• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 11
    Nov.  2023
    Turn off MathJax
    Article Contents
    Xiao Hong, Wang Tieguan, Li Meijun, 2023. Discussion on Biological Origin and Formation Mechanism of Rearranged Hopanes in Sediments and Crude Oils. Earth Science, 48(11): 4190-4201. doi: 10.3799/dqkx.2021.255
    Citation: Xiao Hong, Wang Tieguan, Li Meijun, 2023. Discussion on Biological Origin and Formation Mechanism of Rearranged Hopanes in Sediments and Crude Oils. Earth Science, 48(11): 4190-4201. doi: 10.3799/dqkx.2021.255

    Discussion on Biological Origin and Formation Mechanism of Rearranged Hopanes in Sediments and Crude Oils

    doi: 10.3799/dqkx.2021.255
    • Received Date: 2021-07-08
      Available Online: 2023-11-30
    • Publish Date: 2023-11-25
    • Rearranged hopanes have gradually been reported in sediments deposited in various sedimentary environments and related crude oils, but their biological origins and formation mechanisms are still controversial. In this paper it systematically identified four types of rearranged hopanes in the Mesoproterozoic Xiamaling black shales and Jurassic lacustrine crude oils. Based on the relationship between the relative abundance of rearranged hopanes and their biosynthetic reaction schemes, it is proposed that their relative abundance and generation rate are mainly controlled by the biological origins and times of methyl rearrangement reaction. The formation process of early eluting rearranged hopane and 28-nor-spergulanes is more complicated than that of 17α(H)-diahopane, which makes their distribution in sediments and crude oil more limited. In addition, 18α(H)-neohopane can not only be derived from the bacteriohopanetetrol of prokaryotic organisms, but also from diplopterol and/or diploptene, so it is widely distributed in geological samples. Importantly, although sediments and crude oils rich in rearranged hopanes are frequently reported, they may not originate from ubiquitous prokaryotic bacteria, but may only exist in a small number of bacterial communities living in a specific environment.

       

    • loading
    • Cao, J., Bian, L. Z., Hu, K., et al., 2009. Benthic Macro Red Alga: A New Possible Bio-Precursor of Jurassic Mudstone Source Rocks in the Northern Qaidam Basin, Northwestern China. Science in China (Series D: Earth Sciences), 52(5): 647-654 (in Chinese). doi: 10.1007/s11430-009-0063-6
      Dou, L.R., Pan, X.H., Tian, Z.J., et al., 2006. Hydrocarbon Formation and Distribution of Rift Basins in Sudan—A Comparative Analysis of Them with Rift Basins in East China. Petroleum Exploration and Development, 33(3): 255-261 (in Chinese with English abstract).
      Farrimond, P., TelnæS, N., 1996. Three Series of Rearranged Hopanes in Toarcian Sediments (Northern Italy). Organic Geochemistry, 25(3/4): 165-177. https://doi.org/10.1016/S0146-6380(96)00127-1
      Huang, B. J., Xiao, X. M., Zhang, M. Q., 2003. Geochemistry, Grouping and Origins of Crude Oils in the Western Pearl River Mouth Basin, Offshore South China Sea. Organic Geochemistry, 34(7): 993-1008. https://doi.org/10.1016/S0146-6380(03)00035-4
      Jiang, L., George, S. C., Zhang, M., 2018. The Occurrence and Distribution of Rearranged Hopanes in Crude Oils from the Lishu Depression, Songliao Basin, China. Organic Geochemistry, 115: 205-219. https://doi.org/10.1016/j.orggeochem.2017.11.007
      Jiang, L., Zhang, M., 2015. Geochemical Characteristics and Significances of Rearranged Hopanes in Hydrocarbon Source Rocks, Songliao Basin, NE China. Journal of Petroleum Science and Engineering, 131: 138-149. https://doi.org/10.1016/j.petrol.2015.04.035
      Killops, S. D., Howell, V. J., 1991. Complex Series of Pentacyclic Triterpanes in a Lacustrine Sourced Oil from Korea Bay Basin. Chemical Geology, 91(1): 65-79. https://doi.org/10.1016/0009-2541(91)90016-K
      Kolaczkowska, E., Slougui, N. E., Watt, D. S., et al., 1990. Thermodynamic Stability of Various Alkylated, Dealkylated and Rearranged 17α- and 17β-Hopane Isomers Using Molecular Mechanics Calculations. Organic Geochemistry, 16(4/5/6): 1033-1038. https://doi.org/10.1016/0146-6380(90)90140-U
      Li, H. L., Jiang, L., Chen, X. H., et al., 2015. Identification of the Four Rearranged Hopane Series in Geological Bodies and Their Geochemical Significances. Chinese Journal of Geochemistry, 34(4): 550-557. https://doi.org/10.1007/s11631-015-0065-3
      Li, M., Wang, Z.F., Yao, Z.L., 2021. Microfossils and Paleoenvironmental Significance of Late Paleoproterozoic Ruyang Group in South Margin of North China Craton: Evidence from Microstructure and Biomarker. Earth Science, 46(11): 4072-4083 (in Chinese with English abstract).
