Citation: | Chen Haoyue, Hu Haizhu, Ren Jiawei, Tian Bingyi, 2023. Vertical Hyporheic Exchange and Nitrogen Transport and Transformation in Prairie Meandering Rivers. Earth Science, 48(10): 3866-3877. doi: 10.3799/dqkx.2021.239 |
Boano, F., Demaria, A., Revelli, R., et al., 2010. Biogeochemical Zonation Due to Intrameander Hyporheic Flow. Water Resources Research, 46(2): 1-13. https://doi.org/10.1029/2008wr007583
|
Briggs, M. A., Lautz, L. K., Hare, D. K., 2014. Residence Time Control on Hot Moments of Net Nitrate Production and Uptake in the Hyporheic Zone. Hydrological Processes, 28(11): 3741-3751. https://doi.org/10.1002/hyp.9921
|
Byrne, P., Zhang, H., Ullah, S., et al., 2015. Diffusive Equilibrium in Thin Films Provides Evidence of Suppression of Hyporheic Exchange and Large-Scale Nitrate Transformation in a Groundwater-Fed River. Hydrological Processes, 29(6): 1385-1396. https://doi.org/10.1002/hyp.10269
|
Cardenas, M. B., 2008. The Effect of River Bend Morphology on Flow and Timescales of Surface Water-Groundwater Exchange across Pointbars. Journal of Hydrology, 362(1-2): 134-141. https://doi.org/10.1016/j.jhydrol.2008.08.018
|
Du, Y., Ma, T., Deng, Y. M., et al., 2017. Hydro-Biogeochemistry of Hyporheic Zone: Principles, Methods and Ecological Significance. Earth Science, 42(5): 661-673 (in Chinese with English abstract).
|
Dudley-Southern, M., Binley, A., 2015. Temporal Responses of Groundwater-Surface Water Exchange to Successive Storm Events. Water Resources Research, 51(2): 1112-1126. https://doi.org/10.1002/2014wr016623
|
Dwivedi, D., Arora, B., Steefel, C. I., et al., 2018. Hot Spots and Hot Moments of Nitrogen in a Riparian Corridor. Water Resources Research, 54(1): 205-222. https://doi.org/10.1002/2017wr022346
|
Gomez-Velez, J. D., Wilson, J. L., Cardenas, M. B., et al., 2017. Flow and Residence Times of Dynamic River Bank Storage and Sinuosity-Driven Hyporheic Exchange. Water Resources Research, 53(10): 8572-8595. https://doi.org/10.1002/2017wr021362
|
Harvey, J. W., Böhlke, J. K., Voytek, M. A., et al., 2013. Hyporheic Zone Denitrification: Controls on Effective Reaction Depth and Contribution to Whole-Stream Mass Balance. Water Resources Research, 49(10): 6298-6316. https://doi.org/10.1002/wrcr.20492
|
Heathwaite, A. L., Heppell, C., Binley, A., et al., 2021. Spatial and Temporal Dynamics of Nitrogen Exchange in an Upwelling Reach of a Groundwater‐Fed River and Potential Response to Perturbations Changing Rainfall Patterns Under UK Climate Change Scenarios. Hydrological Processes, 35(4): e14135. https://doi.org//10.1002/hyp.14135
|
Heppell, C., Louise Heathwaite, A., Binley, A., et al., 2014. Interpreting Spatial Patterns in Redox and Coupled Water-Nitrogen Fluxes in the Streambed of a Gaining River Reach. Biogeochemistry, 117(2-3): 491-509. https://doi.org/10.1007/s10533-013-9895-4
|
Krause, S., Tecklenburg, C., Munz, M., et al., 2013. Streambed Nitrogen Cycling beyond the Hyporheic Zone: Flow Controls on Horizontal Patterns and Depth Distribution of Nitrate and Dissolved Oxygen in the Upwelling Groundwater of a Lowland River. Journal of Geophysical Research: Biogeosciences, 118(1): 54-67. https://doi.org/10.1029/2012jg002122
|
Kunz, J. V., Annable, M. D., Rao, S., et al., 2017. Hyporheic Passive Flux Meters Reveal Inverse Vertical Zonation and High Seasonality of Nitrogen Processing in an Anthropogenically Modified Stream (Holtemme, Germany). Water Resources Research, 53(12): 10155-10172. https://doi.org/10.1002/2017wr020709
|
Lansdown, K., Trimmer, M., Heppell, C. M., et al., 2012. Characterization of the Key Pathways of Dissimilatory Nitrate Reduction and Their Response to Complex Organic Substrates in Hyporheic Sediments. Limnology and Oceanography, 57(2): 387-400. https://doi.org/10.4319/lo.2012.57.2.0387
|
Li, A. G., Bernal, S., Kohler, B., et al., 2021. Residence Time in Hyporheic Bioactive Layers Explains Nitrate Uptake in Streams. Water Resources Research, 57(2): 1-16. https://doi.org/10.1029/2020wr027646
|
Li, G., Han, Z. W., Shen, C. H., et al., 2019. Distribution Characteristics and Causes of Nitrate in Waters of Typical Small Karst Catchment: A Case of the Houzhai River Catchment. Earth Science, 44(9): 2899-2908 (in Chinese with English abstract).
