Citation: | Zhao Ruonan, Xiao Wei, Shi Lixin, Zhao Jiayu, Xie Chengyu, Xie Yanhong, Cao Chang, Zhang Mi, Zheng Youfei, 2023. Quantification of Water Vapor Transport Coefficient and Priestley-Taylor Coefficient over Small Inland Water Bodies. Earth Science, 48(10): 3896-3911. doi: 10.3799/dqkx.2021.227 |
Assouline, S., Li, D., Tyler, S., et al., 2016. On the Variability of the Priestley-Taylor Coefficient over Water Bodies. Water Resources Research, 52(1): 150-163. https://doi.org/10.1002/2015wr017504
|
Baldocchi, D., Falge, E., Gu, L. H., et al., 2001. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society, 82(11): 2415-2434. https://doi.org/10.1175/1520-0477(2001)0822415:fantts>2.3.co;2 doi: 10.1175/1520-0477(2001)0822415:fantts>2.3.co;2
|
Blanken, P. D., Rouse, W. R., Schertzer, W. M., 2003. Enhancement of Evaporation from a Large Northern Lake by the Entrainment of Warm, Dry Air. Journal of Hydrometeorology, 4(4): 680-693. doi: 10.1175/1525-7541(2003)004<0680:EOEFAL>2.0.CO;2
|
Cao, L., Shen, J. M., Nie, Z. L., et al., 2021. Stable Isotopic Characteristics of Precipitation and Moisture Recycling in Badain Jaran Desert. Earth Science, 46(8): 2973-2983(in Chinese with English abstract).
|
Chen, J. W., Ge, J. W., Feng, L., et al., 2020. Methane Flux Characteristics and Its Relationship with Soil Microbial Community Composition of Dajiuhu Peatland in Shennongjia. Earth Science, 45(3): 1082-1092(in Chinese with English abstract).
|
De Bruin, H. A. R., Keijman, J. Q., 1979. The Priestley-Taylor Evaporation Model Applied to a Large, Shallow Lake in the Netherlands. Journal of Applied Meteorology, 18(7): 898-903. https://doi.org/10.1175/1520-0450(1979)0180898: tptema>2.0.co;2 doi: 10.1175/1520-0450(1979)0180898:tptema>2.0.co;2
|
Deng, B., Liu, S. D., Xiao, W., et al., 2013. Evaluation of the CLM4 Lake Model at a Large and Shallow Freshwater Lake. Journal of Hydrometeorology, 14(2): 636-649. https://doi.org/10.1175/jhm-d-12-067.1
|
Dos Reis, R. J., Dias, N. L., 1998. Multi-Season Lake Evaporation: Energy-Budget Estimates and CRLE Model Assessment with Limited Meteorological Observations. Journal of Hydrology, 208(3-4): 135-147. doi: 10.1016/S0022-1694(98)00160-7
|
Franz, D., Mammarella, I., Boike, J., et al., 2018. Lake-Atmosphere Heat Flux Dynamics of a Thermokarst Lake in Arctic Siberia. Journal of Geophysical Research: Atmospheres, 123(10): 5222-5239. https://doi.org/10.1029/2017jd027751
|
Friedrich, K., Grossman, R. L., Huntington, J., et al., 2018. Reservoir Evaporation in the Western United States: Current Science, Challenges, and Future Needs. Bulletin of the American Meteorological Society, 99(1): 167-187. https://doi.org/10.1175/bams-d-15-00224.1
|
Garratt, J. R., 1992. The Atmospheric Boundary Layer. Cambridge University Press, Cambridge.
