysical Research: Atmospheres, 114(D4): D04110. https://doi.org/10.1029/2008jd010891
      Liu, H. Z., Feng, J. W., Sun, J. H., et al., 2015. Eddy Covariance Measurements of Water Vapor and CO2 Fluxes above the Erhai Lake. Science China Earth Sciences, 58(3): 317-328. https://doi.org/10.1007/s11430-014-4828-1
      Mammarella, I., Nordbo, A., Rannik, Ü., et al., 2015. Carbon Dioxide and Energy Fluxes over a Small Boreal Lake in Southern Finland. Journal of Geophysical Research: Biogeosciences, 120(7): 1296-1314. https://doi.org/10.1002/2014jg002873
      McGloin, R., McGowan, H., McJannet, D., et al., 2014. Quantification of Surface Energy Fluxes from a Small Water Body Using Scintillometry and Eddy Covariance. Water Resources Research, 50(1): 494-513. https://doi.org/10.1002/2013wr013899
      Moukomla, S., Blanken, P. D., 2017. The Estimation of the North American Great Lakes Turbulent Fluxes Using Satellite Remote Sensing and MERRA Reanalysis Data. Remote Sensing, 9(2): 141-154. https://doi.org/10.3390/rs9020141
      Nicholson, S. E., Kim, J., Ba, M. B., et al., 1997. The Mean Surface Water Balance over Africa and Its Interannual Variability. Journal of Climate, 10(12): 2981-3002. https://doi.org/10.1175/1520-0442(1997)0102981: tmswbo>2.0.co;2 doi: 10.1175/1520-0442(1997)0102981:tmswbo>2.0.co;2
      Nordbo, A., Launiainen, S., Mammarella, I., et al., 2011. Long-Term Energy Flux Measurements and Energy Balance over a Small Boreal Lake Using Eddy Covariance Technique. Journal of Geophysical Research: Atmospheres, 116(D2): D02119. https://doi.org/10.1029/2010jd014542
      Potter, B. L., 2011. Climatic Controls on the Summertime Energy Balance of a Thermokarst Lake in Northern Alaska: Short‐Term, Seasonal, and Interannual Variability (Dissertation). University of Nebraska-Lincoln, Nebraska.
      Priestley, C. H. B., Taylor, R. J., 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2): 81-92. https://doi.org/10.1175/1520-0493(1972)1000081: otaosh>2.3.co;2 doi: 10.1175/1520-0493(1972)1000081:otaosh>2.3.co;2
      Stewart, R. B., Rouse, W. R., 1976. A Simple Method for Determining the Evaporation from Shallow Lakes and Ponds. Water Resources Research, 12(4): 623-628. https://doi.org/10.1029/wr012i004p00623
      Strub, P. T., Powell, T. M., 1987. The Exchange Coefficients for Latent and Sensible Heat Flux over Lakes: Dependence upon Atmospheric Stability. Boundary-Layer Meteorology, 40(4): 349-362. https://doi.org/10.1007/bf00116102
      Verpoorter, C., Kutser, T., Seekell, D. A., et al., 2014. A Global Inventory of Lakes Based on High-Resolution Satellite Imagery. Geophysical Research Letters, 41(18): 6396-6402. https://doi.org/10.1002/2014gl060641
      Wang, W., Lee, X. H., Xiao, W., et al., 2018. Global Lake Evaporation Accelerated by Changes in Surface Energy Allocation in a Warmer Climate. Nature Geoscience, 11(6): 410-414. https://doi.org/10.1038/s41561-018-0114-8
      Wang, W., Xiao, W., Cao, C., et al., 2014. Temporal and Spatial Variations in Radiation and Energy Balance across a Large Freshwater Lake in China. Journal of Hydrology, 511: 811-824. https://doi.org/10.1016/j.jhydrol.2014.02.012
      Wei, Z. W., Miyano, A., Sugita, M., 2016. Drag and Bulk Transfer Coefficients over Water Surfaces in Light Winds. Boundary-Layer Meteorology, 160(2): 319-346. https://doi.org/10.1007/s10546-016-0147-8
      Xiao, W., Lee, X. H., Hu, Y. B., et al., 2017. An Experimental Investigation of Kinetic Fractionation of Open-Water Evaporation over a Large Lake. Journal of Geophysical Research: Atmospheres, 122(21): 11651-11663. https://doi.org/10.1002/2017jd026774
      Xiao, W., Liu, S. D., Wang, W., et al., 2013. Transfer Coefficients of Momentum, Heat and Water Vapour in the Atmospheric Surface Layer of a Large Freshwater Lake. Boundary-Layer Meteorology, 148(3): 479-494. https://doi.org/10.1007/s10546-013-9827-9
      Xiao, W., Zhang, Z., Wang, W., et al., 2020. Radiation Controls the Interannual Variability of Evaporation of a Subtropical Lake. Journal of Geophysical Research: Atmospheres, 125(8): e2019JD031264. https://doi.org/10.1029/2019jd031264
      Zhang, Z., Zhang, M., Cao, C., et al., 2020. A Dataset of Microclimate and Radiation and Energy Fluxes from the Lake Taihu Eddy Flux Network. Earth System Science Data, 12(4): 2635-2645. https://doi.org/10.5194/essd-12-2635-2020
      Zhao, J. Y., Zhang, M., Xiao, W., et al., 2019. An Evaluation of the Flux-Gradient and the Eddy Covariance Method to Measure CH4, CO2, and H2O Fluxes from Small Ponds. Agricultural and Forest Meteorology, 275: 255-264. https://doi.org/10.1016/j.agrformet.2019.05.032
      曹乐, 申建梅, 聂振龙, 等, 2021. 巴丹吉林沙漠降水稳定同位素特征与水汽再循环. 地球科学, 46(8): 2973-2983. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202108022.htm
      谌佳伟, 葛继稳, 冯亮, 等, 2020. 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系. 地球科学, 45(3): 1082-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202003031.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(2)

      Article views (494) PDF downloads(34) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return