|
Li, Y., Zhang, W. W., Yuan, J. H., et al., 2016. Research Advances in Flow Patterns and Nitrogen Transformation in Hyporheic Zones. Journal of Hohai University (Natural Sciences), 44(1): 1-7 (in Chinese with English abstract). doi: 10.3876/j.issn.1000-1980.2016.01.001
|
Li, Y. L., Sun, W., Yang, Z. R., 2017. Identification of Nitrate Sources and Transformation Processes in Midstream Areas: A Case in the Taizi River Basin. Environmental Science, 38(12): 5039-5046 (in Chinese with English abstract).
|
Liu, Y. Y., Liu, C. X., Nelson, W. C., et al., 2017. Effect of Water Chemistry and Hydrodynamics on Nitrogen Transformation Activity and Microbial Community Functional Potential in Hyporheic Zone Sediment Columns. Environmental Science & Technology, 51(9): 4877-4886. https://doi.org/10.1021/acs.est.6b05018
|
Liu, S. N., Chui, T. F. M., 2018. Impacts of Different Rainfall Patterns on Hyporheic Zone under Transient Conditions. Journal of Hydrology, 561: 598-608. https://doi.org/10.1016/j.jhydrol.2018.04.019
|
Ma, P., Li, X. Y., Wang, H. X., et al., 2014. Denitrification and Its Role in Cycling and Removal of Nitrogen in River. Journal of Agro-Environment Science, 33(4): 623-633 (in Chinese with English abstract).
|
Naranjo, R. C., Niswonger, R. G., Davis, C. J., 2015. Mixing Effects on Nitrogen and Oxygen Concentrations and the Relationship to Mean Residence Time in a Hyporheic Zone of a Riffle-Pool Sequence. Water Resources Research, 51(9): 7202-7217. https://doi.org/10.1002/2014wr016593
|
Ping, X., Xian, Y., Jin, M. G., 2018. Influence of Bioclogging on Nitrogen Cycling in a Hyporheic Zone with an Undulate River-Bed. Earth Science, 43(S1): 171-180 (in Chinese with English abstract).
|
Ren, M. M., Huang, F., Hu, X. N., et al., 2020. Characteristics and Sources of Dissolved Inorganic Carbon and Nitrate in Lijiang River Basin. Earth Science, 45(5)1830-1843(in Chinese with English abstract).
|
Shuai, P., Cardenas, M. B., Knappett, P. S. K., et al., 2017. Denitrification in the Banks of Fluctuating Rivers: The Effects of River Stage Amplitude, Sediment Hydraulic Conductivity and Dispersivity, and Ambient Groundwater Flow. Water Resources Research, 53(9): 7951-7967. https://doi.org/10.1002/2017wr020610
|
Song, J. X., Zhang, G. T., Wang, W. Z., et al., 2017. Variability in the Vertical Hyporheic Water Exchange Affected by Hydraulic Conductivity and River Morphology at a Natural Confluent Meander Bend. Hydrological Processes, 31(19): 3407-3420. https://doi.org/10.1002/hyp.11265
|
Su, X. S., Shi, Y. K., Dong, W. H., et al., 2019. Review on Biogeochemical Characteristics of Hyporheic Zone. Journal of Earth Sciences and Environment, 41(3): 337-351 (in Chinese with English abstract).
|
Wu, G. D., Zhang, X., Lu, C. P., 2019. Spatial-Temporal Variability in Hyporheic Zone and Hyporheic Exchange. Yangtze River, 50(10): 100-107 (in Chinese with English abstract). doi: 10.11988/ckyyb.20190903
|
Xia, X. H., Liu, T., Yang, Z., et al., 2013. Dissolved Organic Nitrogen Transformation in River Water: Effects of Suspended Sediment and Organic Nitrogen Concentration. Journal of Hydrology, 484: 96-104. https://doi.org/10.1016/j.jhydrol.2013.01.012
|
Xu, H. S., Zhao, T. Q., Meng, H. Q., et al., 2011. Relationship between Groundwater Quality Index of Physics and Chemistry in Riparian Zone and Water Quality in River. Environmental Science, 32(3): 632-640 (in Chinese with English abstract).
|
Yan, Y. Q., 2018. Nitrogen Migration and Transformation Law and Its Key Process Influencing Factors in Jinghe Subsurface Flow Zone (Dissertation). Northwest A & F University, Yangling(in Chinese with English abstract).
|
Yan, Y. N., Ma, T., Zhang, J. W., et al., 2017. Experiment on Migration and Transformation of Nitrate under Interaction of Groundwater and Surface Water. Earth Science, 42(5): 783-792 (in Chinese with English abstract).