|
Gibson, J. J., Birks, S. J., Yi, Y., 2016. Stable Isotope Mass Balance of Lakes: A Contemporary Perspective. Quaternary Science Reviews, 131: 316-328. https://doi.org/10.1016/j.quascirev.2015.04.013
|
Guo, X. F., Liu, H. P., Yang, K., 2015. On the Application of the Priestley-Taylor Relation on Sub-Daily Time Scales. Boundary-Layer Meteorology, 156(3): 489-499. https://doi.org/10.1007/s10546-015-0031-y
|
Guo, Y. H., Zhang, Y. S., Ma, N., et al., 2019. Long-Term Changes in Evaporation over Siling Co Lake on the Tibetan Plateau and Its Impact on Recent Rapid Lake Expansion. Atmospheric Research, 216: 141-150. https://doi.org/10.1016/j.atmosres.2018.10.006
|
Han, S. J., Tian, F. Q., Wang, W., et al., 2021. Sigmoid Generalized Complementary Equation for Evaporation over Wet Surfaces: A Nonlinear Modification of the Priestley-Taylor Equation. Water Resources Research, 57(9): e2020WR028737. https://doi.org/10.1029/2020wr028737
|
Heikinheimo, M., Kangas, M., Tourula, T., et al., 1999. Momentum and Heat Fluxes over Lakes Tämnaren and RÅKSJÖ Determined by the Bulk-Aerodynamic and Eddy-Correlation Methods. Agricultural and Forest Meteorology, 98/99: 521-534. https://doi.org/10.1016/S0168-1923(99)00121-5
|
Lee, X. H., Liu, S. D., Xiao, W., et al., 2014. The Taihu Eddy Flux Network: An Observational Program on Energy, Water, and Greenhouse Gas Fluxes of a Large Freshwater Lake. Bulletin of the American Meteorological Society, 95(10): 1583-1594. https://doi.org/10.1175/bams-d-13-00136.1
|
Li, X. Y., Ma, Y. J., Huang, Y. M., et al., 2016. Evaporation and Surface Energy Budget over the Largest High-Altitude Saline Lake on the Qinghai-Tibet Plateau. Journal of Geophysical Research: Atmospheres, 121(18): 10470-10485. https://doi.org/10.1002/2016jd025027
|
Li, Z. G., Lyu, S. H., Zhao, L., et al., 2015. Turbulent Transfer Coefficient and Roughness Length in a High-Altitude Lake, Tibetan Plateau. Theoretical and Applied Climatology, 124(3/4): 723-735. https://doi.org/10.1007/s00704-015-1440-z
|
Lim, W. H., Roderick, M. L., Hobbins, M. T., et al., 2013. The Energy Balance of a US Class a Evaporation Pan. Agricultural and Forest Meteorology, 182/183: 314-331. https://doi.org/10.1016/j.agrformet.2013.07.001
|
Liu, H. P., Zhang, Y., Liu, S. H., et al., 2009. Eddy Covariance Measurements of Surface Energy Budget and Evaporation in a Cool Season over Southern Open Water in Mississippi. Journal of Geophysical Research: Atmospheres, 114(D4): D04110. https://doi.org/10.1029/2008jd010891
|
Liu, H. Z., Feng, J. W., Sun, J. H., et al., 2015. Eddy Covariance Measurements of Water Vapor and CO2 Fluxes above the Erhai Lake. Science China Earth Sciences, 58(3): 317-328. https://doi.org/10.1007/s11430-014-4828-1
|
Mammarella, I., Nordbo, A., Rannik, Ü., et al., 2015. Carbon Dioxide and Energy Fluxes over a Small Boreal Lake in Southern Finland. Journal of Geophysical Research: Biogeosciences, 120(7): 1296-1314. https://doi.org/10.1002/2014jg002873
|
McGloin, R., McGowan, H., McJannet, D., et al., 2014. Quantification of Surface Energy Fluxes from a Small Water Body Using Scintillometry and Eddy Covariance. Water Resources Research, 50(1): 494-513. https://doi.org/10.1002/2013wr013899
|
Moukomla, S., Blanken, P. D., 2017. The Estimation of the North American Great Lakes Turbulent Fluxes Using Satellite Remote Sensing and MERRA Reanalysis Data. Remote Sensing, 9(2): 141-154. https://doi.org/10.3390/rs9020141
|
Nicholson, S. E., Kim, J., Ba, M. B., et al., 1997. The Mean Surface Water Balance over Africa and Its Interannual Variability. Journal of Climate, 10(12): 2981-3002. https://doi.org/10.1175/1520-0442(1997)0102981: tmswbo>2.0.co;2 doi: 10.1175/1520-0442(1997)0102981:tmswbo>2.0.co;2
|
Nordbo, A., Launiainen, S., Mammarella, I., et al., 2011. Long-Term Energy Flux Measurements and Energy Balance over a Small Boreal Lake Using Eddy Covariance Technique. Journal of Geophysical Research: Atmospheres, 116(D2): D02119. https://doi.org/10.1029/2010jd014542
|
Potter, B. L., 2011. Climatic Controls on the Summertime Energy Balance of a Thermokarst Lake in Northern Alaska: Short‐Term, Seasonal, and Interannual Variability (Dissertation). University of Nebraska-Lincoln, Nebraska.