      Li, M. J., Wang, T. G., Liu, J., et al., 2009. Biomarker 17α(H)-Diahopane: A Geochemical Tool to Study the Petroleum System of a Tertiary Lacustrine Basin, Northern South China Sea. Applied Geochemistry, 24(1): 172-183. https://doi.org/10.1016/j.apgeochem.2008.09.016
      Li, W., Dou, L. R., Wen, Z. G., et al., 2021. Rehopane: A Molecular Marker for Tracing Reservoir Charging Pathways. Earth Science, 46(7): 2507-2514 (in Chinese with English abstract).
      Liu, S.W., Li, Z., Pan, X.H., et al., 2017. Play Evaluation on Lithologic Reservoirs in Hydrocarbon-Rich Sags in Sudan: A Case Study on Fula Sag, Muglad Basin. China Petroleum Exploration, 22(2): 90-98 (in Chinese with English abstract).
      Luo, G. M., Hallmann, C., Xie, S. C., et al., 2015. Comparative Microbial Diversity and Redox Environments of Black Shale and Stromatolite Facies in the Mesoproterozoic Xiamaling Formation. Geochimica et Cosmochimica Acta, 151: 150-167. https://doi.org/10.1016/j.gca.2014.12.022
      Lü, Y. W., Liu, S. A., 2022. Cu and Zn Isotopic Evidence for the Magnitud of Organic Burial in the Mesoproterozoic Ocean. Journal of Earth Science, 33(1): 92-99. doi: 10.1007/s12583-021-1561-5
      Moldowan, J. M., Fago, F. J., Carlson, R. M. K., et al., 1991. Rearranged Hopanes in Sediments and Petroleum. Geochimica et Cosmochimica Acta, 55(11): 3333-3353. https://doi.org/10.1016/0016-7037(91)90492-N
      Nytoft, H.P., Lund, K., Kennet, T., et al., 2007. Identification of an Early-Eluting Rearranged Hopane Series. Synthesis from Hop-17(21)-enes and Detection of Intermediates in Sediments. Abstracts of Reports-International Congress on Organic Geochemistry, 23: 1017-1018.
      Nytoft, H. P., Lutnæs, B. F., Johansen, J. E., 2006. 28- Nor-Spergulanes, a Novel Series of Rearranged Hopanes. Organic Geochemistry, 37(7): 772-786. https://doi.org/10.1016/j.orggeochem.2006.03.005
      Ourisson, G., Albrecht, P., Rohmer, M., 1984. The Microbial Origin of Fossil Fuels. Scientific American, 251(2): 44-51. https://doi.org/10.1038/scientificamerican0884-44
      Philp, R. P., Gilbert, T. D., 1986. Biomarker Distributions in Australian Oils Predominantly Derived from Terrigenous Source Material. Organic Geochemistry, 10(1/2/3): 73-84. https://doi.org/10.1016/0146-6380(86)90010-0
      Rohmer, M., 1993. The Biosynthesis of Triterpenoids of the Hopane Series in the Eubacteria: A Mine of New Enzymatic Reactions. Pure and Applied Chemistry, 65(6): 1293-1298. https://doi.org/10.1351/pac199365061293
      Rohmer, M., Bouvier-Nave, P., Ourisson, G., 1984. Distribution of Hopanoid Triterpenes in Prokaryotes. Microbiology, 130(5): 1137-1150. https://doi.org/10.1099/00221287-130-5-1137.
