Citation: | Xia Tian, Cheng Cheng, Pang Qizhi, 2023. Safety Risk Warning of Deep Foundation Pit Deformation Based on LSTM. Earth Science, 48(10): 3925-3931. doi: 10.3799/dqkx.2021.250 |
Chen, Y. R., 2018. Application of Intelligent Algorithm Based on Genetic Algorithm and Extreme Learning Machine to Deformation Prediction of Foundation Pit. Tunnel Construction, 38(6): 941-947(in Chinese with English abstract).
|
Ghaboussi, J., Sidarta, D. E., 1997. New Method of Material Modeling Using Neural Networks. 6th International Symposium On Numerical Models in Geotechnics, 393-400.
|
Hashash, Y. M. A., Whittle, A. J., 1996. Ground Movement Prediction for Deep Excavations in Soft Clay. Journal of Geotechnical Engineering, 122(6): 474-486. https://doi.org/10.1061/(asce)0733-9410(1996)122:6(474)
|
Li, Q., 2013. Application Research of Generalized Regression Neural Network in Deep Foundation Pit Deformation Monitoring (Dissertation). Central South University, Changsha(in Chinese with English abstract).
|
Li, Y. J., Xue, Y. D., Yue, L., et al., 2015. Displacement Prediction of Deep Foundation Pit Based on Genetic Algorithms and BP Neural Network. Chinese Journal of Underground Space and Engineering, 11(S2): 741-749(in Chinese with English abstract).
|
Ma, L., 2018. Study of Deformation Law of Deep Foundation Pit Based on Chaotic Progressive Prediction Model and Trend Test. Tunnel Construction, 38(6): 934-940(in Chinese with English abstract).
|
Peng, M., 2008. Research and Development of Dynamic Risk Management Software (TRM2.0) for Shield Tunnel Construction (Dissertation). Tongji University, Shanghai(in Chinese with English abstract).
|
Song, C. P., 2019. Improved BP Neural Network Method for Deformation Predication of Deep Excavation. Journal of Civil Engineering and Management, 36(5): 45-49, 55(in Chinese with English abstract).
|
van Staveren, M. T., Peters, T. J. M., 2004. Matching Monitoring, Risk Allocation and Geotechnical Baseline Reports. Engineering Geology for Infrastructure Planning in Europe. Springer, Berlin, Heidelberg : 786-791.
|
Wang, X., Wu, J., Liu, C., et al., 2018. Exploring LSTM Based Recurrent Neural Network for Failure Time Series Prediction. Journal of Beijing University of Aeronautics and Astronautics, 44(4): 772-784(in Chinese with English abstract).
|
Werbos, P. J., 1990. Backpropagation through Time: What It does and How to do It. Proceedings of the IEEE, 78(10): 1550-1560. https://doi.org/10.1109/5.58337
|
陈艳茹, 2018. 基于遗传算法和极限学习机的智能算法在基坑变形预测中的应用. 隧道建设(中英文), 38(6): 941-947. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201806012.htm
|
李钦, 2013. 泛化回归神经网络在深基坑变形监测中的应用研究(硕士学位论文). 长沙: 中南大学.
|
李彦杰, 薛亚东, 岳磊, 等, 2015. 基于遗传算法-BP神经网络的深基坑变形预测. 地下空间与工程学报, 11(增刊2): 741-749. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2015S2062.htm
|
马琳, 2018. 基于混沌递进预测模型与趋势检验的深基坑变形规律研究. 隧道建设(中英文), 38(6): 934-940. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201806010.htm
|
彭铭. 2008. 盾构隧道施工动态风险管理软件(TRM2.0)开发研究(硕士学位论文). 上海: 同济大学.
|
宋楚平, 2019. 一种改进的BP神经网络深基坑变形预测方法. 土木工程与管理学报, 36(5): 45-49, 55 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ201905009.htm
|
王鑫, 吴际, 刘超, 等, 2018. 基于LSTM循环神经网络的故障时间序列预测. 北京航空航天大学学报, 44(4): 772-784. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201804015.htm
|