|
Priestley, C. H. B., Taylor, R. J., 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2): 81-92. https://doi.org/10.1175/1520-0493(1972)1000081: otaosh>2.3.co;2 doi: 10.1175/1520-0493(1972)1000081:otaosh>2.3.co;2
|
Stewart, R. B., Rouse, W. R., 1976. A Simple Method for Determining the Evaporation from Shallow Lakes and Ponds. Water Resources Research, 12(4): 623-628. https://doi.org/10.1029/wr012i004p00623
|
Strub, P. T., Powell, T. M., 1987. The Exchange Coefficients for Latent and Sensible Heat Flux over Lakes: Dependence upon Atmospheric Stability. Boundary-Layer Meteorology, 40(4): 349-362. https://doi.org/10.1007/bf00116102
|
Verpoorter, C., Kutser, T., Seekell, D. A., et al., 2014. A Global Inventory of Lakes Based on High-Resolution Satellite Imagery. Geophysical Research Letters, 41(18): 6396-6402. https://doi.org/10.1002/2014gl060641
|
Wang, W., Lee, X. H., Xiao, W., et al., 2018. Global Lake Evaporation Accelerated by Changes in Surface Energy Allocation in a Warmer Climate. Nature Geoscience, 11(6): 410-414. https://doi.org/10.1038/s41561-018-0114-8
|
Wang, W., Xiao, W., Cao, C., et al., 2014. Temporal and Spatial Variations in Radiation and Energy Balance across a Large Freshwater Lake in China. Journal of Hydrology, 511: 811-824. https://doi.org/10.1016/j.jhydrol.2014.02.012
|
Wei, Z. W., Miyano, A., Sugita, M., 2016. Drag and Bulk Transfer Coefficients over Water Surfaces in Light Winds. Boundary-Layer Meteorology, 160(2): 319-346. https://doi.org/10.1007/s10546-016-0147-8
|
Xiao, W., Lee, X. H., Hu, Y. B., et al., 2017. An Experimental Investigation of Kinetic Fractionation of Open-Water Evaporation over a Large Lake. Journal of Geophysical Research: Atmospheres, 122(21): 11651-11663. https://doi.org/10.1002/2017jd026774
|
Xiao, W., Liu, S. D., Wang, W., et al., 2013. Transfer Coefficients of Momentum, Heat and Water Vapour in the Atmospheric Surface Layer of a Large Freshwater Lake. Boundary-Layer Meteorology, 148(3): 479-494. https://doi.org/10.1007/s10546-013-9827-9
|
Xiao, W., Zhang, Z., Wang, W., et al., 2020. Radiation Controls the Interannual Variability of Evaporation of a Subtropical Lake. Journal of Geophysical Research: Atmospheres, 125(8): e2019JD031264. https://doi.org/10.1029/2019jd031264
|
Zhang, Z., Zhang, M., Cao, C., et al., 2020. A Dataset of Microclimate and Radiation and Energy Fluxes from the Lake Taihu Eddy Flux Network. Earth System Science Data, 12(4): 2635-2645. https://doi.org/10.5194/essd-12-2635-2020
|
Zhao, J. Y., Zhang, M., Xiao, W., et al., 2019. An Evaluation of the Flux-Gradient and the Eddy Covariance Method to Measure CH4, CO2, and H2O Fluxes from Small Ponds. Agricultural and Forest Meteorology, 275: 255-264. https://doi.org/10.1016/j.agrformet.2019.05.032
|
曹乐, 申建梅, 聂振龙, 等, 2021. 巴丹吉林沙漠降水稳定同位素特征与水汽再循环. 地球科学, 46(8): 2973-2983. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202108022.htm
|
谌佳伟, 葛继稳, 冯亮, 等, 2020. 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系. 地球科学, 45(3): 1082-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202003031.htm
|