      Sinninghe Damsté, J. S., Schouten, S., Volkman, J. K., 2014. C27-C30 Neohop-13(18)-Enes and Their Saturated and Aromatic Derivatives in Sediments: Indicators for Diagenesis and Water Column Stratification. Geochimica et Cosmochimica Acta, 133: 402-421. https://doi.org/10.1016/j.gca.2014.03.008
      Smith, G. W., 1975. The Crystal and Molecular Structure of 22, 29, 30-Trisnorhopane Ⅱ, C27H46. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 31(2): 522-526. https://doi.org/10.1107/s0567740875003159
      Summons, R. E., Powell, T. G., Boreham, C. J., 1988. Petroleum Geology and Geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: Ⅲ. Composition of Extractable Hydrocarbons. Geochimica et Cosmochimica Acta, 52(7): 1747-1763. https://doi.org/10.1016/0016-7037(88)90001-4
      Sun, S., Wang, T.G., 2016. Meso-Neoproterozoic Geology and Oil and Gas Resources in Eastern China. Science Press, Beijing (in Chinese).
      Talbot, H. M., Rohmer, M., Farrimond, P., 2007. Structural Characterisation of Unsaturated Bacterial Hopanoids by Atmospheric Pressure Chemical Ionisation Liquid Chromatography/Ion Trap Mass Spectrometry. Rapid Communications in Mass Spectrometry: RCM, 21(10): 1613-1622. https://doi.org/10.1002/rcm.2997
      Telnaes, N., Isaksen, G. H., Farrimond, P., 1992. Unusual Triterpane Distributions in Lacustrine Oils. Organic Geochemistry, 18(6): 785-789. https://doi.org/10.1016/0146-6380(92)90047-2
      Tong, X.G., Dou, L.R., Tian, Z.J., et al., 2004. Geological Mode and Hydrocarbon Accumulation Mode in Muglad Passive Rift Basin of Sudan. Acta Petrolei Sinica, 25(1): 19-24 (in Chinese with English abstract).
      Wang, T.G., Hou, D.J., 1994. Distributional Patterns of Hopenoid Hydrocarbons in Mudstone and Crude Oil, Banqiao Sag. Chinese Science Bulletin, 39(4): 307-311 (in Chinese). doi: 10.1360/csb1994-39-4-307
      Wang, T.G., Zhong, N. N., Wang, C. J., et al., 2016. Source Beds and Oil Entrapment-Alteration Histories of Fossil-Oil-Reservoirs in the Xiamaling Formation Basal Sandstone, Jibei Depression. Petroleum Science Bulletin, 1(1): 24-37 (in Chinese with English abstract).
      Wang, X.P., Yuan, X.L., 2019. A Molecular Window to the Primeval World. Chinese Science Bulletin, 64(22): 2279-2284 (in Chinese). doi: 10.1360/N972019-00304
      Whitehead, E., 1973. The Structure of Petroleum Pentacyclanes. In: Tissot, B., Bienner, F., eds., Advances in Organic Geochemistry. Editions Technip, Paris, 225-243.
      Xiao, H., Li, M. J., Liu, J. G., et al., 2019a. Oil-Oil and Oil-Source Rock Correlations in the Muglad Basin, Sudan and South Sudan: New Insights from Molecular Markers Analyses. Marine and Petroleum Geology, 103: 351-365. https://doi.org/10.1016/j.marpetgeo.2019.03.004
      Xiao, H., Li, M. J., Wang, W. Q., et al., 2019b. Identification, Distribution and Geochemical Significance of Four Rearranged Hopane Series in Crude Oil. Organic Geochemistry, 138: 103929. https://doi.org/10.1016/j.orggeochem.2019.103929
      Xiao, H., Li, M. J., Wang, T. G., et al., 2021. Four Series of Rearranged Hopanes in the Mesoproterozoic Sediments. Chemical Geology, 573: 120210. https://doi.org/10.1016/j.chemgeo.2021.120210
      Xiao, Z.Y., Huang, G.H., Lu, Y.H., et al., 2004. Rearranged Hopanes in Oils from the Quele 1 Well, Tarim Basin, and the Significance for Oil Correlation. Petroleum Exploration and Development, 31(2): 35-37 (in Chinese with English abstract).
      Zhang, S.C., Zhang, B.M., Bian, L.Z., et al., 2007. Oil Shale of Xiamaling Formation Accumulated by Red Algae More Than 800 Million Years Ago. Science in China (Series D: Earth Sciences), 37(5): 636-643 (in Chinese).
