Citation: | Xiao Hong, Wang Tieguan, Li Meijun, 2023. Discussion on Biological Origin and Formation Mechanism of Rearranged Hopanes in Sediments and Crude Oils. Earth Science, 48(11): 4190-4201. doi: 10.3799/dqkx.2021.255 |
Cao, J., Bian, L. Z., Hu, K., et al., 2009. Benthic Macro Red Alga: A New Possible Bio-Precursor of Jurassic Mudstone Source Rocks in the Northern Qaidam Basin, Northwestern China. Science in China (Series D: Earth Sciences), 52(5): 647-654 (in Chinese). doi: 10.1007/s11430-009-0063-6
|
Dou, L.R., Pan, X.H., Tian, Z.J., et al., 2006. Hydrocarbon Formation and Distribution of Rift Basins in Sudan—A Comparative Analysis of Them with Rift Basins in East China. Petroleum Exploration and Development, 33(3): 255-261 (in Chinese with English abstract).
|
Farrimond, P., TelnæS, N., 1996. Three Series of Rearranged Hopanes in Toarcian Sediments (Northern Italy). Organic Geochemistry, 25(3/4): 165-177. https://doi.org/10.1016/S0146-6380(96)00127-1
|
Huang, B. J., Xiao, X. M., Zhang, M. Q., 2003. Geochemistry, Grouping and Origins of Crude Oils in the Western Pearl River Mouth Basin, Offshore South China Sea. Organic Geochemistry, 34(7): 993-1008. https://doi.org/10.1016/S0146-6380(03)00035-4
|
Jiang, L., George, S. C., Zhang, M., 2018. The Occurrence and Distribution of Rearranged Hopanes in Crude Oils from the Lishu Depression, Songliao Basin, China. Organic Geochemistry, 115: 205-219. https://doi.org/10.1016/j.orggeochem.2017.11.007
|
Jiang, L., Zhang, M., 2015. Geochemical Characteristics and Significances of Rearranged Hopanes in Hydrocarbon Source Rocks, Songliao Basin, NE China. Journal of Petroleum Science and Engineering, 131: 138-149. https://doi.org/10.1016/j.petrol.2015.04.035
|
Killops, S. D., Howell, V. J., 1991. Complex Series of Pentacyclic Triterpanes in a Lacustrine Sourced Oil from Korea Bay Basin. Chemical Geology, 91(1): 65-79. https://doi.org/10.1016/0009-2541(91)90016-K
|
Kolaczkowska, E., Slougui, N. E., Watt, D. S., et al., 1990. Thermodynamic Stability of Various Alkylated, Dealkylated and Rearranged 17α- and 17β-Hopane Isomers Using Molecular Mechanics Calculations. Organic Geochemistry, 16(4/5/6): 1033-1038. https://doi.org/10.1016/0146-6380(90)90140-U
|
Li, H. L., Jiang, L., Chen, X. H., et al., 2015. Identification of the Four Rearranged Hopane Series in Geological Bodies and Their Geochemical Significances. Chinese Journal of Geochemistry, 34(4): 550-557. https://doi.org/10.1007/s11631-015-0065-3
|
Li, M., Wang, Z.F., Yao, Z.L., 2021. Microfossils and Paleoenvironmental Significance of Late Paleoproterozoic Ruyang Group in South Margin of North China Craton: Evidence from Microstructure and Biomarker. Earth Science, 46(11): 4072-4083 (in Chinese with English abstract).
|
Li, M. J., Wang, T. G., Liu, J., et al., 2009. Biomarker 17α(H)-Diahopane: A Geochemical Tool to Study the Petroleum System of a Tertiary Lacustrine Basin, Northern South China Sea. Applied Geochemistry, 24(1): 172-183. https://doi.org/10.1016/j.apgeochem.2008.09.016
|
Li, W., Dou, L. R., Wen, Z. G., et al., 2021. Rehopane: A Molecular Marker for Tracing Reservoir Charging Pathways. Earth Science, 46(7): 2507-2514 (in Chinese with English abstract).