|
Yan, Z. L., Liu, R. Y., Yan, Z. H., et al., 2021. Study on the Variation of Ammonia Nitrogen in Seawater Pond Aquaculture Water. Rural Scientific Experiment, (11): 123-125(in Chinese with English abstract).
|
Yang, L., 2018. Analysis of Hydrochemical and Isotopic Characteristics of Different Water Bodies in Xilin River Basin (Dissertation). Inner Mongolia Agricultural University, Hohhot (in Chinese with English abstract).
|
Zhang, C. X., 2016. Applicatin of Slug Testing Based on Hvorslev Mode. Railway Investigation and Surveying, 42(2): 16-20(in Chinese with English abstract).
|
Zhang, H. T., Zhang, D. L., Hong, M., et al., 2014. Experimental Study on Effect of Carbon Sources on Nitrogen Migration in Hyporheic Zone. Yangtze River, 45(14): 22-26 (in Chinese with English abstract).
|
Zhang, L., Zhu, Z. Y., Wang, H. M., et al., 2020. Analysis of Hydrological Drought Evolution Characteristics and Influencing Factors in Xilin River Basin. Journal of Soil and Water Conservation, 34(4): 178-184, 192 (in Chinese with English abstract).
|
Zhou, Y. J., Liu, T. X., Duan, L. M., et al., 2020. Estimation of Evapotranspiration and Its Spatiotemporal Characteristics in the Upper Reaches of the Xilin River Basin. Arid Zone Research, 37(4): 974-984 (in Chinese with English abstract).
|
杜尧, 马腾, 邓娅敏, 等, 2017. 潜流带水文-生物地球化学: 原理、方法及其生态意义. 地球科学, 42(5): 661-673. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705001.htm
|
李耕, 韩志伟, 申春华, 等, 2019. 典型岩溶小流域水体中硝酸盐分布特征及成因: 以普定后寨河流域为例. 地球科学, 44(9): 2899-2908. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909008.htm
|
李艳利, 孙伟, 杨梓睿, 2017. 太子河流域中游地区河流硝酸盐来源及迁移转化过程. 环境科学, 38(12): 5039-5046. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201712018.htm
|
李勇, 张维维, 袁佳慧, 等, 2016. 潜流带水流特性及氮素运移转化研究进展. 河海大学学报(自然科学版), 44(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201601001.htm
|
马培, 李新艳, 王华新, 等, 2014. 河流反硝化过程及其在河流氮循环与氮去除中的作用. 农业环境科学学报, 33(4): 623-633. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201404003.htm
|
平雪, 鲜阳, 靳孟贵, 2018. 河床起伏条件下生物堵塞对潜流带氮素迁移转化的影响. 地球科学, 43(增刊1): 171-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2018S1017.htm
|
任梦梦, 黄芬, 胡晓农, 等, 2020. 漓江流域碳氮同位素组成特征及其来源初探. 地球科学, 45(5): 1830-1843. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005025.htm
|
苏小四, 师亚坤, 董维红, 等, 2019. 潜流带生物地球化学特征研究进展. 地球科学与环境学报, 41(3): 337-351. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201903009.htm
|
吴光东, 张潇, 鲁程鹏, 2019. 河流潜流带和潜流交换时空变异特征研究综述. 人民长江, 50(10): 100-107. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201910018.htm
|
徐华山, 赵同谦, 孟红旗, 等, 2011. 河岸带地下水理化指标变化及与洪水的响应关系研究. 环境科学, 32(3): 632-640. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201103004.htm
|
闫雅妮, 马腾, 张俊文, 等, 2017. 地下水与地表水相互作用下硝态氮的迁移转化实验. 地球科学, 42(5): 783-792. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705013.htm
|
闫玉琴, 2018. 泾河潜流带氮迁移转化规律及其关键过程影响因素(硕士学位论文). 杨凌: 西北农林科技大学.
|
严正凛, 刘瑞义, 严志洪, 等, 2021. 海水池塘养殖水体中氨氮的变化规律研究. 农村科学实验, (11): 123-125. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYU201008005.htm
|
杨璐, 2018. 锡林河流域不同水体的水化学和同位素特征分析(硕士学位论文). 呼和浩特: 内蒙古农业大学.
|
张昌新, 2016. 基于Hvorslev模型的微水试验应用. 铁道勘察, 42(2): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC201602007.htm
|
张海涛, 张迪龙, 洪梅, 等, 2014. 碳源对潜流带中氮素迁移转化影响的实验研究. 人民长江, 45(14): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201414008.htm
|
张璐, 朱仲元, 王慧敏, 等, 2020. 锡林河流域水文干旱演变特征及影响因素分析. 水土保持学报, 34(4): 178-184, 192. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS202004027.htm
|
周亚军, 刘廷玺, 段利民, 等, 2020. 锡林河流域上游蒸散发估算及其时空特征. 干旱区研究, 37(4): 974-984. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ202004018.htm
|