      Zhao, M.L., Zhang, Y.M., Zhang, Z.Q., et al., 2020. Comparison of Microbial Community in Topsoil among Different Habitats in Dajiuhu, Hubei Province: Evidence from Phospholipid Fatty Acids. Earth Science, 45(6): 1877-1886 (in Chinese with English abstract).
      Zhou, S.Q., Huang, H.P., Lin, C.S., et al., 2007. Biomarker, Earlier Life and the Concurrent Environment. Geological Review, 53(3): 389-396 (in Chinese with English abstract).
      Zhu, Y. M., Hao, F., Zou, H. Y., et al., 2007. Jurassic Oils in the Central Sichuan Basin, Southwest China: Unusual Biomarker Distribution and Possible Origin. Organic Geochemistry, 38(11): 1884-1896. https://doi.org/10.1016/j.orggeochem.2007.06.016
      Zou, X.L., Chen, S.J., Lu, J.G., et al., 2017. Composition and Distribution of 17α(H)-Diahopane in the Yanchang Formation Source Rocks, Ordos Basin. Geochimica, 46(3): 252-261 (in Chinese with English abstract).
      曹剑, 边立曾, 胡凯, 等, 2009. 柴达木盆地北缘侏罗系烃源岩中发现底栖宏观红藻类生烃母质. 中国科学(D辑: 地球科学), 39(4): 474-480. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200904010.htm
      窦立荣, 潘校华, 田作基, 等, 2006. 苏丹裂谷盆地油气藏的形成与分布: 兼与中国东部裂谷盆地对比分析. 石油勘探与开发, 33(3): 255-261. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200603000.htm
      李猛, 王钊飞, 姚志亮, 2021. 华北克拉通南缘古元古代晚期汝阳群微体化石及其古环境意义: 来自微细构造和生物标志化合物的证据. 地球科学, 46(11): 4072-4083. doi: 10.3799/dqkx.2021.006
      李威, 窦立荣, 文志刚, 等, 2021. 重排藿烷: 示踪油藏充注途径的分子标志物. 地球科学, 46(7): 2507-2514. doi: 10.3799/dqkx.2018.322
      刘淑文, 李志, 潘校华, 等, 2017. 苏丹富油气凹陷岩性油气藏区带评价探讨: 以Muglad盆地Fula凹陷为例. 中国石油勘探, 22(2): 90-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201702011.htm
      孙枢, 王铁冠, 2016. 中国东部中–新元古界地质学与油气资源. 北京: 科学出版社.
      童晓光, 窦立荣, 田作基, 等, 2004. 苏丹穆格莱特盆地的地质模式和成藏模式. 石油学报, 25(1): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200401003.htm
      王铁冠, 候读杰, 1994. 板桥凹陷泥岩与原油中藿烷类的分布型式. 科学通报, 39(1): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199401017.htm
      王铁冠, 钟宁宁, 王春江, 等, 2016. 冀北坳陷下马岭组底砂岩古油藏成藏演变历史与烃源剖析. 石油科学通报, 1(1): 24-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201601003.htm
      王霄鹏, 袁训来, 2019. 远古世界的分子窗口. 科学通报, 64(22): 2279-2284. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201922006.htm
      肖中尧, 黄光辉, 卢玉红, 等, 2004. 库车坳陷却勒1井原油的重排藿烷系列及油源对比. 石油勘探与开发, 31(2): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200402008.htm
      张水昌, 张宝民, 边立曾, 等, 2007.8亿多年前由红藻堆积而成的下马岭组油页岩. 中国科学(D辑: 地球科学), 37(5): 636-643. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200705006.htm
      赵美玲, 张一鸣, 张志麒, 等, 2020. 神农架大九湖不同生境表土磷脂脂肪酸揭示的微生物群落结构差异. 地球科学, 45(6): 1877-1886. doi: 10.3799/dqkx.2019.272
      周树青, 黄海平, 林畅松, 等, 2007. 生物标志化合物、早期生命和古环境. 地质论评, 53(3): 389-396. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200703011.htm
      邹贤利, 陈世加, 路俊刚, 等, 2017. 鄂尔多斯盆地延长组烃源岩17α(H)-重排藿烷的组成及分布研究. 地球化学, 46(3): 252-261. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201703005.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (588) PDF downloads(45) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return