|
Liu, S.W., Li, Z., Pan, X.H., et al., 2017. Play Evaluation on Lithologic Reservoirs in Hydrocarbon-Rich Sags in Sudan: A Case Study on Fula Sag, Muglad Basin. China Petroleum Exploration, 22(2): 90-98 (in Chinese with English abstract).
|
Luo, G. M., Hallmann, C., Xie, S. C., et al., 2015. Comparative Microbial Diversity and Redox Environments of Black Shale and Stromatolite Facies in the Mesoproterozoic Xiamaling Formation. Geochimica et Cosmochimica Acta, 151: 150-167. https://doi.org/10.1016/j.gca.2014.12.022
|
Lü, Y. W., Liu, S. A., 2022. Cu and Zn Isotopic Evidence for the Magnitud of Organic Burial in the Mesoproterozoic Ocean. Journal of Earth Science, 33(1): 92-99. doi: 10.1007/s12583-021-1561-5
|
Moldowan, J. M., Fago, F. J., Carlson, R. M. K., et al., 1991. Rearranged Hopanes in Sediments and Petroleum. Geochimica et Cosmochimica Acta, 55(11): 3333-3353. https://doi.org/10.1016/0016-7037(91)90492-N
|
Nytoft, H.P., Lund, K., Kennet, T., et al., 2007. Identification of an Early-Eluting Rearranged Hopane Series. Synthesis from Hop-17(21)-enes and Detection of Intermediates in Sediments. Abstracts of Reports-International Congress on Organic Geochemistry, 23: 1017-1018.
|
Nytoft, H. P., Lutnæs, B. F., Johansen, J. E., 2006. 28- Nor-Spergulanes, a Novel Series of Rearranged Hopanes. Organic Geochemistry, 37(7): 772-786. https://doi.org/10.1016/j.orggeochem.2006.03.005
|
Ourisson, G., Albrecht, P., Rohmer, M., 1984. The Microbial Origin of Fossil Fuels. Scientific American, 251(2): 44-51. https://doi.org/10.1038/scientificamerican0884-44
|
Philp, R. P., Gilbert, T. D., 1986. Biomarker Distributions in Australian Oils Predominantly Derived from Terrigenous Source Material. Organic Geochemistry, 10(1/2/3): 73-84. https://doi.org/10.1016/0146-6380(86)90010-0
|
Rohmer, M., 1993. The Biosynthesis of Triterpenoids of the Hopane Series in the Eubacteria: A Mine of New Enzymatic Reactions. Pure and Applied Chemistry, 65(6): 1293-1298. https://doi.org/10.1351/pac199365061293
|
Rohmer, M., Bouvier-Nave, P., Ourisson, G., 1984. Distribution of Hopanoid Triterpenes in Prokaryotes. Microbiology, 130(5): 1137-1150. https://doi.org/10.1099/00221287-130-5-1137.
|
Sinninghe Damsté, J. S., Schouten, S., Volkman, J. K., 2014. C27-C30 Neohop-13(18)-Enes and Their Saturated and Aromatic Derivatives in Sediments: Indicators for Diagenesis and Water Column Stratification. Geochimica et Cosmochimica Acta, 133: 402-421. https://doi.org/10.1016/j.gca.2014.03.008
|
Smith, G. W., 1975. The Crystal and Molecular Structure of 22, 29, 30-Trisnorhopane Ⅱ, C27H46. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 31(2): 522-526. https://doi.org/10.1107/s0567740875003159
|
Summons, R. E., Powell, T. G., Boreham, C. J., 1988. Petroleum Geology and Geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: Ⅲ. Composition of Extractable Hydrocarbons. Geochimica et Cosmochimica Acta, 52(7): 1747-1763. https://doi.org/10.1016/0016-7037(88)90001-4
|
Sun, S., Wang, T.G., 2016. Meso-Neoproterozoic Geology and Oil and Gas Resources in Eastern China. Science Press, Beijing (in Chinese).
|
Talbot, H. M., Rohmer, M., Farrimond, P., 2007. Structural Characterisation of Unsaturated Bacterial Hopanoids by Atmospheric Pressure Chemical Ionisation Liquid Chromatography/Ion Trap Mass Spectrometry. Rapid Communications in Mass Spectrometry: RCM, 21(10): 1613-1622. https://doi.org/10.1002/rcm.2997
|
Telnaes, N., Isaksen, G. H., Farrimond, P., 1992. Unusual Triterpane Distributions in Lacustrine Oils. Organic Geochemistry, 18(6): 785-789. https://doi.org/10.1016/0146-6380(92)90047-2
|
Tong, X.G., Dou, L.R., Tian, Z.J., et al., 2004. Geological Mode and Hydrocarbon Accumulation Mode in Muglad Passive Rift Basin of Sudan. Acta Petrolei Sinica, 25(1): 19-24 (in Chinese with English abstract).
|
Wang, T.G., Hou, D.J., 1994. Distributional Patterns of Hopenoid Hydrocarbons in Mudstone and Crude Oil, Banqiao Sag. Chinese Science Bulletin, 39(4): 307-311 (in Chinese). doi: 10.1360/csb1994-39-4-307
|
Wang, T.G., Zhong, N. N., Wang, C. J., et al., 2016. Source Beds and Oil Entrapment-Alteration Histories of Fossil-Oil-Reservoirs in the Xiamaling Formation Basal Sandstone, Jibei Depression. Petroleum Science Bulletin, 1(1): 24-37 (in Chinese with English abstract).
|
Wang, X.P., Yuan, X.L., 2019. A Molecular Window to the Primeval World. Chinese Science Bulletin, 64(22): 2279-2284 (in Chinese). doi: 10.1360/N972019-00304
|
Whitehead, E., 1973. The Structure of Petroleum Pentacyclanes. In: Tissot, B., Bienner, F., eds., Advances in Organic Geochemistry. Editions Technip, Paris, 225-243.
|
Xiao, H., Li, M. J., Liu, J. G., et al., 2019a. Oil-Oil and Oil-Source Rock Correlations in the Muglad Basin, Sudan and South Sudan: New Insights from Molecular Markers Analyses. Marine and Petroleum Geology, 103: 351-365. https://doi.org/10.1016/j.marpetgeo.2019.03.004
|
Xiao, H., Li, M. J., Wang, W. Q., et al., 2019b. Identification, Distribution and Geochemical Significance of Four Rearranged Hopane Series in Crude Oil. Organic Geochemistry, 138: 103929. https://doi.org/10.1016/j.orggeochem.2019.103929
|
Xiao, H., Li, M. J., Wang, T. G., et al., 2021. Four Series of Rearranged Hopanes in the Mesoproterozoic Sediments. Chemical Geology, 573: 120210. https://doi.org/10.1016/j.chemgeo.2021.120210
|
Xiao, Z.Y., Huang, G.H., Lu, Y.H., et al., 2004. Rearranged Hopanes in Oils from the Quele 1 Well, Tarim Basin, and the Significance for Oil Correlation. Petroleum Exploration and Development, 31(2): 35-37 (in Chinese with English abstract).
|
Zhang, S.C., Zhang, B.M., Bian, L.Z., et al., 2007. Oil Shale of Xiamaling Formation Accumulated by Red Algae More Than 800 Million Years Ago. Science in China (Series D: Earth Sciences), 37(5): 636-643 (in Chinese).
|
Zhao, M.L., Zhang, Y.M., Zhang, Z.Q., et al., 2020. Comparison of Microbial Community in Topsoil among Different Habitats in Dajiuhu, Hubei Province: Evidence from Phospholipid Fatty Acids. Earth Science, 45(6): 1877-1886 (in Chinese with English abstract).
|
Zhou, S.Q., Huang, H.P., Lin, C.S., et al., 2007. Biomarker, Earlier Life and the Concurrent Environment. Geological Review, 53(3): 389-396 (in Chinese with English abstract).
|
Zhu, Y. M., Hao, F., Zou, H. Y., et al., 2007. Jurassic Oils in the Central Sichuan Basin, Southwest China: Unusual Biomarker Distribution and Possible Origin. Organic Geochemistry, 38(11): 1884-1896. https://doi.org/10.1016/j.orggeochem.2007.06.016
|
Zou, X.L., Chen, S.J., Lu, J.G., et al., 2017. Composition and Distribution of 17α(H)-Diahopane in the Yanchang Formation Source Rocks, Ordos Basin. Geochimica, 46(3): 252-261 (in Chinese with English abstract).
|
曹剑, 边立曾, 胡凯, 等, 2009. 柴达木盆地北缘侏罗系烃源岩中发现底栖宏观红藻类生烃母质. 中国科学(D辑: 地球科学), 39(4): 474-480. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200904010.htm
|
窦立荣, 潘校华, 田作基, 等, 2006. 苏丹裂谷盆地油气藏的形成与分布: 兼与中国东部裂谷盆地对比分析. 石油勘探与开发, 33(3): 255-261. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200603000.htm
|
李猛, 王钊飞, 姚志亮, 2021. 华北克拉通南缘古元古代晚期汝阳群微体化石及其古环境意义: 来自微细构造和生物标志化合物的证据. 地球科学, 46(11): 4072-4083. doi: 10.3799/dqkx.2021.006
|
李威, 窦立荣, 文志刚, 等, 2021. 重排藿烷: 示踪油藏充注途径的分子标志物. 地球科学, 46(7): 2507-2514. doi: 10.3799/dqkx.2018.322
|
刘淑文, 李志, 潘校华, 等, 2017. 苏丹富油气凹陷岩性油气藏区带评价探讨: 以Muglad盆地Fula凹陷为例. 中国石油勘探, 22(2): 90-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201702011.htm
|
孙枢, 王铁冠, 2016. 中国东部中–新元古界地质学与油气资源. 北京: 科学出版社.
|
童晓光, 窦立荣, 田作基, 等, 2004. 苏丹穆格莱特盆地的地质模式和成藏模式. 石油学报, 25(1): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200401003.htm
|
王铁冠, 候读杰, 1994. 板桥凹陷泥岩与原油中藿烷类的分布型式. 科学通报, 39(1): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199401017.htm
|
王铁冠, 钟宁宁, 王春江, 等, 2016. 冀北坳陷下马岭组底砂岩古油藏成藏演变历史与烃源剖析. 石油科学通报, 1(1): 24-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201601003.htm
|
王霄鹏, 袁训来, 2019. 远古世界的分子窗口. 科学通报, 64(22): 2279-2284. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201922006.htm
|
肖中尧, 黄光辉, 卢玉红, 等, 2004. 库车坳陷却勒1井原油的重排藿烷系列及油源对比. 石油勘探与开发, 31(2): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200402008.htm
|
张水昌, 张宝民, 边立曾, 等, 2007.8亿多年前由红藻堆积而成的下马岭组油页岩. 中国科学(D辑: 地球科学), 37(5): 636-643. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200705006.htm
|
赵美玲, 张一鸣, 张志麒, 等, 2020. 神农架大九湖不同生境表土磷脂脂肪酸揭示的微生物群落结构差异. 地球科学, 45(6): 1877-1886. doi: 10.3799/dqkx.2019.272
|
周树青, 黄海平, 林畅松, 等, 2007. 生物标志化合物、早期生命和古环境. 地质论评, 53(3): 389-396. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200703011.htm
|
邹贤利, 陈世加, 路俊刚, 等, 2017. 鄂尔多斯盆地延长组烃源岩17α(H)-重排藿烷的组成及分布研究. 地球化学, 46(3): 252-261. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201703005.htm
|